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This elaboration considers the crack problems for infinite thermoelastic
solids subjected to steady temperature or heat flux. The crack faces are
assumed to be insulated. Green’s functions are obtained for the thermal
stress intensity factors of modes I and II. The Green’s functions are defi-
ned as a solution to the problem of a thermoelastic transversely isotropic
solid with a penny-shaped or an external crack under general axisymme-
tric thermal loadings acting along a circumference on the plane parallel
to the crack plane.
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1. Introduction

The penny-shaped crack in a temperature field was treated by Olesiak
and Sneddon (1960); the problem was symmetrical with respect to the crack
plane. The features of antisymmetry were presented by Florence and Goodier
(1963) in the linear thermoelastic problem of uniform heat flow disturbed by
a penny-shaped insulated crack.

In this paper, we consider the steady thermal stress in a cracked solid. The
problems of the crack treated here are solved by using two types of axisymme-
tric ring thermal loadings as fundamental solutions: a uniform heat flux and
temperature. The research is aimed at the assessing of the effect of dissimilar
thermal conditions on the stress intensity factors. The stress intensity factors
of modes I and II are derived in this study in terms of elementary functions.
The results presented for general cases are new, but some of those related



242 B.Rogowski

to special cases of isotropic or transversely isotropic solids with crack surface
thermal loadings have been already known (cf. Olesiak and Sneddon, 1960;
Florence and Goodier, 1963; Rogowski, 1984).

2. Basic equations

The basic equations of axisymmetric thermal stress problems for homo-
geneous transversely isotropic bodies are the equilibrium equations (in the
absence of body forces)

σrr,r + σrz,z +
1

r
(σrr − σθθ) = 0 σrz,r + σzz.z +

1

r
σrz = 0 (2.1)

the strain-displacement relations

err = ur,r eθθ =
ur
r

ezz = uz,z 2erz = ur,z + uz,r
(2.2)

the constitutive equations

σrr = c11err + c12eθθ + c13ezz − β1T
σθθ = c12err + c11eθθ + c13ezz − β1T
σzz = c13err + c13eθθ + c33ezz − β3T
σrz = 2c44erz

(2.3)

and the heat conduction equation (steady state without heat generation)

T,rr + r
−1T,r + s

−2
0 T,zz = 0 (2.4)

where partial differentiation is indicated by the comma followed by the va-
riables, cij are the elastic constants of a transversely isotropic material,
β1 = (c11 + c12)αr + c13αz, β3 = 2c13αr + c33αz are the thermal stress coef-
ficients, αr and αz are the coefficients of the linear thermal expansion in the
radial and axial direction, s20 = λr/λz , λr and λz are the thermal conductivi-
ties in the radial and axial direction. By substituting Eq. (2.3) into equilibrium
equations (2.1) and using relations (2.2), we obtain

c11
(
ur,rr +

1

r
ur,r −

1

r2
ur
)
+ c44ur,zz + (c13 + c44)uz,rz − β1T,r = 0

(2.5)

c44
(
uz,rr +

1

r
uz,r
)
+ c33uz,zz + (c13 + c44)

(
ur,rz +

1

r
ur,z
)
− β3T,z = 0
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To solve partial differential equations (2.4) and (2.5) we introduce potential
functions which relate to the displacements as follows (Rogowski, 1978)

ur = (kϕ1 + ϕ2 + ϕ0),r uz = (ϕ1 + kϕ2 + lϕ0),z (2.6)

and the Hankel transforms defined as follows

u∗r =

∞∫

0

urrJ1(ξr) dr u∗z =

∞∫

0

uzrJ0(ξr) dr (2.7)

where ξ is the Hankel parameter and Jν(ξr) denotes the Bessel function of
the first kind of order ν. The Hankel transform is its own inverse.
The potential functions must satisfy the following equations

ϕi,rr +
1

r
ϕi,r +

1

s2i
ϕi,zz = 0 i = 0, 1, 2

(2.8)

ϕ0,zz =Ms
2
0T

where s20 = λr/λz, s
2
i (i = 1, 2) are the roots of the equation

c33c44s
4 − [c11c33 − c13(c13 + 2c44)]s2 + c11c44 = 0 (2.9)

and k, l, M are the material parameters defined as follows

k =
c33s

2
1 − c44

c13 + c44
l =
β1(c13 + c44)− β3(c11 − s20c44)
β1(c33s20 − c44)− β3s20(c13 + c44)

(2.10)

M =
β1(c33s

2
0 − c44)− β3s20(c13 + c44)

s20(c13 + c44)
2 − (c11 − s20c44)(c33s20 − c44)

The thermal stresses components σzz and σrz are represented as follows

σzz = Gz(k + 1)(s
−2
1 ϕ1 + s

−2
2 ϕ2),zz +GzM(1 + l)T

(2.11)

σrz = Gz(k + 1)(ϕ1 + ϕ2),rz +Gz(1 + l)ϕ0,rz

where Gz = c44 is the shear modulus along the z-axis.
The stress components σrr and σθθ may be similarly expressed.
Consider an infinite transversely isotropic elastic solid containing a penny-

shaped crack with its diameter 2a or an external crack covering the outside of
a circle of the radius a, as shown in Fig. 1. Denote by (r, θ, z) the cylindrical
co-ordinate system with its origin at the middle point of the penny-shaped
crack face or of the bonding region, respectively. The thermal loading con-
ditions (Fig. 2 and Fig. 3) may be decomposed into symmetrical (Fig. 4) and
antisymmetrical (Fig. 5) with respect to the crack plane.
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Fig. 1. Thermoelastic solid with a penny-shaped or external crack under thermal
loadings

Fig. 2. Temperature loading acting along a circle

Fig. 3. Axial heat flux acting along a circle
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Fig. 4. Symmetric thermal loadings

