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1. Introduction

It is well known that initial imperfections of shells may have a remarkable
effect on the buckling load. Many authors discussed the effect of imperfections
on the buckling of cylindrical shells under axial compression. One can refer
to the works by Koiter (1945, 1978), Amazigo and Budiansky (1972), Kan
(1966), Volmir (1967), Gristchak (1976), Koiter et al. (1994) in details.

In this paper, following the considerations of Gristchak (1976), Koiter et
al. (1994), a hybrid perturbation method is proposed for the estimation of
effect of local thickness defects and initial imperfections on the buckling of an
axially compressed cylindrical shell.

In order to obtain an approximate solution to the problem we use the
double asymptotic expansion technique that includes two steps. In the first
step the stress function is presented as an expansion of the magnitude of the
thickness defects in terms of a small parameter ε. In the second step the first
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term in the obtained expansion is presented as an asymptotic expansion in a
small parameter µ2/m2 that indicates the thickness defect spread area.

In spite of the fact that the proposed asymptotic method is used only for
the buckling problem of a compressed cylindrical shell in this paper, it can
be applied for the investigation of behaviour of thin-walled structures under
combined loadings as well.

2. Description of the hybrid perturbation method

We consider a circular cylindrical shell of the radius R, length L that is
made of an isotropic, elastic material with Young’s modulus E and Poisson’s
ratio ν. It is subjected to an axial compressive load P0. The coordinate system
is assumed as shown in Figure 1.

The governing equations of the pressurized non-uniform cylindrical shell
are as follows (Koiter et al., 1994)
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where x ∈ [−L/2;L/2] and y ∈ [0; 2πR] are the axial and circimferential co-
ordinates, respectively, W (x, y) is the radial displacement (positive outward),
F (x, y) is the stress function, h(x) is the shell thickness. It is necessary to
note that the above given equations can be applied to shells of medium length
(1.5 ¬ L/R ¬ 4) provided that the wave number in the circumferential direc-
tion is rather large.
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Fig. 1. Imperfect cylindrical shell under axial compression

By introducing the following non-dimensional parameters
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where h0 is the nominal thickness of the shell, D is the bending stiffness,
governing equations (2.1) can be rewritten into their non-dimensional form
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We seek the solution to the initial equations in the following form (Koiter
et al., 1994)
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where n is the wave number in the circumferential direction.
We consider the local thickness defects in the form

H(ξ) = 1− ε exp
(

−
µ2

2
ξ2
)

(2.4)

where ε ≪ 1 and µ2 are parameters indicating the amplitude magnitude of
the thickness defects and the character of the defect location, respectively. The
above given form of local thickness defects is ”local” in the sense that function
(2.4) decays rapidly in the axial direction because of the exponential factor
exp(−µ2ξ2/2).
The buckling mode of the circular cylindrical shell can be written in the

form

w(ξ) = [A1 cos(mξ) +A2 cos(3mξ)
]

exp
(

−
µ2

2
ξ2
)

(2.5)

where A1 and A2 are undetermined constants, m = pL/R, p = p0/2 is the
number of half-waves along the shell length. Here
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The first term in the brackets is the buckling pattern that satisfies the
boundary conditions of the simple support. The second term and modulating
factor exp(−µ2ξ2/2) are introduced in (2.5) as the local thickness defects may
initiate the local buckling mode.
The unknown function f(ξ) is sought as a two-term expansion in the small

defect parameter ε

f(ξ) = ϕ0(ξ) exp
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+ εϕ1(ξ) exp(−µ2ξ2) + . . . (2.6)

Taking into account that the wave number p0 is large enough for thin
shells, and respectively m ≫ 1, we may consider µ2/m2 ≪ 1 being a small
parameter.
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The function ϕ0(ξ) can be represented as an asymptotic expansion in the
small parameter β2 = µ2/m2 such as

ϕ0(ξ) = f0(ξ) + β
2f1(ξ) + . . . (2.7)

Substituting expansions (2.6) and (2.7) into the initial equation after col-
lecting coefficients with equal orders of the parameters ε and β2 we obtain
a system of the unknown functions f0(ξ), f1(ξ), ϕ1(ξ). We neglect here the
terms of higher order than ε and β2.

