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A new approach to the analysis of the dynamic behaviour of an axially mo-
ving composite web is presented. The mathematical model of the moving
web system constitutes non-linear, coupled equations governing the trans-
verse displacement and stress function. The calculations are carried out for
two paperboard structures. The results of numerical investigations show so-
lutions to linearized problems. The effect of paperboard properties and axial
transport velocity on flexural and torsional vibrations are presented.
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Notation

b – width of the web
c – axial transport speed
Ex – Young’s modulus along the x-direction
Ey – Young’s modulus along the y-direction
G – shear modulus of the plate material
h – thickness of the web
K – stiffness matrix for the laminate
l – length of the web
N – axial stress
S – surface of the web
t – time
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u, v,w – components of the plate displacement in the x, y and z axis
direction, respectively

U – kinetic energy
V – internal elastic strain energy
W – work of external forces
x, y, z – Cartesian co-ordinates
εx, εy, εz – strain components
κx, κy, κz – curvature modifications and torsion components
λ – scalar load parameter
ρ – mass density of the web
σ – real part of eigenvalue
ω – natural frequency.

1. Introduction

Axially moving webs in the form of thin, flat rectangular shape materials
with small flexural stiffness occur in the industry as band saw blades, power
transmission belts, textile tapes or paper and paperboard webs. Excessive
vibrations of moving webs increase defects and can lead to failure of the web.
In the paper and textile industries involving motion of thin materials, the stress
analysis in the moving web is essential for the control of wrinkle, flutter and
sheet break. Although the mechanical behaviour of axially moving materials
has been studied for many years, little information is available on the dynamic
behaviour and stress distribution in an axially moving multi-layered paper and
board materials.

Paper and paperboard properties derive from raw materials and paper-
making processes. Relatively recent technical developments allow high speed
formation of the web in a simultaneous or sequential multi-layered structure
like paperboard. Paper is generally considered to be an anisotropic fibrous
composite material. Theoretical models describing mechanical properties of
paperboard include those based on an thin-walled composite plate structure.

A lot of earlier works in this field focussed on investigations of stationary
orthotropic composite plates. A more comprehensive review of the literature
can be found in investigations of Chandra and Raju (1973), Dawe and Wang
(1994), Jones (1975), Kołakowski and Królak (1995), Loughlan (2001), Mat-
sunaga (2001), Shen and Williams (1993), Walker et al. (1996), Wang et al.
(1987).

On the other hand, one can find in the literature a lot of works on the
dynamic investigations of a one-layered axially moving orthotropic web. Re-
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cent works in this field analysed non-linear vibrations of an axially moving
orthotropic web (Marynowski and Kołakowski, 1999; Marynowski, 1999), equ-
ilibrium displacement and stress distribution in non-linear model of an axially
moving plate (Lin, 1997), wrinkling phenomenon and stability of the linear
model of an axially moving isotropic plate (Lin and Mote, 1996), and stress
distribution in an axially moving plate (Wang, 1999).

The aim of this paper is to analyse the dynamic behaviour of an axially
moving multi-layered web. Numerical investigations are carried out for a pa-
perboard structure. Paperboard is treated as a thin-walled composite structure
in the elastic range, being under axial extension. The differential equations of
motion are derived from the Hamilton principle taking into account the La-
grange description, the strain Green tensor for thin-walled plates and the stress
tensor. Singular perturbation theory is used to obtain the approximate solu-
tion of the governing equations. The numerical method of the transition matrix
using Godunov’s orthogonalization is used to solve the linearized problems.

2. Formulation of the structural problem

Paperboard is in general composed of several pulp fiber sheets bonded by
starch or an adhesive material, and is usually a multi-layered structure. A
schematic of a three-layered paper-board macrostructure is shown in Fig. 1,
which also depicts the coordinate system. The x-axis refers to the machine
direction, the y-axis refers to the cross-section or transverse direction. The
machine and cross directions form the plane of the structure, and the z-axis
refers to the out-of-plane (or through-thickness) direction. In this paper, the
laminate model has been used to describe the mechanical behaviour of paper-
board.