Fig. 5. Antisymmetric thermal loadings

3. Temperature field

For a uniform temperature and heat flux applied along the circumference
r = b on the plane z = h, the thermal loading conditions are

T (r, h+ 0)− T (r, h − 0) = T0
4πr
δ(r − b)

(3.1)

T,z(r, h + 0)− T,z(r, h − 0) =
Q0
4πλzr

δ(r − b)

where δ(r − b) is the Dirac delta function and T0, Q0 are the constant tem-
perature and heat flux, respectively.
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Applying the Hankel transforms to Eqs (2.4) and (3.1 a,b), we find the
temperature as follows

T (r, z) =

∞∫

0

Aij(ξ)e
−ξs0zJ0(ξr) dξ +

(3.2)

+
1

2

∞∫

0

[ξν0H0(ξs0z)− ν1H1(ξs0z)]J0(ξb)J0(ξr) dξ z  0

where

H0(ξs0z) = sgn (z − h)e−ξs0|z−h| − (−1)i+je−ξs0(z+h)

H1(ξs0z) = e
−ξs0|z−h| + (−1)i+je−ξs0(z+h)

sgn (z − h) =
{
1 for z > h
−1 for z < h

ν0 =
T0
4π

ν1 =
Q0
4πλzs0

for symmetric (i = 1) and antisymmetric (i = 2) thermal loading conditions,
and where Aij(ξ) are unknown functions which may be determined by using
the mixed thermal boundary conditions on the plane z = 0, where the penny-
shaped crack (j = 1) or the external crack (j = 2) appear.
It is assumed that the crack faces remain insulated. The thermal conditions,

therefore, are

T,z = 0 r ∈ Ac z = 0 (3.3)

and

T,z = 0 r ∈ Ãc z = 0 (3.4)

or

T = 0 r ∈ Ãc z = 0 (3.5)

where Ac and Ãc are the crack region and its complement, respectively.
Condition (3.4) corresponds to the symmetric problem, while condition

(3.5) corresponds to the antisymmetric one.
Thermal conditions (3.3) and (3.4) or (3.5) yield:

(i) For the penny-shaped crack and symmetric temperature field

A11(ξ) = 0 (3.6)



Fundamental solutions related to thermal stress... 247

(ii) For the penny-shaped crack and antisymmetric temperature field

∞∫

0

ξA21(ξ)J0(ξr) dξ = −
∞∫

0

ξ(ν0ξ + ν1)e
−ξs0hJ0(ξb)J0(ξr) dξ 0 ¬ r < a

∞∫

0

A21(ξ)J0(ξr) dξ = 0 r > a

(3.7)

(iii) For the external crack and symmetric temperature field

A12(ξ) = −(ν0ξ + ν1)e−ξs0hJ0(ξb) (3.8)

(iv) For the external crack and antisymmetric temperature field

∞∫

0

A22(ξ)J0(ξr) dξ =

∞∫

0

(ν0ξ + ν1)e
−ξs0hJ0(ξb)J0(ξr) dξ 0 ¬ r < a

∞∫

0

ξA22(ξ)J0(ξr) dξ = 0 r > a

(3.9)

Both solutions (3.6) and (3.8) give the temperature field

T (r, z) =
1

2

∞∫

0

J0(ξb)J0(ξr) ·

(3.10)

·
[
(ν0ξ sgn (z − h)− ν1)e−ξs0|z−h| − (ν0ξ + ν1)e−ξs0(z+h)

]
dξ

related to the symmetric thermal loading conditions of the solid with the
penny-shaped or an external crack.
Dual integral equations (3.7) are converted to the Abel integral equation

by means of the following integral representation for A21(ξ) (Noble, 1963)

A21 =

√
2

π

a∫

0

g0(x) sin(ξx) dx (3.11)

on the assumption that g0(x)→ 0 as x→ 0+.
This representation of A21(ξ) identically satisfies Eq. (3.7)2 (see Appendix,

Eqs (A.1) and (A.9)).
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Substituting A21(ξ) into Eq. (3.7)1 leads to the following Abel integral
equation in an auxiliary function g0(x)

√
2

π

r∫

0

(dg0(x)
dx

1√
r2 − x2

)
dx = −

∞∫

0

ξ(ν0ξ + ν1)J0(ξr)J0(ξb)e
−ξs0h dξ (3.12)

Applying the Abel solution method to invert the left hand side of Eq.
(3.12) gives the formula for g0(x)

g0(x) = −
√
2

π

∞∫

0

(ν0ξ + ν1) sin(ξx)J0(ξb)e
−ξs0h dξ (3.13)

The improper integrals appearing in Eq. (3.13) are calculated analytically
(see Appendix, Eqs (A.1) and (A.2)). Consequently, the auxiliary function
g0(x) is obtained in terms of the oblate spheroidal co-ordinates ζ0 and η0,
defined in the Appendix, as

g0(x) =

√
2

π

[
ν0
d

dx

( ζ0
D0

)
− ν1
( η0
D0

)]
=

(3.14)

= −
√
2

π

{
ν0

ζ0
D20(ζ

2
0 + η

2
0)
[(1− η20)(η20 − ζ20 ) + 2η20(1 + ζ20 )] + ν1

η0
D0

}

where

D0 = x(ζ
2
0 + η

2
0)

Finally, the temperature field is obtained as

T (r, z) =
2

π

a∫

0

[
ν0
d

dx

( ζ0
D0

)
− ν1
( η0
D0

)] η
D
dx+

(3.15)

+
1

2

∞∫

0

{
[ν0ξ sgn (z − h)− ν1]e−ξs0|z−h| + (ν0ξ + ν1)e−ξs0(z+h)

}
J0(ξb)J0(ξr)dξ

where

D = x(ζ2 + η2)

and where the oblate spheroidal co-ordinates ζ, η are associated with r, s0z
and x, while ζ0, η0 are associated with b, s0h and x (see Appendix).
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Dual integral equations (3.9) are converted to the Abel integral equations
by means of the following integral representation of A22(ξ)

A22(ξ) =

√
2

π

a∫

0

f0(x) cos(ξx) dx (3.16)

In this representation the auxiliary function f0(x) is assumed to be conti-
nuous over the interval [0, a]. This representation of A22(ξ) identically satisfies
Eq. (3.9)2.