It should be noted that there are many coincident modes and the corre-
sponding wave numbers n and p are located on Koiter’s circle. We consider
the case when the buckling mode has the same wave numbers both in the axial
and circumferential directions. Thus, in this case we have (Koiter et al., 1994)

p = n =
p0
2

We apply the Boobnov-Galerkin procedure to equilibrium equation (2.2)1.
Admittedly, it should be pointed out that in order to obtain analytical forms
of all integrals in the solution we replace the finite limits of the integrals by
infinite ones. It is possible that the process of deformation has local character.
All integrals from (2.2)1 are as follows
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where g is integer.

The Boobnov-Galerkin procedure yields the eigenvalue problem. Denoting
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where Pc =
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R
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after some simplifications we obtain an asymptotic formula for the critical
buckling load parameter λ
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λ = 1−
[

√
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(2.9)

where K = exp(−1/β2).
As indicated in formula (2.9), the local thickness defects, see Eq. (2.4),

reduce the critical buckling load parameter.

3. Analysis of the critical buckling load parameter

In Table 1 we compare the results corresponding to the buckling load
parameter λ for cylindrical shells with the local thickness defects given in
form (2.4) and with periodical ones in the form H(ξ) = 1− ε cos(2mξ), which
were considered by Koiter et al. (1994).

Table 1. Comparison of buckling load parameters for periodical and local
thickness defects

ε Koiter’s formula Eq. (2.9) β2 = 0.05 Eq. (2.9) β2 = 0.1

0.01 0.998 0.987 0.987

0.05 0.988 0.933 0.936

0.10 0.966 0.865 0.871

0.15 0.935 0.798 0.807

As the results show, the local form of thickness variation as well as the
periodical one effects the buckling load parameter. In Table 1 it is easy to
see that at fixed parameter β2 the increasing amplitude of the local thickness
defects (parameter ε) reduces the critical buckling load. In particular, when
the amplitude of the local thickness defects increases by 15% (ε = 0.15) and
the defect area amounts to about 45% (when β2 = 0.1) of the shell length,
the critical buckling load parameter decreases by 20% in comparison with the
perfect shell. At the same time at fixed parameter ε the increasing parame-
ter β2 (which means narrowing of the defect area) lowers the shell sensitivity
to this defect. Thus, the local thickness defects of a cylindrical shell are as
harmful as those of the periodical type, Koiter et al. (1994).

The form of the deformed surface of the compressed cylindrical shell de-
pending on the character of the defect location is given in Fig. 2.
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Fig. 2. Contour picture of the shell surface with the local thickness defects at
β2 = 0.5 and ε = 0.1

4. Analysis of the energy functional of the cylindrical shell

The energy functional of an isotropic cylindrical shell subject to axial com-
pressive load has been evaluated by Gristchak (1976), Koiter (1978), and takes
the form
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where Ω is the shell surface, E is Young’s modulus of the shell material, ν is
Poisson’s ratio, R is the shell radius, h(x, y) is the shell thickness, σ is the
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axial compressive stress, x ∈ [−L/(2R);L/(2R)] and y ∈ [0; 2π] are the non-
dimensional axial and circumferential coordinates, u(x, y), v(x, y), w(x, y) are
the components of the displacements, w0(x, y) is the function of the local
imperfections.

Taking into consideration that the initial imperfections are localized, we
assume that the displacements in the functional are given in the form proposed
by Gristchak (1976), Koiter (1978) for more or less localized imperfections
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where b0 is the amplitude of the displacements, µ
2 is the parameter that

effects the location of the initial geometric imperfections, m =
√

cR/(2h0) is
the number of half-waves along the shell length, c =

√
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It is worth noticing that in order to compare the obtained results with the

established ones (Gristchak, 1976; Koiter, 1978) we use the same form of the
energy functional and forms of displacements.

The forms of displacements (4.2) differ from buckling mode (2.3) as in the
previous case we have considered a cylindrical shell with the thickness defects
only, whereas in the case under consideartion functions (4.2) describe more
exactly the shape of the deformation of the cylindrical shell with the initial
geometric imperfections.

