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Thin-walled open cross-section bars are effective structural members (with
respect to overall stability). But the weight efficiency of bars with flat walls
is constrained by their low stiffness in local buckling. The use of composites
and multi-layer materials is one of perspective ways to overcome this shor-
tage. The minimum-weight problem for such laminated bars has not been
studied until now. In the paper a solution to the structural optimization pro-
blem for three-layer channel cross-section columns under compression is pre-
sented. The optimization problem is formulated as a nonlinear programming
problem. Basic constraints are conditions of overall and local stability. In ad-
dition, strength, wrinkling and geometrical constraints (on minimal thickness
of skin layers and maximal total thickness) have been accounted for. For the
given material properties the optimal dimensions of the cross-section and the
optimal thickness ratio (for the steel and composite layers) are determined.
The three-layer members are shown to be much more efficient in comparison
with columns made of homogeneous materials. The sensitivity of optimal pro-
jects to changes in the material properties (in particular, to changes of the
modulus of elasticity in tension and in shear) is also studied.
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1. Introduction

The minimum weight design problems for thin-walled bars-beams under
compression or bending with respect to their stability were investigated in a
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few papers already in the 60-70-s on the basis of various theoretical models.
A review of the literature concerning the optimal design and some new works
in this field can be found, in Adali (1995), Birger and Panovko (1968), Walker
et al. (1996), Życzkowski and Gajewski (1983), and in proceedings of recent
international conferences (Zaraś et al., 2001; Gutkowski and Mróz, 1997).
Thin-walled bars of open cross-section are effective structural members

(with respect to overall stability), however the weight efficiency of bars with
flat walls is constrained by their low stiffness in local buckling. The use of
composites and multi-layer members is one of perspective ways to overcome
this shortage. Over the past years an interest was exhibited to new types of
structural elements, in particular, to metal-composite-metal members which
were developed for applications in manufacturing of parts for cars, train and
other machines (Ashafi et al., 2000). But the minimum-weight problem for
such laminated bars with respect to their stability and strength has not been
studied systematically until now.
In the paper a solution of the structural optimization problem for com-

posite and three-layer channel cross-section columns (metal-composite-metal
members) under compression is presented. The solution is based on the clas-
sical plate theory and the linear stability theory and employs two program
packages:

• WARST package for calculation of critical stresses of compressed and
bent plate assemblages composed of an arbitrary number of orthotropic
layers (see Kołakowski and Kowal-Michalska, 1999)

• LMRG package for solution of the general nonlinear programming pro-
blem by the linearized method of reduced gradient (Manevich, 1979).

Results of the solution are verified by analyzing the obtained optimal channels
using ANSYS 5.7 with account of shear deformation.

2. Formulation of the problem and method of solution

A simply supported thin-walled member of channel cross-section loaded
centrally by the compressive force P is considered (Fig. 1). Two cases of ma-
nufactured channels are studied:

case I – the member is made of a composite material (Fig. 1a)
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case II – the member is constructed from two steel skins and a composite
layer between them (Fig. 1b).

Fig. 1. Two cases of manufactured channels: composite material (a);
steel+composite+steel (b)

The length L and the material properties of all layers are considered to
be given, and the optimal dimensions of the cross-section and the optimal
thickness ratios (for the steel and composite layers) are to be determined.
The composite is considered as a structurally orthotropic material, and the
classical plate theory is employed in the buckling analysis.
The optimization problem is formulated as a nonlinear programming pro-

blem. For a given value of the weight per unit length Q the cross-section
geometrical parameters for which the critical load is maximal are sought. The
bending mode in the symmetry plane, flexural-torsional modes and local mo-
des (Fig. 2) are taken into account, and the minimal value of critical stresses
for these three types of buckling modes determine the critical load. In addi-
tion, the strength, wrinkling (local buckling of external layers) and geometrical
constraints were accounted for.