Substituting A22(ξ) into Eq. (3.9)1 leads to the following Abel integral
equation in an auxiliary function f0(x)

√
2

π

r∫

0

f0(x)√
r2 − x2

dx =

∞∫

0

(ν0ξ + ν1)e
−ξs0hJ0(ξr)J0(ξb) dξ (3.17)

Applying the Abel solution method, give the formula for f0(x)

f0(x) =

√
2

π

∞∫

0

(ν0ξ + ν1)e
−ξs0h cos(ξx)J0(ξb) dξ (3.18)

Substituting the integrals (A.1) and (A.2) (see Appendix), gives the final
solution for f0(x)

f0(x) =

√
2

π

[
ν0
d

dx

( η0
D0

)
+ ν1
ζ0
D0

]
=

(3.19)

=

√
2

π

{
ν0

η0
D20(ζ

2
0 + η

2
0)
[(1 + ζ20)(ζ

2
0 − η20) + 2ζ20 (1− η20)] + ν1

ζ0
D0

}

For the external crack in the antisymmetric temperature field the tempe-
rature is obtained as

T (r, z) =
2

π

a∫

0

[
ν0
d

dx

( η0
D0

)
+ ν1
ζ0
D0

] ζ
D
dx+

(3.20)

+
1

2

∞∫

0

{
[ν0ξ sgn (z − h)− ν1]e−ξs0|z−h| − (ν0ξ + ν1)e−ξs0(z+h)

}
J0(ξr)J0(ξb)dξ
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By using the superposition of two thermal fields (3.10) and (3.15) or (3.20),
we obtain

T (r, z) =
2

π

a∫

0

[
ν0
d

dx

( ζ0
D0

)
− ν1
η0
D0

] η
D
dx+

(3.21)

+

∞∫

0

[ν0ξ sgn (z − h)− ν1]e−ξs0|z−h|J0(ξb)J0(ξr) dξ z  0

for the penny-shaped crack and

T (r, z) =
2

π

a∫

0

[
ν0
d

dx

( η0
D0

)
+ ν1
ζ0
D0

] ζ
D
dx+

(3.22)

+

∞∫

0

{
[ν0ξ sgn (z − h)− ν1]e−ξs0|z−h| − (ν0ξ + ν1)e−ξs0(z+h)

}
J0(ξb)J0(ξr) dξ

where z  0, for the external crack.

4. Thermal stresses

Considering Eqs (2.8) and (3.2), we find the potential functions (z  0)

ϕ0(r, z) =M

∞∫

0

ξ−2
{
Aij(ξ)e

−ξs0z +

+
1

2
[ν0ξH0(ξs0z)− ν1H1(ξs0z)]J0(ξb)

}
J0(ξr) dξ

ϕ1(r, z) =
s2

Gz(k + 1)(s1 − s2)

∞∫

0

ξ−1B1j(ξ)e
−ξs1zJ0(ξr) dξ (4.1)

ϕ2(r, z) = −
s1

Gz(k + 1)(s1 − s2)

∞∫

0

ξ−1B2j(ξ)e
−ξs2zJ0(ξr) dξ

Substituting Eqs (4.1) into Eqs (2.6) and (2.11), we obtain (z  0)
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ur(r, z) = −M
∞∫

0

ξ−1
{
Aij(ξ)e

−ξs0z +

+
1

2
[ν0ξH0(ξs0z)− ν1H1(ξs0z)]J0(ξb)

}
J1(ξr) dξ −

− 1

Gz(k + 1)(s1 − s2)

∞∫

0

[
ks2B1j(ξ)e

−ξs1z − s1B2j(ξ)e−ξs2z
]
J1(ξr) dξ

(4.2)

uz(r, z) = −Ms0l
∞∫

0

ξ−1
{
Aij(ξ)e

−ξs0z +

+
1

2
[ν0ξH

′
0(ξs0z)− ν1H ′1(ξs0z)]J0(ξb)

}
J0(ξr) dξ −

− s1s2
Gz(k + 1)(s1 − s2)

∞∫

0

[
B1j(ξ)e

−ξs1z − kB2j(ξ)e−ξs2z
]
J0(ξr) dξ

σzz(r, z) = GzM(1 + l)

∞∫

0

{
Aij(ξ)e

−ξs0z +

+
1

2
[ν0ξH0(ξs0z)− ν1H1(ξs0z)]J0(ξb)

}
J0(ξr) dξ +

+
1

s1 − s2

∞∫

0

ξ
[
s2B1j(ξ)e

−ξs1z − s1B2j(ξ)e−ξs2z
]
J0(ξr) dξ

(4.3)

σrz(r, z) = GzM(1 + l)s0

∞∫

0

{
Aij(ξ)e

−ξs0z +

+
1

2
[ν0ξH

′
0(ξs0z)− ν1H ′0(ξs0z)]J0(ξb)

}
J1(ξr) dξ +

+
s1s2
s1 − s2

∞∫

0

ξ
[
B1j(ξ)e

−ξs1z −B2j(ξ)e−ξs2z
]
J1(ξr) dξ

where

H ′0(ξs0z) = e
−ξs0|z−h| − (−1)i+je−ξs0(z+h)

(4.4)

H ′1(ξs0z) = sgn (z − h)e−ξs0|z−h| + (−1)i+je−ξs0(z+h)
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The crack problem must be solved under the following conditions

σzr(r, 0) = 0 r  0
σzz(r, 0) = 0 r ∈ Ac
uz(r, 0) = 0 r ∈ Ãc

(4.5)

for the symmetric thermal condition and

σzz(r, 0) = 0 r  0
σzr(r, 0) = 0 r ∈ Ac
ur(r, 0) = 0 r ∈ Ãc

(4.6)

for the antisymmetric thermal condition.

