
JOURNAL OF THEORETICAL

AND APPLIED MECHANICS

41, 1, pp. 169-197, Warsaw 2003

MODELLING AND OPTIMIZATION OF TRANSMISSION

SYSTEMS WITH AN ASYNCHRONOUS MOTOR

Arkadiusz Mężyk

Department of Applied Mechanics, Silesian University of Technology, Gliwice

e-mail: mezyk@polsl.gliwice.pl

Mathematical models of an electromechanical system with an induction
motor are dealt with in the paper. An electric motor model is described in
the equivalent axial coordinate system (x, y). The mathematical model
of the gear train has been formulated by means of a hybrid method of
rigid and deformable finite elements. Special attention has been paid to
problems of modelling of planetary gears. The sensitivity analysis and
optimization have been carried out using an objective function describing
the maximal forces in kinematic pairs. The applied algorithm of direct
differentiation makes it possible to examine the influence of parameters
of the electromechanical model on the dynamic phenomena occurring
in the system. From the performed investigations it appears that, when
modelling the mechanisms under consideration, it is necessary to take
electromechanical couplings into account.
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1. Introduction

Because of high requirements to be met by modern driving systems of
working machines, the necessity arises to reduce masses of the systems and
to assure transmission of high powers at the same time. It also happens that
excitation frequencies are situated in resonance zones of the systems. The ef-
fect of the design parameters on the dynamic phenomena in the system can
be directly determined in the simplest cases only. In addition, the constructed
models become more complicated, when systems of complex physical nature,
e.g. electromechanical systems, are described. A great number of such systems
composed of an electric motor and of a multi-stage gear train or planetary
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gear are incorporated in drives of working machines. In such cases it turns out
that the use of simulation results for modifying the dynamic characteristics
is a complicated and labour-consuming procedure. Methods of the sensitivity
analysis and optimization can serve for aiding the investigations performed,
because this approach to the problem proves to be effective as well as pro-
fessional software packages and the computer technology are being developed
(Haug et al., 1986; Haftka et al., 1990; Haug and Aurora, 1979; Kleiber et
al., 1995). Initially, the optimization procedures found applications for dealing
with static problems, such as e.g. minimization of costs, mass, overall dimen-
sions or maximization of transmitted power, etc. At present, the sensitivity
analysis and optimization are more and more often used to solve complicated
problems of dynamic machinery systems and to aid the process of designing
(see Haug and Aurora, 1979; Mężyk, 1994; Zeman and Hlaváč, 2001). This
approach is very efficient, especially in cases, in which it is necessary to assu-
re high operational parameters, high durability and reliability and to comply
with a number of limitations ensuing from technical conditions and safety re-
quirements (Sobieszczański-Sobieski and Haftka, 1997). Dynamic properties
of a system are one of the factors determining its durability and reliability.
The use of the optimization method allows these properties to be effective-
ly selected (Mężyk, 1994; Mężyk and Świtoński, 2001; Zeman and Hlaváč,
2001). A function that describes eigenvalues of a system serves as an objec-
tive function being used most often during optimization-oriented investiga-
tions. The problem is usually involved in the optimization of the objective
function in the frequency domain. The optimization can be carried out for
objective functions being described both in the frequency and time domain.
In the latter case, difficulties crop up because it is necessary to analyse the
time-varying objective function. It entails the necessity of numerical solving of
differential equations of motion of the system. However, the thus formulated
problem makes it possible to make the calculations when considering the phe-
nomena of energy dissipation, the state of the external load in the system as
well as the effect of coupling between the electrical drive and the mechanical
subsystem.