Fig. 1. Schematic of paperboard macrostructure

Let us consider a multi-layer plate element of a thin-walled structure made
of orthotropic materials. The classical laminated plate theory (Jones, 1975) is
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used in the theoretical analysis, the effects of shear deformation through the
thickness of the laminate are neglected and the results given are those for thin
laminated plates. The materials they are made of obey Hooke’s law.
For each plate component, precise geometrical relationships are assumed

in order to enable the consideration of both out-of-plane and in-plane bending
of the plate

ε1 = u1,1 +
1

2
um,1um,1 ε2 = u2,2 +

1

2
um,2um,2

ε3 = u1,2 + u2,1 + um,1um,2 ε4 = −hu3,11

ε5 = −hu3,22 ε6 = −2hu3,12

(2.1)

where m = 1, 2, 3, and ε1 = εx, ε2 = εy, ε3 = 2εxy = γxy, ε4 = hκx,
ε5 = hκy, ε6 = hκxy; u1 ≡ u, u2 ≡ v, u3 ≡ w are the components of the
displacement vector in the x1 ≡ x, x2 ≡ y, x3 ≡ z axis direction, respectively.
In the majority of publications devoted to stability of structures, the terms

(u21,1 + u
2
2,1), (u

2
1,2 + u

2
2,2), (u1,1u1,2 + u2,1u2,2) are neglected for ε1, ε2, ε3,

respectively, in the strain tensor components (2.1).
Using the classical plate theory (Jones, 1975), the constitutive equation for

the laminate is taken as follows
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]
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in which Aij = Aji, Bij = Bji Dij = Dji, Kij = Kji, and Qij is the transfor-
med reduced stiffness matrix (Dawe and Wang, 1994; Jones, 1975).
In the above equations the dimensionless sectional forces N1, N2, N3 and

the dimensionless sectional moments N4, N5, N6 appear in the following forms

N1 =
Nx
h

N2 =
Ny
h

N3 =
Nxy
h

N4 =
Mx
h2

N5 =
My
h2

N6 =
Mxy
h2

(2.4)

In the constitutive matrix of Eq. (2.2), the submatrix A, detailed in Eq.
(2.3)1 and related to the in-plane response of the laminate, is called the exten-
sional stiffness. The submatrix D, described by Eq. (2.3)3, is associated with
the out-of-plane bending response of the laminate and is called the bending
stiffness, whereas the submatrix B, illustrated by Eq. (2.3)2, is a measure of an
interaction (coupling) between the membrane and the bending action. Thus, it
is impossible to pull on a laminate that has Bij terms without bending and/or
twisting the laminate at the same time. This entails that the extensional force
results in not only extensional deformations, but also in twisting and/or ben-
ding of the laminate (Dawe and Wang, 1994; Jones, 1975). Moreover, such a
laminate cannot be subjected to a moment without suffering simultaneously
from extension of the middle surface.

Fig. 2. Axially moving web

Let suppose now that the multi-layered web of the length l is considered.
The web moves at the constant velocity c in the x direction. The geometry
of the considered model is shown in Fig. 2.
The equations of the dynamic stability of a moving composite structure

have been derived using the Hamilton principle, which, for the web, can be
written as
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δ

t1
∫

t0

L dt =

t1
∫

t0

(δU − δV + δW ) dt =

(2.5)

=

t1
∫

t0

{1

2
ρ

∫

Ω

δ[(c + u1,t + cu1,1)
2 + (u2,t + cu2,1)

2 + (u3,t + cu3,1)
2] dΩ −
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1
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∫

Ω

(σxδεx + σyδεy + τxyδγxy) dΩ +

b
∫

0

hp0(x2)δu1 dx2
∣

∣

∣

x1=ℓ

x1=0

}

dt = 0

where L is the Lagrange function, Ω = l × b × h = S × h, and p0(x2) is the
pre-critical external load in the plate middle surface.