Conditions (4.5)1 and (4.6)1 yield, respectively

B2j(ξ) = B1j(ξ) +GzM(1 + l)
(s0
s2
− s0
s1

)
ξ−1 ·

(4.7)

·
{
A1j(ξ) +

1

2
(ν0ξ + ν1)[1 + (−1)j ]J0(ξb)e−ξs0h

}

or

B2j(ξ) =
s2
s1
B1j(ξ) +GzM(1 + l)

(
1− s2
s1

)
ξ−1 ·

(4.8)

·
{
A2j(ξ)−

1

2
(ν0ξ + ν1)[1 + (−1)j ]J0(ξb)e−ξs0h

}

The displacements and stresses meeting mixed boundary conditions (4.5)2,3
and (4.6)2,3 on the plane where the crack appears are

uz(r, 0) =
1

GzC

∞∫

0

B1j(ξ)J0(ξr) dξ +
Ms0(k − l)
k + 1

·

·
∞∫

0

ξ−1
{
A1j(ξ) +

1

2
(ν0ξ + ν1)[1 + (−1)j ]e−ξs0hJ0(ξb)

}
J0(ξr) dξ

σzz(r, 0) = −
∞∫

0

ξB1j(ξ)J0(ξr) dξ +GzM(1 + l)

∞∫

0

{(
1− s0
s2

)
A1j(ξ)−

−1
2
(ν0ξ + ν1)

[
1 +
s0
s2
−
(
1− s0
s2

)
(−1)j

]
e−ξs0hJ0(ξb)

}
J0(ξr) dξ

(4.9)
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ur(r, z) = −
1

GzCs1

∞∫

0

B1j(ξ)J1(ξr) dξ −

−M(k − l)
k + 1

∞∫

0

ξ−1
{
A2j(ξ)−

1

2
(ν0ξ + ν1)[1 + (−1)j ]e−ξs0hJ0(ξb)

}
J1(ξr) dξ

σrz(r, z) = s2

∞∫

0

ξB1j(ξ)J1(ξr) dξ +GzM(1 + l)

∞∫

0

{
(s0 − s2)A2j +

+
1

2
(ν0ξ + ν1)[s0 + s2 − (s0 − s2)(−1)j ]e−ξs0hJ0(ξb)

}
J1(ξr) dξ

where

C =
(k + 1)(s1 − s2)
(k − 1)s1s2

(4.10)

5. Mode I loading

The Mode I crack problem corresponds to the symmetric thermal loading.
The penny-shaped crack problem is obtained for j = 1 and the external crack
problem is obtained for j = 2.

5.1. The penny-shaped crack problem

Substituting Eqs (4.9)1,2 into boundary conditions (4.5)2,3 and using that
A11(ξ) = 0, the following dual integral equations are obtained

∞∫

0

ξB11(ξ)J0(ξr) dξ =

= −GzM(1 + l)
∞∫

0

(ν0ξ + ν1)e
−ξs0hJ0(ξb)J0(ξr) dξ

0 ¬ r < a (5.1)

∞∫

0

B11(ξ)J0(ξr) dξ = 0 r > a (5.2)

Dual integral equations (5.1), (5.2) are converted to the Abel integral equ-
ation by means of the following integral representation of B11(ξ)
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B11(ξ) =

√
2

π

a∫

0

g(x) sin(ξx) dx (5.3)

on the assumption that g(x)→ 0 as x→ 0+.
This representation of B11(ξ) identically satisfies Eq. (5.2). Substituting

B11(ξ) into Eq. (5.1) leads to the following Abel integral equation in an auxi-
liary function g(x)

√
2

π

r∫

0

(dg(x)
dx

1√
r2 − x2

)
dx =

(5.4)

= −GzM(1 + l)
∞∫

0

(ν0ξ + ν1)e
−ξs0hJ0(ξb)J0(ξr) dξ

Applying the Abel solution method to invert the left hand side of Eq. (5.4)
gives the formula for g(x)

g(x) = −
√
2

π
GzM(1 + l)

∞∫

0

(ν0 + ν1ξ
−1)e−ξs0hJ0(ξb) sin(ξx) dξ (5.5)

The improper integrals appearing in Eq. (5.5) are calculated analytically
(see Appendix, Eqs (A.1) and (A.3)). Consequently, the auxiliary function
g(x) is obtained explicitly in terms of the oblate spheroidal co-ordinates ζ0
and η0 (see Appendix) as

g(x) = −
√
2

π
GzM(1 + l)

[
ν0

η0
x(ζ20 + η

2
0)
+ ν1
(π
2
− tan−1 ζ0

)]
(5.6)

The singular part of the axial stress is given by the formula

σzz(r, 0) =

√
2

π

g(a)√
r2 − a2

as r → a+ (5.7)

Defining the stress intensity factor of Mode I as

KI = lim
r→a+

√
2(r − a) σzz(r, 0) (5.8)

one obtains

KI = −
2

π
√
a
GzM(1 + l)

[
ν0

η0

a(ζ
2
0 + η

2
0)
+ ν1
(π
2
− tan−1 ζ0

)]
(5.9)
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where ζ0, η0 are obtained from ζ0, η0 for x = a (see Appendix).