This paper presents an algorithm of calculations that constitutes an ef-
fective tool for aiding the process of designing high-power electromechanical
driving systems with an asynchronous motor. The application of the model-
ling, sensitivity analysis and optimization for selecting the design parameters
allows the dynamic characteristics of complex machinery systems, adequate
from the point of view of minimization of the reactions in kinematic pairs and
of decreasing of the vibration level, to be obtained.
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2. Problem formulation

The problem of excessive vibration level occurs in many technical applica-
tions. When this is a case, the high durability and reliability of a system cannot
be assured during operation under a complex dynamic state of load, even tho-
ugh the most precise design methods have been employed. It is possible to
solve this problem by modelling and analysing the dynamic characteristics,
which depend on the structure of the system and on its design parameters.
The optimization by using objective functions described in the time domain
is employed in the paper for minimization of the dynamic forces of electrome-
chanical driving systems in unsteady states (start-up, sudden change of the
load). The purpose of the investigations is realised through minimization of
the peak values of time courses of the dynamic reactions in selected kinematic
pairs, e.g. by means of the following optimization problem

Minψ = P 2max(b, t) = [ki∆qi(b, t)]
2 (2.1)

where P is the calculated value of the dynamic force in the selected kinematic
pair of the system, ki is the stiffness coefficient in ith kinematic pair, t is time,
b is the vector of design variables, ∆qi is the relative generalized displacement
between two nodes of the model.
The optimization procedure uses basic parameters of a structural state

space model as design variables (e.g. inductances, resitances, moments of iner-
tia, stiffness coefficients, damping coefficients). Minimization of the vibration
level is obtained by a proper selection of the design features of the system
under consideration. The procedure enables the optimal selection of an active
control procedure as well, but this case has not been considered during the nu-
merical simulations. The block diagram of the applied algorithm of calculation
is presented in Fig. 1 and described in the paper.

3. Modelling of an electromechanical driving system

For carrying out the investigations of dynamic phenomena of complex elec-
tromechanical systems an assumption of a physical model of the real object
under consideration is needed. Both mechanical and electrical parts of the
drive are dynamic systems coupled one with another. When analysing the dy-
namic phenomena, especially in unsteady states, it is necessary to use a model,
which enables the realisation of an electromechanical coupling. The model of



172 A.Mężyk

Fig. 1. Block diagram of the algorithm of optimization of the dynamic properties;
x is the vector of state variables, q is the vector of generalized coordinates

the electromechanical driving system with an induction motor is described by
a system of differential equations whose matrix form is as follows

Mq̈ + Cvq̇ +Kq = Q
d

dt
Li+ Ri = U (3.1)

Mel =
1
2
i
⊤

∂

∂ϕ1
Li

where: M, Cv, K are the matrices of inertia, damping and stiffness, respecti-
vely, q is the vector of generalized coordinates, Q is the vector of generalized
forces, L, R, i, U are the matrices of inductance, resistance, currents and sup-
ply voltages, respectively, Mel is the torque of the motor, ϕ1 is the angular
displacement of the rotor.
The electromechanical coupling is effected via the joint solution to equ-

ations of motion (3.1) of the model, coupled with the angular displacement of
the rotor ϕ1, determined from the model of the mechanical subsystem, and
via the electromagnetic moment Mel, calculated from the model of the electric
motor.
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When describing the physical model by means of the state coordinates, the
system of differential equations is as follows

ẋ(t) = Ax(t) + Bu(t)
(3.2)

y(t) = Cx(t) +Du(t)

where A is the matrix of the system, B is the matrix of inputs, C is the matrix
of outputs, D is the matrix of direct effects of the input vector u(t) on the
output vector y(t).
The matrices A and B of the model of the mechanical system, described

by equations (3.2), are determined in the following way

A = −S−11 S2 B = S−11 (3.3)

where S1, S2 are auxiliary block matrices in the form

S1 =

[

0 M

M CV

]

S2 =

[

−M 0

0 K

]

(3.4)

Such a form of equations of the model is suitable for a uniform description of
the considered class of electromechanical systems and allows the control of the
system to be taken into account.