After grouping the components at respective variations, the following sys-
tem of equilibrium equations of motion has been obtained

t1
∫

t0

∫

S

{[N1(1 + u1,1) +N3u1,2],1 + [N2u1,2 +N3(1 + u1,1)],2 +

+ρ(−u1,tt − 2cu1,1t − c
2u1,11)}δu1 dSdt = 0

t1
∫

t0

∫

S

{[N1u2,1 +N3(1 + u2,2)],1 + [N2(1 + u2,2) +N3u2,1],2 +

(2.6)

+ρ(−u2,tt − 2cu2,1t − c
2u2,11)}δu2 dSdt = 0

t1
∫

t0

∫

S

[(hN4,1 +N1u3,1 +N3u3,2),1 + (hN5,2 + 2hN6,1 +N2u3,2 +N3u3,1),2 +

+ρ(−u3,tt − 2cu3,1t − c
2u3,11)]δu3 dSdt = 0

where

ρ =
1

h

N
∑

k=1

ρk(zk − zk−1)

The boundary conditions for x1 = const

t1
∫

t0

b
∫

0

[

ρ(c2 + cu1,t + c
2u1,1)−

−(N1 +N1u1,1 +N3u1,2 − hp
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]

δu1 dx2dt
∣

∣

∣

x1
= 0
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b
∫
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2u2,1)− (N3 +N1u2,1 +N3u2,2)

]

δu2 dx2dt
∣

∣

∣

x1
= 0

(2.7)
t1
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t0

b
∫

0

N4δu3,1 dx2dt
∣

∣

∣

x1
= 0

t1
∫

t0

b
∫
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[

ρ(cu3,t + c
2u3,1)− (hN4,1 + 2hN6,2 +N1u3,1 +N3u3,2)

]

δu3 dx2dt
∣

∣

∣

x1
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The boundary conditions for x2 = const

t1
∫

t0

l
∫

0

(N2 +N2u2,2 +N3u2,1)δu2 dx1dt
∣

∣

∣

x2
= 0

t1
∫

t0
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∫

0
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∣

∣

∣
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∫
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N5δu3,2 dx1dt
∣
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∣

x2
= 0

t1
∫

t0

ℓ
∫

0

(hN5,2 + 2hN6,1 +N2u3,2 +N3u3,1)δu3 dx1dt
∣

∣

∣

x2
= 0

The boundary conditions for the plate corner (x1 = const and x2 = const )

t1
∫

t0

2N6
∣

∣

∣

x1

∣

∣

∣

x2
δu3 dt = 0 (2.9)

The initial conditions
l
∫

0

b
∫

0

[ρ(c+ u1,t + cu1,1)]δu1 dx1dx2
∣
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l
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∣

∣

∣

t=0
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l
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b
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[ρ(u3,t + cu3,1)]δu3 dx1dx2
∣

∣

∣

t=0
= 0
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3. Solution to the problem

The problem of the dynamic stability has been solved by making use of
the asymptotic perturbation method. In the solution and in the developed
computer program, the following have been employed: Byskov-Hutchinson’s
asymptotic expansion (Byskov and Hutchinson, 1977), the numerical transi-
tion matrix method using Godunov’s orthogonalization method (Kołakowski
and Królak, 1995).
As has been mentioned above, the fields of displacements U and the fields

of sectional forces N have been expanded into power series with respect to
the dimensionless amplitude of the web deflection ζn (the amplitude of the
nth free vibration frequency of the extension system divided by the thickness
h1 of the web assumed to be the first one)

U = λU
(0)
k + ζnU

(n)
k + ...

(3.1)

N = λN
(0)
k + ζnN

(n)
k + ...

where
U
(0)
k ,N

(0)
k – pre-critical static fields

U
(n)
k ,N

(n)
k – first order fields for the composite kth web.

After substitution of expansions (3.1) into equilibrium Eqs. (2.6), continu-
ity conditions and boundary conditions Eqs. (2.7)-(2.9), the boundary value
problems of the zero and first order can been obtained.
The zero approximation describes the pre-critical static state, whereas the

first order approximation, being the linear problem of the dynamic stability,
allows for the determination of the eigenvalues, eigenvectors and the critical
speeds of the system.
The panels with linearly varying pre-critical loads along their widths are

divided into several strips under uniformly distributed tensile stresses. Instead
of the finite strip method, the exact transition matrix method is used in this
case (Marynowski and Kołakowski, 1999).
The inertial forces corresponding to the in-plane displacements u and v

are neglected. The pre-critical solution of the kth composite web consisting of
homogeneous fields is assumed as

u
(0)
1k = −

( ℓ

2
− x1k

)