Fig. 2. Considered buckling mode: (a) overall flexural mode; (b) flexural-torsional
mode; (c) local mode

Critical stresses for all buckling modes were calculated by programWARST
which was worked out for thin-walled girders built of plates with closed or open
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cross-sections. The plate elements under consideration can be multi-layer walls
made of orthotropic materials. The classical laminated plate theory (Jones,
1975) is used in the theoretical analysis, the effect of shear deformation through
the thickness of the laminate is neglected. The materials they are made of are
subjected to Hooke’s law.
In order to account for all modes of global and local buckling, a plate model

of thin-walled structures is employed. Sinusoidal deflection along the length is
assumed and the amplitude changing in the transverse direction is determined
by numerical integration. During the integration of the equations, Godunov’s
orthogonalization method is employed. The most important advantage of this
method is that it enables us to describe the complete range of behaviour of
thin-walled structures from all global (flexural, flexural-torsional, lateral, di-
stortional buckling and their combinations) to the local stability (Kołakowski
and Kowal-Michalska, 1999). The column global buckling occurs at one sinu-
soid half-wave along the column length, whereas the local buckling takes place
at the number of half-waves m > 1 with bk ≪ ℓ.
Due to the symmetry or antisymmetry conditions only a half of the pro-

file was considered. For the overall bending mode (in the symmetry plane,
see Fig. 2a) at the point x = 0 (center of the wall) the symmetry condition
was imposed, and the number of halfwaves m was assumed equal to 1. For
flexural-torsional modes (Fig. 2b) the antisymmetry condition and m = 1 we-
re assumed. For local modes (Fig. 2c) the symmetry condition was imposed
but there was assumed that m > 1 (for more details see Kołakowski and
Kowal-Michalska, 1999; Kołakowski et al., 1999).
Critical stresses for wrinkling of the external layer (skin) were calculated

according to (Birger and Panovko, 1968)

σw =
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where E1 is the elasticity modulus of the skin, ν1 Poisson’s ratio of the skin,
E2, G2 are the effective elasticity modulus and shear modulus of the core,
respectively.
The strength constraint was taken in the form σ ¬ σy, where σy is the

yield stress.
Geometrical constraints were imposed on the minimal thickness of skin

layers and the maximal total thickness. The thickness constraints had the
form: t1  t1,min and t = 2t1 + t2 ¬ tmax.
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The nonlinear programming problem was solved by the linearized method
of reduced gradient (Manevich, 1979). This method, which uses the idea of
change of the independent variables set in the vicinity of the allowable region
boundary by means of linear operations with sensitivity matrices, effectively
overcomes familiar difficulties arising at solving nonlinear programming pro-
blems (in particular, connected with zigzag-type motion in the boundary vi-
cinity). As a rule, 20-30 iterations were required to achieve the optimum with
a relative error of order 0.001.
For generality of the analysis, nondimensional parameters of the load P ∗,

weight Q∗ and stress σ∗ were used

P ∗ =
P · 106

EL2
Q∗ =

Q · 103

ρgL2
σ∗ =

σ · 103

E
(2.2)

where E stands for Ex in case I (modulus of the orthotropic composite in
the longitudinal direction) and for E1 – in case II (modulus of the isotropic
external layer), ρ is the density (in the case of a three-layered channel – the
density of the external layer). The following effective parameters of load and
weight were used for comparison of the optimal members made of various
materials

P ∗eff = P
∗
E

E0
Q∗eff = Q

∗
ρav
ρ0

(2.3)

where E0, ρ0 are the elasticity modulus and density of an isotropic mate-
rial which the given composite material is compared with, ρav is the average
density for the three-layered channel.
Two equivalent formulations of the optimization problem are possible (in

the given nondimensional parameters):

• for a given Q∗ two nondimensional cross-section parameters
(b1/L, b2/b1) are determined yielding the maximum of P ∗ (minimal va-
lue of critical loads for all possible buckling modes)

• for a given P ∗ the optimal geometrical parameters are determined yiel-
ding the minimum of Q∗.

In this work, the first approach was chosen, as a rule, which is more convenient
for the sensitivity analysis.
All optimal nondimensional parameters of the compressed member are

defined by specifying the single nondimensional parameter Q∗ (for given pro-
perties of the material); when the length L and modulus Ex (or E1) are given,
and the dimensions of optimal cross-sections are to be determined.
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For testing the algorithm, calculations of optimal members of the isotropic
material were carried out. Solution to this problem was obtained in Manevich
and Raksha (2000) with using the Vlasov theory for overall critical stresses
(flexural and torsional-flexural modes) and the analytical solution of the buc-
kling problem for local modes (by conjugation of analytical solutions for all
constituent plates). Results of both solutions – Manevich and Raksha (2000)
and obtained with using the WARST package – coincide for the isotropic ma-
terial.