Solution (5.9) contains three other problems as special cases, namely:
(i) h = 0 and b < a, (ii) h = 0 and b > a, (iii) b = 0. We can dedu-
ce the results for these three cases from equations (5.9), (A.8) and (A.9) for
x = a. The results are given in Table 1.

5.2. The external crack

The dual integral equations of the external crack problem are

∞∫

0

B12(ξ)J0(ξr) dξ = 0 0 ¬ r < a (5.10)

∞∫

0

ξB12(ξ)J0(ξr) dξ =

= −GzM(1 + l)
∞∫

0

(ν0ξ + ν1)e
−ξs0hJ0(ξb)J0(ξr) dξ

r > a (5.11)

For the temperature loading we use the integral representation of B12(ξ)

B12(ξ) =

√
2

π

a∫

0

f(x) cos(ξx) dx−GzM(1 + l)ν0e−ξs0hJ0(ξb) (5.12)

and find the Abel integral equation in an auxiliary function f(x)

√
2

π

r∫

0

( f(x)√
r2 − x2

)
dx = GzM(1 + l)ν0

∞∫

0

e−ξs0hJ0(ξb)J0(ξr) dξ (5.13)

The solution for this equation is

f(x) =

√
2

π
GzM(1 + l)ν0

∞∫

0

e−ξs0hJ0(ξb) cos(ξx) dξ (5.14)

Substituting the analytical expression for the improper integral (Eq. (A.2)
in the Appendix), we get

f(x) =

√
2

π
GzM(1 + l)ν0

ζ0
x(ζ20 + η

2
0)

(5.15)
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The stress transmitted through the neck is found to be

σzz(r, 0) = −
√
2

π

f(a)√
a2 − r2

+

a∫

r

df(x)

dx

dx√
x2 − r2

(5.16)

Defining the stress intensity factor of Mode I as

KI = lim
r→a−

√
2(a− r)σzz(r, 0) (5.17)

one obtains

KI = −
2

π
√
a
GzM(1 + l)ν0

ζ0

a(ζ
2
0 + η

2
0)

(5.18)

where ζ0, η0 are the values of ζ0, η0 for x = a (see Appendix).
For the heat flux problem we use the integral representation of B12(ξ)

B12(ξ) =

√
2

π

a∫

0

f1(x)
[ sin(ξx)
ξx

− cos(ξx)
]
dx−GzM(1 + l)ν1ξ−1e−ξs0hJ0(ξb)

(5.19)
This representation identically satisfies Eq. (5.11) associated with the heat

flux and converts Eq. (5.10) to the Abel integral equation

−
√
2

π

r∫

0

f1(x)√
r2 − x2

dx+

√
2

π

a∫

0

f1(u)

u

[ ∞∫

0

sin(ξu)

ξ
J0(ξr) dξ

]
du =

(5.20)

= GzM(1 + l)ν1

∞∫

0

ξ−1e−ξs0hJ0(ξb)J0(ξr) dξ

Applying the Abel solution method we obtain

−f1(x) +
2

π

a∫

0

f1(u)

u

[ ∞∫

0

sin(ξu) cos(ξx)

ξ
dξ
]
du =

(5.21)

=

√
2

π
GzM(1 + l)ν1

∞∫

0

ξ−1e−ξs0hJ0(ξb) cos(ξx) dξ

We use the integral

∞∫

0

sin(ξu) cos(ξx)

ξ
dξ =

π

2
H(u− x) (5.22)
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where H(·) is the Heaviside unit function.
Then we have

−f1(x)+
a∫

x

f1(u)

u
du =

√
2

π
GzM(1+l)ν1

∞∫

0

ξ−1e−ξs0hJ0(ξb) cos(ξx) dξ (5.23)

It is seen that the integrand in the improper integral is unbounded as
ξ → 0. This improper behaviour at ξ → 0 can be removed by adding to both
sides of Eq. (5.23) the value of f1(0), obtained formally from this equation.
After adjusting the improper behaviour at ξ → 0, Eq (5.23) becomes
x∫

0

1

x

d

dx
[xf1(x)] dx =

√
2

π
GzM(1 + l)ν1

∞∫

0

1− cos(ξx)
ξ

e−ξs0hJ0(ξb) dξ (5.24)

The improper integral in Eq. (5.24) has an analytic expression given by Eqs
(A.5) and (A.6) in the Appendix.
We use the following relationships

1− cos(ξx)
ξ

=

x∫

0

sin(ξx) dx =

x∫

0

1

x

d

dx

[x
ξ

(sin(ξx)
ξx

− cos(ξx)
)]
dx (5.25)

and integral (A.4) from the Appendix.
Then, the solution to Eq (5.24) is obtained in the form

f1(x) =

√
2

π
GzM(1 + l)ν1η0

[
1− ζ0

(π
2
− tan−1 ζ0

)]
(5.26)

It is noted that f1(x) tends to zero as x→ 0+.
The stress transmitted through the neck is found to be

σzz(r, 0) =

√
2

π

[ r2f1(a)
a2
√
a2 − r2

− r2
a∫

r

d

dx

(f1(x)
x2

) dx√
x2 − r2

−

(5.27)

−2
a∫

r

f1(x)

x

dx√
x2 − r2

]

The stress intensity factor of Mode I is given by

KI =
2

π
√
a
GzM(1 + l)ν1η0

[
1− ζ0

(π
2
− tan−1 ζ0

)]
(5.28)

where ζ0, η0 are the values of ζ0, η0 for x = a (see Appendix).
In special cases, KI takes the values which are shown in Table 1.
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6. Mode II loading

6.1. The penny-shaped crack

The dual integral equations are:

— for 0 ¬ r < a

∞∫

0

ξB11(ξ)J1(ξr) dξ =

(6.1)

= −GzM(1 + l)
∞∫

0

[(s0
s2
− 1
)
A21(ξ) + (ν0ξ + ν1)

s0
s2
e−ξs0hJ0(ξb)