The initial imperfections in the shape of the buckling mode are assumed
in the form

w0(x, y) = kh0[cos(2mx) + 4 cos(mx) cos(my)] exp
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2
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]

(4.3)

where k is the amplitude of the initial imperfections, h0 is the nominal thick-
ness of the shell.

We consider the case when the thickness defects are local in the axial
direction

h(x) = h0
[

1− ε exp
(
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2
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where ε≪ 1 and N2 are parameters indicating the amplitude of the thickness
defects and the character of the defect location, respectively.
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Substituting displacements (4.2) and functions (4.3) and (4.4) into the
expression of energy functional (4.1) we omit the terms of higher order than ε
and µ2/m2. As the form of shell deformation has local character under axial
compression, it was mentioned above that the integration over the surface Ω
of the shell may be replaced by integration from −∞ to +∞ in both axial
and circumferential directions.

5. Asymptotic formula for the critical buckling load parameter

Using the Rayleigh-Ritz method and replacing the finite limits of the inte-
grals by infinite ones, after integration we get the total energy in the following
form
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where λ1 = h0/(cR) is the critical buckling load parameter for the perfect
shell, λ = σ/E; d, s, q are some constants which depend on the elastic pro-
perties of the shell material
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A, B, C are parameters that depend on the character of the localization both
the initial geometric imperfections and the thickness defects of the shell
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Using the critical balance conditions δP = 0 and δ2P = 0, we obtain an
asymptotic formula for the critical buckling load parameter λ∗/λ1
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We note that asymptotic formula (5.2), except for the terms with the
parameter ε, is similar to Gristchak’s form (1976).
The obtained formula enables us to get values of the critical buckling load

parameter λ∗/λ1 when the initial imperfections are absent. In this case, we
put ck = 0.
Having calculated the parameter of the critical buckling load for the shell

with the localized initial geometric imperfections, we obtain the upper bound
for the buckling stress owing to the application of the Rayleigh-Ritz method.
In this case, the error may reach about 11% (Gristchak, 1976).
Values of the critical buckling load parameter λ∗/λ1 for the shell with the

local initial geometric imperfections and the local thickness defects are given
in Fig. 3.

Fig. 3. The effect of the initial imperfections and the thickness defects of the shell on
the critical buckling load parameter (µ2/m2 = 0.1)

6. Concluding remarks

In the paper some formulas for the axial buckling of a circular cylindrical
shell with local thickness defects and local initial geometric imperfections are
presented.
The obtained results confirm the following conclusions:

• Analysis of the critical buckling load parameter shows that the effect
of certain types of the thickness variation and initial geometric imper-
fections on the buckling load deserves special attention. Specifically, the
results show that the local thickness defects in the absence of the initial
geometric imperfections reduce the buckling load compared to the shell
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with the constant thickness. Even if the amplitude of the local thickness
defects is as small as 0.1, the thickness variation reduces the buckling lo-
ad by 13% from its counterpart of the shell with the constant thickness.
When ε = 0.15 the classical buckling load is decreased by 20%. The
comparison of the obtained results with those of Koiter’s (1994) for the
periodical thickness defects shows that the local thickness defects are as
harmful as the periodical ones.

• Both the local thickness defects and the initial geometric imperfections
of the cylindrical shell have more influence on the classical buckling load,
reducing it by 40%-50%. Thus, the thickness and geometric defects may
constitute the most important factors in the buckling load reduction.

• The proposed asymptotic method is inapplicable because of increasing
error in the case when the amplitude of the thickness defects ε is rather
large (ε ≫ 0.3). For this reason, we intend to develop a hybrid asymp-
totic approach in order to obtain results within a wide variation interval
of the parameter ε.
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Hybrydowa asymptotyczna metoda szacowania wpływu lokalnych

zmian grubości i początkowych zaburzeń strukturalnych na wyboczenie

powłok walcowych

Streszczenie

W pracy zaprezentowano podwójnie asymptotyczną metodę szacowania wpływu
początkowych zaburzeń strukturalnych i lokalnych uszkodzeń zmieniających grubość
na wyboczenie wybranych układów mechanicznych. Zastosowane wyrażenia asymp-
totyczne pozwalające na określenie krytycznych parametrów wyboczenia otrzymano
techniką perturbacyjną.
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