3. Results of the solution

3.1. Composite channel

Two composites with the following characteristics are considered:

• composite A:

Ey
Ex
= 0.0796

G

Ex
= 0.04316 νxy = 0.3

Ex = 1.393 · 1011 Pa ρ = 1.56
g
cm3

• composite B (6-layer graphite/epoxy composite):

Ey
Ex
= 0.1417

G

Ex
= 0.05157 νxy = 0.3

Ex = 0.37385 · 1011 Pa ρ = 2.2
g
cm3

Ex, Ey, G are, correspondingly, the modulus of elasticity in the longitudi-
nal and transverse directions and the modulus of shear, ρ is the density
(Exνyx = Eyνxy).
Comparison of the optimal cross-sections for these materials and for the

isotropic material enables us to estimate the influence of ratios Ey/Ex, G/Ex,
and also Ex/E0 on optimal parameters and (with account of ρ/ρ0) their com-
parative efficiency.
Values of Q∗ were chosen in the range (0, ..., 1.2) with the step 0.1 (in this

range the critical stresses for optimal members from usual materials do not
exceed the yield stress).
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The active constraints are found to be the buckling constraints on the
torsional-flexural mode and one (or two) local mode(s); note that the critical
stresses for the overall flexural buckling were higher by 15-25% (similarly to
the optimal channels of the isotropic material (Manevich and Raksha, 2000)).
In Table 1 there are compared cross-section dimensions, critical loads and

critical stresses for thin-walled members with the length L = 1m, obtained
for three cases:

a) isotropic material – steel with Young’s modulus E0 = 2 · 1011 Pa and
density ρ0 = 7.8 g/cm3, for Q∗ = 0.2

b) composites A and B at the same Q∗ value (i.e. with the same cross-
section area)

c) composite A at Q∗ = 0.865 and composite B at Q∗ = 0.71, i.e. at the
same weight (for the effective weight parameter Q∗eff according to (2.2),
equal to 0.2).

Table 1. Comparison of the optimal cross-section of thin-walled channels
made of steel and composites (length L = 1m)

h b1 b2 P ∗ P σ
Material Q∗ [mm] [mm] [mm] [kN] [MPa]
Steel 0.2 1.4 78.2 34.1 0.190 38 189.8
Composite A 0.2 1.82 58.35 25.76 0.099 13.8 68.7
Composite A 0.865 4.8 96.3 42.1 1.099 153 177
Composite B 0.2 1.75 61.1 27.0 0.107 4.004 20.02
Composite B 0.71 4.03 94.0 41.1 0.864 32.3 45.51

The optimal profiles of the isotropic member and channels of composites
with the same area (Q∗ = 0.2) for L = 1m are shown in Fig. 3, and the
optimal profiles of the same weight (Q∗eff = 0.2) are compared in Fig. 4.
As in this analysis we used the classical plate model based on Kirchhoff’s

hypothesis, it is interesting to test the results obtained by comparison with
more precise models accounting for the shear deformation (which can have si-
gnificant effect on buckling loads (Whitney, 1987)). Calculations of the critical
stresses of the optimal channels by the FEM with using ANSYS 5.7 were car-
ried out. The shell finite elements (SHELL 91) were employed. On the loaded
edges forces were applied at the gravity center, and boundary conditions of
the simple support were satisfied.
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Fig. 3. Optimal profiles of channels with the same area (Q∗ = 0.2) for L = 1m:
(a) steel; (b) composite A; (c) composite B

Fig. 4. Optimal profiles of channels with the same weight (Q∗ = 0.2) for L = 1m:
(a) steel; (b) composite A; (c) composite B

Table 2. Comparison of the critical loads for two optimal channels obta-
ined in the present analysis and by ANSYS 5.7

Present analysis ANSYS 5.7
Optimal Overall Overall
variants Q∗ Local (Euler) Local (Euler)
of channel buckling buckling buckling buckling

[kN] [kN] [kN] [kN]

Composite A 0.865 153 (m = 4) 180.3 145.9 (m = 4) 181.7
Composite B 0.71 32.3 39.2 30.5 39.5
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Typical results of such comparison are presented in Table 2, where the
values of critical loads for the local mode and the overall flexural (Euler)
mode, obtained in the present analysis and by using ANSYS 5.7 are given for
two optimal channels from Table 1.
We see that the critical loads in both models are close to those in local and

overall modes (for the local modes ANSYS 5.7 gives a little lesser value, for
the Euler overall modes – a slightly greater value). So, we can conclude that,
at least for the adopted material properties, our analysis is valid.
The optimal configurations of channels of the isotropic material and the