]
J1(ξr) dξ

— for r > a

∞∫

0

B11(ξ)J1(ξr) dξ = −
GzM(k − l)
k − 1

(s1
s2
− 1
) ∞∫

0

ξ−1A21(ξ)J1(ξr) dξ (6.2)

The integral representation of B11(ξ)

B11(ξ) =
√
ξ

a∫

0

√
xh(x)J3/2(ξx) dx−

GzM(k − l)
k − 1

(s1
s2
− 1
)
ξ−1A21(ξ) (6.3)

on the assumption that
√
xh(x)→ 0 as x→ 0+, satisfies identically Eq. (6.2),

while Eq. (6.1) is converted to the Abel integral equation

√
2

π

r∫

0

(d[xh(x)]
dx

1√
r2 − x2

)
dx =

= GzMr{
[ k − l
k − 1

(s1
s2
− 1
)
− (1 + l)

(s0
s2
− 1
)] ∞∫

0

A21(ξ)J1(ξr) dξ − (6.4)

−(1 + l)s0
s2

∞∫

0

(ν0ξ + ν1)e
−ξs0hJ0(ξb)J1(ξr) dξ

}
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The solution to this equation is

h(x) =

√
2

π
GzM

{[ k − l
k − 1

(s1
s2
− 1
)
− (1 + l)

(s0
s2
− 1
)]
·

·
∞∫

0

A21(ξ)
d

dξ

(− sin(ξx)
ξx

)
dξ − (6.5)

−(1 + l)s0
s2

∞∫

0

(ν0 + ν1ξ
−1)e−ξs0hJ0(ξb)

[ sin(ξx)
ξx

− cos(ξx)
]
dξ
}

Integrating the first integral in Eq. (6.5) by parts, substituting A21(ξ) and
g0(x) from Eqs (3.11) and (3.13) and substituting for the second integral the
analytical formula (see Appendix, Eqs (A.2), (A.3) and (A.4)), lead to the
following exact formula for h(x)

h(x) =

√
2

π
GzM(1 + l)

κ

s2
·

(6.6)

·
{ν0
x

(π
2
− tan−1 ζ0 −

ζ0
ζ20 + η

2
0

)
+ ν1η0

[
ζ0
(π
2
− tan−1 ζ0

)
− 1
]}

where

κ = s2 +
k − l
k − 1

s1 − s2
1 + l

(6.7)

The singular part of the shear stress is given by

σrz(r, 0) = −
√
2

π

s2ah(a)

r
√
r2 − a2

as r → a+ (6.8)

The stress intensity factor of Mode II is obtained as follows

KII = −
2

π
√
a
GzM(1 + l)κ ·

(6.9)

·
{ν0
a

(π
2
− tan−1 ζ0 −

ζ0

ζ
2
0 + η

2
0

)
+ ν1η0

[
ζ0

(π
2
− tan−1 ζ0

)
− 1
]}

In special cases KII , takes the values which are shown in Table 1.
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6.2. The external crack

The dual integral equations are: — for 0 ¬ r < a
∞∫

0

B12(ξ)J1(ξr) dξ =

(6.10)

= −GzM(k − l)
k − 1

(s1
s2
− 1
) ∞∫

0

ξ−1
[
A22(ξ)− (ν0ξ + ν1)e−ξs0hJ0(ξb)

]
J1(ξr) dξ

— for r > a

∞∫

0

ξB12(ξ)J1(ξr) dξ =

(6.11)

= −GzM(1 + l)
∞∫

0

[(s0
s2
− 1
)
A22(ξ) + (ν0ξ + ν1)e

−ξs0hJ0(ξb)
]
J1(ξr) dξ

The integral representation of B12(ξ)

B12(ξ) =

√
2

π

a∫

0

t(x) sin(ξx) dx−

(6.12)

−GzM(1 + l)ξ−1
[(s0
s2
− 1
)
A22(ξ) + (ν0ξ + ν1)e

−ξs0hJ0(ξb)
]

gives the Abel integral equation

√
2

π

r∫

0

xt(x)√
r2 − x2

dx = −GzMr ·

·
{[ k − l
k − 1

(s1
s2
− 1
)
− (1 + l)

(s0
s2
− 1
)] ∞∫

0

ξ−1A22(ξ)J1(ξr) dξ − (6.13)

−
[ k − l
k − 1

(s1
s2
− 1
)
+ 1 + l

] ∞∫

0

(ν0 + ν1ξ
−1)e−ξs0hJ0(ξb)J1(ξr) dξ

}
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The solution to this equation is

t(x) = −
√
2

π
GzM ·

·
{[ k − l
k − 1

(s1
s2
− 1
)
− (1 + l)

(s0
s2
− 1
)] ∞∫

0

ξ−1A22(ξ) sin(ξx) dξ − (6.14)

−
[ k − l
k − 1

(s1
s2
− 1
)
+ 1 + l

] ∞∫

0

(ν0 + ν1ξ
−1)e−ξs0hJ0(ξb) sin(ξx) dξ

}

Substituting A22(ξ) from Eq. (3.16) and f0(x) from Eq. (3.19), integrating
and using Eqs (A.1) and (A.3) from the Appendix, we obtain

t(x) =

√
2

π
GzM(1 + l)

s0
s2

[
ν0

η0
x(ζ20 + η

2
0)
+ ν1
(π
2
− tan−1 ζ0

)]
(6.15)

The singular part of the shear stress is

σzr(r, 0) =

√
2

π

rt(a)s2

a
√
a2 − r2

as r → a− (6.16)

The stress intensity factor of Mode II is obtained in the form

KII =
2

π
√
a
GzM(1 + l)s0

[
ν0

η0

a(ζ
2
0 + η

2
0)
+ ν1
(π
2
− tan−1 ζ0

)]
(6.17)

where the oblate spheroidal co-ordinates ζ0, η0 are calculated for x = a.