∆k u
(0)
2k = −x2k∆k

K12k
K22k

u
(0)
3k = 0 (3.2)

where ∆k is the actual loading. This loading is specified as the product of a
unit loading and a scalar load factor ∆k.
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The inner sectional forces of the pre-critical static state for the assumed
homogeneous field of displacements (3.1) are expressed by the following rela-
tionships

N
(0)
1k = −

(

K11 −
K212
K22

)

∆ N
(0)
4k = −

(

K41 −K42
K21
K22

)

∆

N
(0)
2k = 0 N

(0)
5k = −

(

K51 −K52
K21
K22

)

∆

N
(0)
3k = −

(

K31 −K32
K21
K22

)

∆ N
(0)
6k = −

(

K61 −K62
K21
K22

)

∆

(3.3)

In the one before last dynamical component of Eg. (2.6)3 there is a deriva-
tive with respect to x1 and t. Because of the incompatibility of trigonometric
functions in the x1 ≡ x-direction, the Galerkin-Bubnov orthogonalization pro-
cedure is used to find an approximating solution to this equation.

Numerical aspects of the problem being solved for the first order fields
(Marynowski and Kołakowski, 1999) have resulted in an introduction of the
following new orthogonal functions with the nth harmonic for kth composite
web in the sense of the boundary conditions for two longitudinal edges

a
(n)
k = N

(n)
2k

(

1 + λ∆k
K21k
K22k

)

+ λN
(0)
3k

d
(n)
k,ξ

bk
d
(n)
k = u

(n)
21k

b
(n)
k = N

(n)
3k (1− λ∆k) + λN

(0)
3k

c
(n)
k,ξ

bk
e
(n)
k = u

(n)
3k

c
(n)
k = u

(n)
1k f

(n)
k =

u
(n)
3k,η

bk
=
e
(n)
k,η

bk

h
(n)
k = hk

g
(n)
k,η

bk
+ 2hk

N
(n)
6k,ξ

bk
+ λN

(0)
3k

e
(n)
k,ξ

bk
g
(n)
k = N

(n)
5k

(3.4)
where

ξk =
x1k
bk

ηk =
x2k
bk

The solutions to Eq. (2.6)3 corresponding to the free support at the seg-
ment ends can be written in the following form
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ak =
N
∑

n=1

Tn(t)A
(n)
k (ηk) sin β bk =

N
∑

n=1

Tn(t)B
(n)
k (ηk) cos β

ck =
N
∑

n=1

Tn(t)C
(n)
k (ηk) cos β dk =

N
∑

n=1

Tn(t)D
(n)
k (ηk) sin β

ek =
N
∑

n=1

Tn(t)E
(n)
k (ηk) sin β fk =

N
∑

n=1

Tn(t)F
(n)
k (ηk) sin β

gk =
N
∑

n=1

Tn(t)G
(n)
k (ηk) sin β hk =

N
∑

n=1

Tn(t)H
(n)
k (ηk) sin β

(3.5)

where

β =
nπbkξ

ℓ

and Tn(t) is an unknown function of time, and the eigenfunctions have been
determined for the non-moving tensioned web (for c = 0).

The eigenfunctions A
(n)
k , B

(n)
k , C

(n)
k , D

(n)
k , E

(n)
k , F

(n)
k , G

(n)
k , H

(n)
k (with the

nth harmonic) are initially unknown functions that will be determined by the
numerical method of transition matrices. The obtained system of homogene-
ous ordinary differential equations has been solved by the transition matrix
method, having integrated numerically the equilibrium equations along the
circumferential direction in order to obtain the relationships between the sta-
te vectors on two longitudinal edges. During the integration of the equations,
Godunov’s orthogonalization method is employed (Kołakowski and Królak,
1995; Marynowski, 1999). The presented way of solution allows for carrying
out a modal dynamic analysis of complex composite webs.
In system of Eq. (2.6)3 for the non-moving, tensioned web, there are two

components of the pre-critical loading N
(0)
1k and N

(0)
3k . The component N

(0)
3k

has an insignificant effect on the value of the critical load in comparison with

N
(0)
1k .
Let us return to the case of a moving composite web (i.e. for c 6= 0). Becau-

se of the incompatibility of trigonometric functions in the x1-direction, after
substituting Eq. (3.4) into Eq. (2.6)3 the Galerkin-Bubnov orthogonalization
method has been used. In this way, the set of N ordinary differential equations
with respect to the function Tn(t) can be determined in the following form

d2Tm
dt2
a2m +

N
∑

n=1

dTn
dt
a1nm + Tma0m = 0 m = 1, 2, ..., N (3.6)

Substituting new variables into Eq. (3.5) one can receive an autonomous
set of 2N first order differential equations with respect to time. On the basis
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of Eq. (3.6) one can determine eigenvalues, eigenvectors and critical speeds of
the moving system.