composite with the same area are essentially different. The composite channels
have a larger thickness, but lesser width of the web and flanges. If to compare
channels of the same weight then all dimensions of the composite channel
become larger than those of the isotropic channel – the thickness gets larger
by several times.
The comparative efficiency of the composite channels is determined, first of

all, by Ex/E0 and ρ/ρ0 ratios. The optimal member of composite A, for which
the modulus Ex lower than that of steel only by 30%, and density – almost
by 4 times, has the critical force 4 times larger than that of the optimal steel
channel of the same weight. At the same time the channel of composite B, for
which the modulus Ex equals about 0.19E0, turns out to be less efficient than
the isotropic steel channel.
It has been revealed in Manevich and Raksha (2000) that optimal channels

of an isotropic material have a practically constant flange width to a web width
the ratio b2/b1 (in the whole range of Q∗ considered) equal to b2/b1 = 0.42 -
0.43. For the optimal composite channels this ratio it also almost constant,
and practically the same (b2/b1 = 0.43 - 0.44).
Other nondimensional parameters depend upon the parameter Q∗. In

Fig. 5 cross-sectional nondimensional parameters are given versus Q∗ for com-
posite A and for the isotropic material. Note that these curves do not depend
on the value Ex and are determined only by the ratios Ey/Ex, G/Ex and
therefore are close to composites A and B (but differ from the corresponding
dependencies for the isotropic material).
In Fig. 6 curves for the parameter t/L versus Q∗ for the isotropic and com-

posite materials are presented. Values of the nondimensional load parameter
P ∗ and critical stresses σ∗ versus Q∗ are given in Fig. 7 and Fig. 8.
The presented optimal nondimensional parameters enable us to determine

all cross-sectional dimensions when L and Ex are given.
Let us estimate the influence of the elasticity modulus in two directions

and shear modulus on the critical load of optimal composite channels. Nondi-
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Fig. 5. Cross-sectional nondimensional parameters b1/L, b2/L, t/b1, t/b2 versus Q∗

for composite A (broken line) and for the isotropic material (full line)

Fig. 6. Parameter t/L versus Q∗ for the isotropic and composite materials

mensional load parameter (2.2) depends upon two parameters of the material:
η1 = Ey/Ex, η2 = G/Ex. Calculations of the sensitivity of the critical load
to changes in these parameters for the optimal channel of composite A at
Q∗ = 0.865 (i.e., Q∗eff = 0.2) were carried out. Calculations were performed
in two variants:

• cross-section remained invariable;

• cross-section dimensions were changed so that the cross-section became
the optimal for the composite with changed properties (i.e. at simulta-
neous optimization of the channel with the same area).
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Fig. 7. Nondimensional load parameter P ∗ versus Q∗ for the isotropic and
composite materials

Fig. 8. Nondimensional critical stresses σ∗ versus Q∗ for the isotropic and
composite materials

In the first case the sensitivity coefficients were calculated separately for
those buckling modes that govern the carrying capacity – the overall mode
(torsional-flexural) and the local mode with minimal critical stresses. In the
second case the sensitivity coefficients referred simultaneously to all critical
modes. For more generality, the relative sensitivity coefficients, i.e. coefficients
k1 and k2 in the relations

δP

P
= k1
δη1
η1

δP

P
= k2
δη2
η2

were calculated.
These coefficients are presented in Table 3. In the case of an invariable

cross-section the influence of the parameters η1 and η2 on the overall stability
is found to be lesser than on the local buckling (especially for the parame-
ter η1). So, when η1 is increased by 10% the local critical load increases
by 4.4%, but the overall critical load – only by 0.58%; for the parameter η2
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these values equal 4.4% and 1.7%, respectively. This is clearly since the overall
buckling is governed mainly by the modulus Ex.

Table 3. Sensitivity coefficients for the critical load with respect to para-
meters η1 and η2

Coefficient Invariable cross-section Optimized
overall buckling local buckling cross-section

k1 0.058 0.44 0.086
k2 0.17 0.44 0.214

If the cross-section is optimized simultaneously with the varying parame-
ters η1 and η2 the sensitivity coefficients lie between their values for the overall
and local modes obtained for the fixed cross-section. The parameter η2 has
more influence on the critical load than η1: when η1 is increased by 10% the
critical load increases by 0.86%, when η2 is increased by 5% the load increases
by 2.14%.