4. Model of an induction motor

The dynamic forces in kinematic pairs depend, to a considerable degree,
on the characteristics and power of the driving motor. The dynamic proper-
ties of the electric motor are usually described by means of circuit models
with a number of circuits being dependent on the assumed accuracy of the
representation of a real object (Kopylov, 1984; Vas, 1992). A proper selection
of coordinate systems can produce further simplification. One of the biaxial
coordinate systems used to analyse the induction machines is a system of the
axial coordinates (x, y) rotating round a stator at an angular velocity ωx.
When constructing the model of an induction motor, a number of simpli-

fying assumptions is made. The following are the most important ones:

• the dependences between the magnetic induction in the gap and the
specific electric loading are linear,
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• the system under consideration is a holonomic system,

• the influence of higher harmonics of the motor magnetic field is so little
that can be ignored,

• the magnetic induction field in the gap is distributed sinusoidally along
the perimeter of the motor gap,

• the motor is supplied with a sinusoidal voltage,

• the generalized forces are the voltages supplying the stator and the lo-
ading moment of the motor,

• energy dissipation is equal to losses in the resistances of electric circuits
of the machine and to possible internal friction losses,

• friction occurring in the system is of a viscous character.

The equations of the mathematical model, described in the biaxial coordi-
nate system (x, y), take the following form in a general matrix notation

[

Us

0

]

=

[

RSS RSR

RRS RRR

] [

iS

iR

]

+

[

LSS LSR

L
⊤

SR LRR

]

d

dt

[

iS

iR

]

(4.1)

The electromagnetic moment is determined by the expression

Mel = pLm(imxisy − imyisx) (4.2)

A model with two substitute circuits in the rotor is sufficient for an asynchro-
nous squirrel-cage motor (see Fig. 2).
In such a case particular quantities and matrices existing in the equations

(4.1) and (4.2) are determined as follows:
— magnetizing current

imx = isx + irx + ipx imy = isy + iry + ipy (4.3)

— vector of voltages supplying the stator

US = [Usx, Usy]⊤ 0 = [0, 0, 0, 0]⊤ (4.4)

— current vectors of the stator and the rotor

iS = [isx, isy]⊤ iR = [irx, iry, ipx, ipy]⊤ (4.5)
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Fig. 2. Circuit model of an inductance motor with two substitute circuits in the
rotor; es, ew, er, ep are rotation voltages in circuits of the stator and rotor

— matrices containing the resistances and inductances

LSS =

[

Lm + Ls 0
0 Lm + Ls

]

LSR =

[

Lm 0 Lm 0
0 Lm 0 Lm

]

LRR =








Lr + Lw + Lm 0 Lw + Lm 0
0 Lr + Lw + Lm 0 Lw + Lm

Lw + Lm 0 Lp + Lw + Lm 0
0 Lw + Lm 0 Lp + Lw + Lm








Rr =








Rr +Rw 0 Rw 0
0 Rr +Rw 0 Rw
Rw 0 Rp +Rw 0
0 Rw 0 Rp +Rw








Rs =

[

Rs 0
0 Rs

]

Ωs =

[

0 −ωx
ωx 0

]

(4.6)

Ωr =








0 −(ωx − ω1) 0 0
ωx − ω1 0 0 0
0 0 0 −(ωx − ω1)
0 0 ωx − ω1 0








RSS = Rs +ΩsLSS RSR = ΩsLSR

RRR = Rr +ΩrLRR RRS = ΩrL⊤SR

where Lm, Ls are the inductances of windings connected with the main magne-
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tic flux and with the leakage flux of the stator, Lw, Lr, Lp are the inductances
of windings connected with the leakage fluxes, which are common for the two
squirrel-cages, a starting cage and an operating cage in stator terms, p is the
number of pole pairs, Rs is the resistance of the stator, Rr, Rp are the resi-
stances of the starting cage and of the operating one in stator terms, Us is
the supply voltage, ω0 is the synchronous velocity, ω1 is the angular velocity
of the rotor.
The major problems, when modeling the induction motor, refer to the

determination of parameters of the assumed model because it is impossible to
determine these parameters without full access to the technical documentation
of the motor.