In special cases KII , takes the values presented in Table 1.

7. Applications

The exact solutions have been presented for the stress intensity factors
of Mode I and II at the tips of the penny-shaped crack and external crack
under thermal loadings. These solutions are obtained explicitly in terms of
elementary functions. For any axisymmetrical distribution of thermal loadings
of the medium with internal or external cracks the integration and/or simple
superposition of the obtained results can yield the stress intensity factors.
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When the cracked solid is subjected to temperature T (r, z) = T0t(r, z)
and/or heat flux Q(r, z) = Q0q(r, z), then the components Ki (i = I, II) of
the stress intensity factor may be calculated as follows

Ki =

∫

V

[t(r, z)Ki0(r, z) + q(r, z)Ki1(r, z)] dV (7.1)

where V denotes the domain volume of the thermally loaded region and
Ki0(r, z), Ki1(r, z) denote the stress intensity factors when the temperatu-
re and heat flux ring loading (index 0 or 1, respectively) act along a circle
(r, z) of the radius r on the plane z (the co-ordinates b, h should be replaced
by r, z in the obtained results).

We now proceed to consider some specific cases of thermal loadings, when
the temperature T0/2 and the heat flux Q0/2 are applied on the planes z =
±h in an annular region b ¬ r ¬ c symmetrically or asymmetrically with
respect to z = 0 plane.

Then, equation (7.1) yields

Ki = 2π

c∫

b

[Ki0(r, h) +Ki1(r, h)]r dr (7.2)

where

r dr = a2(ζ2 + η2)
dζ

ζ

dζ

ζ
= −dη
η

in the oblate spheroidal co-ordinates r2 = a2(1 + ζ2)(1 − η2), s0h = aζη and
Ki0(r, h), Ki1(r, h) are presented in those co-ordinates.

Example 1: Consider the case of the temperature loading T0/2 on the planes
z = ±h in the annular region b ¬ r ¬ c.

From equation (5.8) and (5.18) we obtain:

— for the penny-shaped crack (0 ¬ r ¬ a)

KI = −
T0
√
a

π
GzM(1 + l)

η(c)∫

η(b)

η

ζ2 + η2

(
−ζ
2 + η2

η

)
dη =

(7.3)

= −T0
√
a

π
GzM(1 + l)[η(b)− η(c)]
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where

η(r) =
1

a
√
2

√√
(r2 + s20h

2 − a2)2 + 4a2s20h2 − (r2 + s20h2 − a2) (7.4)

— for the external crack (r  a)

KI = −
T0
√
a

π
GzM(1 + l)

ξ(c)∫

ξ(b)

ζ

ζ2 + η2
ζ2 + η2

ζ
dζ =

(7.5)

= −T0
√
a

π
GzM(1 + l)[ζ(c)− ζ(b)]

where

ζ(r) =
1

a
√
2

√√
(r2 + s20h

2 − a2)2 + 4a2s20h2 + r2 + s20h2 − a2 (7.6)

Since for real materials GzM(1 + l) < 0, the cracks open if T0 > 0.

In special cases, KI assumes the values:

— for the penny-shaped crack

KI = A






1 for b = 0 c→∞
1− η(c) for b = 0 c finite

1 for h = 0 b = 0 c = a
√
a2 − b2 −

√
a2 − c2

a
for h = 0 b < c ¬ a

0 for h = 0 b  a c > a

(7.7)

— for the external crack

KI = A





ζ(c)− s0h
a

for b = 0 c finite
√
c2 − a2 −

√
b2 − a2

a
for h = 0 a ¬ b < c

0 for h = 0 b < a c ¬ a

(7.8)

where

A = −T0
√
a

π
GzM(1 + l)

When the temperature change takes place in the plane of the crack but
outside of the crack surface, then KI are zero. For the penny-shaped crack
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and temperature change over the crack surface 0 ¬ r ¬ a, h = 0 or on the
plane z = h, r  0, the stress intensity factors are equal. Note that, if the
temperature is applied in an infinite region r  0 on the planes z = ±h, the
KI is independent on h for the penny-shaped crack problem.

Example 2: Consider the case where the heat flux of the intensity Q0/2 is
applied on the plane z = h in the annular region b ¬ r ¬ c, and the
opposite heat flux (−Q0/2) acts on the plane z = −h.

From equations (5.8) or (5.18) we obtain:

— for the penny-shaped crack (0 ¬ r ¬ a)

KI = −
Q0
π
√
a

GzM(1 + l)

λzs0

c∫

b

(π
2
− tan−1 ζ

)
r dr =

(7.9)

= −Q0a
√
a

π

GzM(1 + l)

λzs0
[f(c)− f(b)]

where

f(r) =
r2

2a2

(π
2
− tan−1 ζ + ζ

1 + ζ2
1− η
1 + η

)
(7.10)

and ζ, η are defined by equations (7.4) and (7.6), respectively

— for the external crack (r  a)

KI = −
Q0
π
√
a

GzM(1 + l)

λzs0

c∫

b

[s0h
a

(π
2
− tan−1 ζ

)
− η
]
r dr =

(7.11)

= −Q0a
√
a

π

GzM(1 + l)

λzs0

{s0h
a
[f(c)− f(b) + ζ(c)− ζ(b)] + 1

3
[η3(c)− η3(b)]

}

where f(r), η(r), ζ(r) are defined by equations (7.10), (7.4) and (7.6), respec-
tively.

Example 3: Consider the case of the temperature loading T0/2 on the plane
z = h and (−T0/2) on the plane z = −h applied in the annular region
b ¬ r ¬ c.