3.2. Three-layered channel

Calculations were carried out for the following core material: 6-
layer graphite-epoxy material with the parameters Ey/Ex = 0.0796,
G/Ex = 0.04316, Ex = 1.393 · 1011 Pa, ρ = 1.8 g/cm3 (material A, Sec-
tion 3.1). Values of the weight parameter Q∗ were considered in the interval
(0,...,0.35) for which the use of the linear stability theory for elastic materials
can be justified.
The computations showed that the strength- and/or geometrical constra-

ints are of principal importance for the optimization problem. In distinction
from the isotropic thin-walled bar, the solution to the weight optimization
problem with respect only to buckling constraints for usual elastic materials
has no sense (it results in unrealistic thin external layers and very high criti-
cal stresses considerably exceeding the yield stress for usual materials). Only
when the geometrical and/or strength constraints are imposed we come to
realistic optimal projects. We considered the following values of the relative
minimal skin thickness: t∗min = t1,min · 10

3/L = 0.1; 0.15; 0.2; 0.25; 0.3 and
dimensionless yield stress values (for the skin): σ∗y = σy · 10

3/E1 in the range
(1.0; 2.2).

Optimal bars with constraint on minimal thickness of external layers

Consider the results of the solution obtained with the only geometrical con-
straint on the minimal thickness of skin layers t∗min = 0.2mm. This constraint
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is always active, so for all these optimal projects t1/L = tmin/L = 0.0002.
In Table 4 the optimal nondimensional cross-section parameters and critical
values of the load and stresses for several values of the weight parameter Q∗

are presented.

Table 4. Optimal nondimensional parameters of the 3-layered channel
(t∗min = t1,min · 10

3/L = 0.2)

Geometrical parameters Critical load and stress values
Q∗ b1/L b2/L h/L P ∗ σ∗av σ∗1
0.10 0.0375 0.0296 0.00357 0.237 0.687 0.940
0.15 0.0468 0.0341 0.00492 0.5 0.884 1.226
0.20 0.0540 0.0376 0.00614 0.832 1.049 1.464

0.0602 0.0404 0.00686 1.222 1.193 1.673
0.25

0.1170 0.0512 0.00409 1.289 1.434 1.975
0.30 0.1246 0.0544 0.00483 1.792 1.591 2.204

For Q∗ = 0.25 there exist two local optima, both presented in Table 4.
These local optima have essentially different cross-section dimensions – narrow
and wide web and flanges, and correspondingly large and small wall thickness,
but the values of the critical loads are rather close (two local optima also
exist for other Q∗ values, but for lower Q∗ the first optimum is global, for
the larger ones – the second, and transition from the first local optima to
the second occurs approximately at Q∗ = 0.25). Note that at the first local
optimum three-layered channels have equal critical loads for the flexural mode
(in the symmetry plane) and for the flexural-torsional mode. At the second
local optimum the bars have equal critical loads for the flexural-torsional mode
and one of local modes (critical stresses for the flexural mode are found to be
larger by up to 20%).

In the last three columns of Table 4 the values of the load parameter P ∗,
nondimensional average (over the cross-section) stress σ∗av and the critical
stress in the external (steel) layer σ∗1 are given. We see that with an increasing
Q∗ the critical load P ∗ quickly raises as well as the critical stress in the external
layer, and this stress becomes larger than the yield stress for usual steels.

In Table 5 cross-section dimensions, critical loads for the optimal three-
layered channel of the length L = 1m for Q∗ = 0.2 and the optimal single-
layered (steel, composite A) channel of the same weight are compared.
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Table 5. Cross-section dimensions and critical loads for the optimal single-
and three-layered channel; Q∗ = 0.2, length L = 1m

h b1 b2 P ∗ P
Type of bar

[mm] [mm] [mm] [kN]

1-layered, steel 1.4 78.2 34.1 0.19 38
1-layered, composite 4.8 96.3 42.1 1.099 153
3-layered, steel+composite 6.14 54.0 37.6 0.832 166.4

The optimal configurations of laminated channel columns essentially differ
from those made of a homogeneous material. Big advantage of the optimal
three-layered channel is due to high characteristics of the composite layer, i.e.
low density and high elasticity modulus Ex.
In order to test the results obtained on the basis of the Kirchhoff hy-

pothesis, calculations were carried out with using ANSYS 5.7. Spatial (3D)
elements were employed for the composite (core) and shell elements – for the
steel (external) layers. For the optimal 3-layered channel, presented in the last
line of Table 5, the critical force in ANSYS 5.7 was 167.3 kN, i.e. the difference
was less than 0.4%.