5. Model of a mechanical system

In general, the mechanical part of a system is formed by gear trains, which
are modelled in a discrete or discrete-continuous form, with characteristics of
the meshing stiffness, pitch plays, flexibility of bearings, rigidity of shafts and
bodies, gyroscopic forces, etc. being taken into account. When beginning the
process of modelling, it is necessary to have regard to the fact that the ma-
jor problem we face with consists in the determination of parameters of the
assumed model. Thus, only the properties of the real object, which have the
decisive effect on the investigated dynamic phenomena, should be considered.
The testing of transverse torsional vibrations needs developing of expanded
spacial dynamic models of the system (Zeman and Nemecek, 1995). A spa-
cial model is composed of subsystems. Shafts with gear wheels are usually
these subsystems, the interaction of which is realised via interteeth forces or
reactive forces of bearings. Such models are usually constructed by a hybrid
method, which is a combination of the finite element method with the rigid
finite elements (Fig. 3).
When this is a case, the shaft is divided into deformable beam-type finite

elements, whereas the gear wheel, the stiffness of which is by several orders
higher than the shaft stiffness, is taken as a stiff solid. In the case of elements
modelled by the finite element method there will be band inertia and stiffness
matrices of the beam elements (see Kruszewski et al., 1984). The rigid finite
element method uses non-deformable, rigid finite elements and massless, de-
formable elastic and damping elements. The matrices of inertia of the rigid
finite elements are determined with respect to its principal axes and they are
diagonal ones
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Fig. 3. Physical model of a spur gear pair modelled by the hybrid method

Mi = diag(mi,mi,mi, Iix, Iiy, Iiz) (5.1)

where mi, Iix, Iiy, Iiz are the mass and mass moments of inertia of the ith
rigid finite element with respect to a system of principal axes.
The blocks of the stiffness matrix of the system which describe the stiffness

of elastic and damping elements are obtained in the following way

Krrk = S⊤rkΘ
⊤

rkKkΘrkSrk
(5.2)

Krpk = −S
⊤

rkΘ
⊤

rkKkΘpkSpk

where Kk is the diagonal matrix of stiffness of the kth elastic and damping
element with respect to its principal axes, Srk, Spk are the blocks of fastening
of the elastic and damping element to the rigid finite element marked with
the numbers r and p, Θrk, Θpk are the blocks of the direction factors of
the angles between the system of principal axes of the elastic and damping
elements and the system of principal axes of the inertia of rigid finite elements
marked with the numbers r and p,
The displacement parallel to the system of principal axes of the rigid finite

element towards the point of fastening of the elastic and damping element
determines the matrix Srk. The transformation matrix Θrk contains cosines
of angles between the axes of the coordinate systems.
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Fig. 4. Single-stage spur gear

In Fig. 4 the following denote: ui, vi, wi, ϕi, νi, ψi – linear and angular
displacement in relation to the coordinate system of the ith node.

The application of the rigid finite element method proves to be very effec-
tive for the modelling of gear wheels and shaft bearings.
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Fig. 5. Forces acting on the tooth of the gear wheel reduced to the contact point

The interaction between the subsystems (Fig. 5) is obtained by the normal
teeth forces occurring in the meshings of the mating gear wheels

Fz = kz(di − dj)en (5.3)

where di, dj are the vectors of displacements of the points of contact in the
pole of meshing, en is the versor of the axis perpendicular to the contact plane
in the point of meshing, kz is the stiffness coefficient of the meshing.
As the model of the system is described by means of generalized coordina-

tes, the interteeth force is to be expressed as a function of these coordinates.
To do this, we determine coordinates of the vectors di, dj in the cartesian
coordinate system ora the origin of which is in the pole of the meshing

doi = vi cos γ + wi sin γ + riϕi − uoi(ϑi sin γ − ψi cos γ)

dri = vi sin γ − wi cos γ + uoi(ϑi cos γ + ψi sin γ)