From equations (6.9) or (6.17) we obtain:
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— for the penny-shaped crack (0 ¬ r ¬ a)

KII = −
T0
√
a

π
GzM(1 + l)κ[f(c)− f(b)− ζ(c) + ζ(b)] (7.12)

where f(r) is defined by equation (7.10) and ζ(r) by eqation (7.6)

— for the external crack (r  a)

KII =
T0
√
a

π
GzM(1 + l)s0[η(b) − η(c)] (7.13)

where η(r) is defined by equation (7.4).

Example 4: Consider the case where the heat flux of the intensity Q0/2 is
applied on the planes z = ±h in the z-direction over the annular region
b ¬ r ¬ c.

From equation (6.9) and (6.17) we obtain:

— for the penny-shaped crack (0 ¬ r ¬ a)

KII = −
Q0a
√
a

π
GzM(1+ l)κ

{s0h
a
[f(c)−f(b)+ζ(c)−ζ(b)]+ 1

3
[η3(c)−η3(b)]

}

(7.14)
— for the external crack (r  a)

KII =
Q0a
√
a

π
GzM(1 + l)s0[f(c)− f(b)] (7.15)

where f(r), η(r), ζ(r) are defined by equations (7.10), (7.4) and (7.6), respec-
tively.

In above examples, the loading was either symmetric or asymmetric with
respect to the crack plane.

Thus, one can superpose solutions to obtain the solution for a thermal
loading on one half-space only.

Defining the stress intensity factors as follows

K∗I,II = KI,II
π

2GzM(1 + l)
√
a

(7.16)

the formulae for the special cases of thermal ring loadings are summarized in
Table 1.
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Table 1. Values of the stress intensity factor in [K/m2] (κ is defined by
Eq. (6.7))

K∗I K∗II
Case of loading

T0
4πa2
× Q0
4πλzs0a

× T0
4πa2
× Q0

4πλzs0a
×

− a√A1
−π
2

−π
2
κ

√
A1
a
κ

0 −A2 κ
( a√
−A1

−A2
)

0

− a
2

A3
−A4 κ

(s0ha
A3
−A4

)
κ
(
1− s0h

a
A4
)

0

√
A1
a

as0√
A1

π

2
s0

− a√
−A1

0 0 s0A2

−s0haA3
1− s0h

a
A4

s0a
2

A3
s0A4

where

A1 = a2 − b2 A3 = a2 + s20h2

A2 = sin−1
a

b
A4 = tan−1

a

s0h

All of the results obtained before are valid for isotropic solids, provided
that we take

s0 = s1 = s2 = k = 1 αr = αz = α

β1 = β3 =
Eα

1− 2ν l = −3 + 4ν

M =
(1 + ν)α

2(1− ν) κ = − 2ν

1− 2ν

GzM(1 + l) = −
1− 2ν
2(1− ν)Eα

(7.17)

where E is the elastic modulus, and ν is Poisson’s ratio.
The limits were computed according to de L’Hospital’s rule.
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A. Appendix

The following integrals are used to evaluate the auxiliary functions appe-
aring in this paper

∞∫

0

J0(ξb) sin(ξx)e
−ξs0h dξ =

η0
x(ζ20 + η

2
0)

(A.1)

∞∫

0

J0(ξb) cos(ξx)e
−ξs0h dξ =

ζ0
x(ζ20 + η

2
0)

(A.2)

∞∫

0

1

ξ
J0(ξb) sin(ξx)e

−ξs0h dξ =
π

2
− tan−1 ζ0 (A.3)

∞∫

0

1

ξ
J0(ξb)

(sin(ξx)
ξx

− cos(ξx)
)
e−ξs0h dξ = η0

[
1− ζ0

(π
2
− tan−1 ζ0

)]
(A.4)

∞∫

0

1− cos(ξx)
ξ

e−ξs0hJ0(ξb) dξ =
1

2
ln
(1 + η0
1− η0

1− η′0
1 + η′0

)
(A.5)

η′0 =
s0h√
s20h
2 + b2

(A.6)

The oblate spheroidal co-ordinates ζ0, η0 are related to b, s0, h, x by the
equations

b2 = x2(1 + ζ20 )(1− η20) s0h = xζ0η0 (A.7)

where −1 ¬ η0 ¬ 1 and ζ0  0.
The surfaces ζ0 = 0 and η0 = 0 are the interior and exterior of the circle

b = x, h = 0, respectively; here therefore

ζ0 =






0 for h = 0 b < x
√
b2

x2
− 1 for h = 0 b > x

s0h

x
for b = 0

(A.8)
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η0 =






√

1− b
2

x2
for h = 0 b < x

0 for h = 0 b > x

1 for b = 0

(A.9)

The co-ordinates ζ0, η0 for x = a are denoted by ζ0, η0. The co-ordinates
for b = r, h = z are denoted by ζ, η and those for x = a by ζ, η.
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Rozwiązania podstawowe dla termicznych współczynników intensywności

naprężenia typów I i II. Zagadnienie osiowo symetryczne

Streszczenie

W pracy rozpatrzono zagadnienia szczeliny dla nieograniczonego termosprężyste-
go ciała stałego poddanego działaniu ustalonej temperatury lub strumienia ciepła.
Założono, że powierzchnie szczeliny są termicznie izolowane. Otrzymano funkcje Gre-
ena dla współczynników intensywności naprężenia typów I i II. Funkcje Greena zde-
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finiowano jako rozwiązanie zagadnienia termosprężystego, poprzecznie izotropowego
ciała z kołową lub zewnętrzną szczeliną, gdy na płaszczyźnie równoległej do płasz-
czyzny szczeliny działają dowolne osiowo symetryczne termiczne obciążenia w postaci
ustalonej temperatury lub strumienia ciepła, rozłożonych na okręgu.
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