Influence of constraint on minimal thickness upon optimal bars

Let us consider now results of the solution for various values of t∗min. The
characteristics of the optimal channels for the load parameter Q∗ = 0.2 at
various values of t∗min are presented in Table 6.

Table 6. Optimal channels for the load parameter Q∗ = 0.2 at various
values of t∗min = t1,min · 10

3/L

Geometrical parameters Critical load and stress values
t∗min b1/L b2/L h/L P ∗ σ∗av σ∗1
0.10 0.0606 0.0370 0.00663 0.867 0.971 1.376
0.15 0.0572 0.0374 0.00637 0.856 1.017 1.431
0.20 0.0540 0.0376 0.00614 0.832 1.049 1.464
0.25 0.0511 0.0376 0.00592 0.799 1.069 1.481
0.30 0.1052 0.0467 0.00263 0.667 1.275 1.665

An increase in the minimal thickness of the external (skin) layer results in
perceptible changes in the geometrical parameters (b1/L, h/L) and reduction
of the critical load. So, we can draw the conclusion that the weight efficiency of
the three-layered channel largely depends upon the constraint on the minimal
skin thickness.
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Influence of strength constraint upon optimal parameters

Calculations of optimal channels with constraints on the ultimate stress
were carried out. We assumed that Q∗ = 0.3, t∗min = 0.2 and varied the
values σ∗y = σy · 10

3/E1 in a certain range. The results of the calculations are
presented in Table 7.

Table 7. Optimal channels for Q∗ = 0.3, t∗min = 0.2 at various values of
σ∗y = σy · 10

3/E1

Geometrical parameters Critical load and stress values
σ∗y b1/L b2/L h/L P ∗ σ∗av σ∗1

2.2 0.1246 0.0544 0.00485 1.792 1.591 2.2
2.0 0.1116 0.0487 0.00558 1.675 1.436 2.0
1.8 0.0520 0.0416 0.00949 1.639 1.277 1.8
1.6 0.0381 0.0387 0.01140 1.488 1.131 1.6
1.4 0.0313 0.0360 0.01290 1.319 0.988 1.4
1.2 0.0264 0.0330 0.01460 1.143 0.846 1.2
1.0 0.0220 0.0298 0.01680 0.964 0.704 1.0

The strength constraint becomes active when σ∗y < 2.20 (for given Q
∗ and

t∗min). At σ
∗

y ≈ 1.9 transition from one local optimum to the other occurs, with
a snap in the optimal parameters. The strength constraint strongly affects the
optimal projects, and it should be taken into account. The same regards the
geometrical constraints.
Summarizing, we can conclude that three-layered members under com-

pression may be much more efficient in comparison with columns made of
homogeneous materials.
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Optymalne projektowanie kompozytowych słupów o przekroju otwartym

poddanych ściskaniu

Streszczenie

Cienkościenne słupy o otwartym przekroju poprzecznym są efektywnymi elemen-
tami konstrukcjami (z uwzględnieniem stateczności globalnej). Bardziej wydajne wa-
gowo słupy o ścianach płaskich mają niższą sztywnością na wyboczenie lokalne. Uży-
cie kompozytów i materiałów wielowarstwowych jest jedną z perspektywicznych dróg
podniesienia ich obciążalności. Problem minimalnej wagi takich laminatowych słupów
nie był do chwili obecnej jeszcze rozpatrywany. W prezentowanej pracy przedsta-
wiono rozwiązanie zagadnienia optymalizacji konstrukcji trzywarstwowego ceownika
poddanego ściskaniu. Zagadnienie optymalizacji sformułowano jako problem progra-
mowania nieliniowego. Podstawowymi ograniczeniami są warunki globalnej i lokal-
nej stateczności. Ponadto uwzględniono wytrzymałość, pomarszczenie i geometryczne
ograniczenia (na minimalną grubość okładzin oraz maksymalną całkowitą grubość).
Dla zadanych stałych materiałowych zostały określone optymalne stosunki wymia-
rów przekroju i grubości (dla stalowej i kompozytowych warstw). Trzywarstwowa
konstrukcja jest bardziej wydajna na ściskanie niż słup z materiału homogenicznego.
Analizowano także czułość optymalnej zmiennej projektowej na własności materiało-
we (w szczególności zmiana modułów sprężystości na rozciąganie i ścinanie).
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