4. Numerical results and discussion

Numerical investigations were carried out on the basis of the mathema-
tical model, which was presented in the previous sections. First, the calcula-
tions results are compared with the available solutions. The comparison of the
dimensionless fundamental natural frequencies (ωb2

√

ρ/(Eyh2)) of a simply
supported anti-symmetric angle-ply laminate, obtained in the present study
and by Jones (1975) is shown in Fig. 3. The following dimensionless numerical
data was used: Ex/Ey = 40, Gxy/Ey = 0.5, νxy = 0.25. The greatest di-
screpancies in the compared results can be observed for a two-layer laminate.
When the number of layers increases there is little and little discrepancy in
the compared values.

Fig. 3. Comparison of numerical results, θ – play angle, (—–) – present study,
( – – ) – Jones (1975)

The numerical investigations were carried out for a moving paperboard
web. The numerical results of the paperboard obtained from the experimental
investigations are available in the recent literature (Xia et al., 2002). To reco-
gnize the paperboard layers properties, which are not available in approacha-
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ble literature, an identification procedure has been employed. Known natural
frequencies of a simply supported homogenous paperboard plate model have
been compared with analogous values of a three-layered paperboard structure
(Fig. 1). Additionally, the outer chemical pulp layers stiffer and stronger than
the inner mechanical pulp layer (E1M = E2M = E2C/100) was assumed in
the identification procedure (Xia et al., 2002). The identification results as the
data for the numerical study are shown in Table 1.

Table 1. Numerical data

System I System II

Length of the web (l) 1 m
Width of the web (b) 0.2 m
Thickness of the chemical pulp layer (hC) 3.89 · 10−4 m 5.83 · 10−4 m
Thickness of the mechanical pulp layer (hM ) 2.22 · 10−4 m 3.34 · 10−4 m
Total thickness of the web 1 · 10−3 m 1.5 · 10−3 m
Young’s modulus along the x-axis of the
chemical pulp layer (E1C) 5.6 GPa
Young’s modulus along the y-axis of
the chemical pulp layer (E2C) 2 GPa
Poisson’s ratio in the machine direction
of the chemical pulp layer (ν12C) 0.392
Poisson’s ratio in the cross direction of the
chemical pulp layer (ν21C) 0.14
Shear modulus of the chemical pulp layer (GC) 34 MPa
Young’s modulus along the machine direction
and along the cross direction of the mechanical
pulp layer (E1M = E2M ) 20 MPa
Poisson’s ratio along the machine direction and
along the cross direction of the mechanical pulp
layer (ν12M = ν21M ) 0.266
Shear modulus of the mechanical pulp
layer (GM ) 7.782 MPa
Mass density (ρ) 133.33 kg/m3

Initial stress (N
(0)
x ) 55 N/m

The calculations were carried out for two kinds of paperboard web struc-
tures of different thickness. The effect of the paperboard properties and axial
transport velocity on the transverse and torsional vibrations have been studied
in numerical investigations. Let σ and ω denote the real part and imaginary
part of the eigenvalues, respectively. Simultaneously, ω is the natural frequen-
cy of the web. The positive value of σ indicates instability of the considered
system.
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At first, eigenvalues of all investigated stationary systems well calculated.
Fig. 4 shows the values of the three lowest flexural and flexural-torsional eigen-
frequencies of the considered paperboard systems for c = 0.

Fig. 4. Three lowest flexural (ω11, ..., ω31) and flexural-torsional (ω12, ..., ω32)
eigenfrequencies for c = 0

The dynamic investigations of the axially moving systems were begun from
the vibration modes definition. Fig. 5 shows the modes of the two lowest fle-
xural (ω11 and ω21) and two lowest flexural-torsional (ω12 and ω22) eigenfre-
quencies of the considered web systems.

The results of the dynamic stability investigations of web system I for
N = 10 in Eq. (3.6) are shown in Fig. 6, Fig. 7 and Fig. 8. The values of the
imaginary part (solid line) and the real part (dotted line) of the three lowest
flexural natural frequencies versus the transport velocity are shown in Fig. 6.

Fig. 7 and Fig. 8 show analogical plots of the flexural and flexural-torsional
eigenfrequencies. Both plots in Fig. 5 and Fig. 6 show that in the undercritical
region of transport speeds the lowest natural frequencies decrease during the
increase in the axial velocity. At the critical transport speed the fundamental
eigenfrequency vanishes indicating in divergence instability (the fundamental
mode with non-zero σ and zero ω).

For supercritical transport speeds (c > ccr), the web experiences at first
the divergent instability, and above that there is the second stability area
where σ = 0. In paperboard web system I this region is very narrow (Fig. 8).
Its appearance and position is strictly connected with the distribution of the
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Fig. 5. Non-trivial equilibrium positions of axially moving web: (a) ω11, (b) ω21,
(c) ω12, (d) ω22

Fig. 6. Flexural natural frequencies (paperboard web system I)
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Fig. 7. Flexural and flexural-torsional natural frequencies (paperboard web system I)

Fig. 8. Flexural and flexural-torsional natural frequencies in the supercritical region
(web system I)
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flexural and flexural-torsional eigenfrequencies. In the case of paperboard web
system II, the second stable area does not appear at all (Fig. 9).

Fig. 9. Flexural and flexural-torsional natural frequencies in the supercritical region
(web system II)

Fig. 9 shows a plot of the two lowest flexural and flexural-torsional natu-
ral frequencies of web system II in the supercritical region of the transport
velocity. The critical transport speed of system II is smaller than in system I.
In web system II the distance between the critical transport speed of the fle-
xural vibrations (ccrf ) and flexural-torsional vibrations (ccrt) is greater than
in system I, and the second stable area does not appear. Above the diver-
gence instability area there appears a flutter instability region of supercritical
transport speeds.

5. Conclusions

In the paper, a new approach to the analysis of the dynamic behaviour of
an axially moving multi-layered web is presented. The mathematical model of
the moving web system is derived on the basis of the asymptotic perturba-
tion method for the classical laminated thin-walled plate theory. The solution
is based on the numerical method of the transition matrix using Godunov’s
orthogonalization.
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The numerical calculations are carried out for two kinds of paperboard web
structures. The axially moving paperboard web is treated as a thin-walled
composite structure in the elastic range, being under axial extension. The
numerical data of the investigated paperboard structure have been received
from experimental investigations addressed in literature.

For a constant axial tension of the web, the calculation results show that
in the subcritical region of transport speed the lowest flexural and flexural-
torsional natural frequencies decrease with growth of the axial velocity. At
the critical transport speed the fundamental flexural eigenfrequency vanishes
indicating the divergent instability. The critical transport speed of the system
is dependent on the thickness of the paperboard layers. The critical speed
value decreases when the thickness of the layers increases.

In the supercritical region of transport speed above the divergent instability
area the second stable region may appear. The width and position of the
second stable region is strictly connected with the distribution of the flexural
and flexural-torsional eigenfrequencies. Above the divergent instability and the
second stability region there occurs a flutter instability area of supercritical
transport speeds.
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Zachowanie dynamiczne poruszającej się osiowo wielowarstwowej wstęgi

Streszczenie

W pracy przedstawiono nową metodę analizy dynamicznej przesuwającej się osio-
wo kompozytowej wstęgi. Model matematyczny badanego układu wyznaczają nieli-
niowe, sprzężone równania przemieszczeń poprzecznych oraz funkcji naprężeń. Bada-
nia numeryczne przeprowadzono dla dwóch rodzajów wstęgi kartonu. Wyniki tych
badań pokazują rozwiązanie problemu liniowego badanego zagadnienia. Przedstawio-
no wpływ własności kompozytu oraz prędkości przesuwu wstęgi na drgania giętne
i giętno-skrętne układu.
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