dai = −ui + riψi sin γ + riϑi cos γ

doj = vj cos γ + wj sin γ − rjϕj − uoj(ϑj sin γ − ψj cos γ)

drj = vi sin γ − wi cos γ + uoj(ϑj cos γ + ψj sin γ)

daj = −uj − rjψj sin γ − rjϑj cos γ

(5.4)

where α is the pressure angle (for left turning of the pinion α = αn, for right
turning α = π−αn), αn is the nominal presure angle, β is the helix angle, γ is
the angle defining the configuration of the system, uoi, uoj are the distances



180 A.Mężyk

of the meshing pole from nodes of the model referring to the centres of gravity
of the first and second gear wheel, ri, rj are the radii of the pitch circle of the
first and second gear wheel.
The unit vectors expressed in the same coordinate system have the follo-

wing components

eno = cosα cos β

enr = sinα (5.5)

ena = cosα sin β

When inserting expressions (5.4) and (5.5) into relationship (5.3), the normal
force in the meshing is determined in the following way

Fz = kz(δ⊤i qi − δ
⊤

j qj) (5.6)

where δi, δj are the vectors of geometric parameters of the gear wheels.
The vectors of geometric parameters of the gear wheels are determined

when considering the relationships between the vectors of displacements of
the contact points in the pole of meshing as well as between the versor of the
axis perpendicular to the meshing plane and generalized coordinates of the
nodes in which the gear wheels are situated

δi =












− cosα sinβ
sinα sin γ + cosα cos β cos γ

ri cosα sinβ sin γ + uoi(sinα sin γ + cosα cos β cos γ)
− sinα cos γ + cosα cos β sin γ

ri cosα sinβ cos γ + uoi(sinα cos γ − cosα cosβ sin γ)
ri cosα cos β












(5.7)

δj =












− cosα sin β
sinα sin γ + cosα cos β cos γ

−rj cosα sinβ sin γ + uoj(sinα sin γ + cosα cos β cos γ)
− sinα cos γ + cosα cos β sin γ

−rj cosα sinβ cos γ + uoj(sinα cos γ − cosα cos β sin γ)
−rj cosα cos β












The components of vectors of the generalized coordinates for particular ele-
ments of the gear train are taken in the form q = [u, v, ψ,w, ϑ, ϕ]⊤. The derived
relationships can be used to determine the matrices of meshing stiffness both
for the spure and helical gear as well as for any arrangement of the shafts and
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gear wheels. The following blocks form a matrix of the meshing stiffness

Kzii = kzδiδ⊤i Kzij = −kzδiδ⊤j

Kzji = −kzδjδ⊤i Kzjj = kzδjδ⊤j
(5.8)

Kz =










Kzii Kzij

Kzji Kzjj










} qi

} qj

The blocks of matrices of the meshing stiffness are added to the blocks of
the global matrix of stiffness of the system in places corresponding to the
generalized coordinates of the nodes of the gear wheels.
In the case of gear wheels with moving axles (e.g. planetary gears), the

angle γ defining the configuration of the system (Fig. 6) is a time function.
When taking a design form of the planetary gear into consideration, a modi-
fied dynamic model has been constructed, which enables one to analyse the
vibrations of elements that are in rotary motion and in plane motion. The
matrix of constraints stiffness of the planetary gear Kpp has been determined
in the following way

Kpp =






Kc

Kj




+Kv (5.9)

where Kc, Kj are the matrices of stiffness of the bearing of the central gear and
of the planet carrier (see Eq. (5.2)), Kv is the matrix of the meshing stiffness
and stiffness of the bearing of the planet wheel.
In the case of meshing of the central gear with a planet wheel it is possible

to make use of the relationships that have been deduced for a single-stage gear
(5.7)1

δc =












− cosα sin β
sinα sin γ + cosα cos β cos γ

rc cosα sin β sin γ + uoc(sinα sin γ − cosα cos β cos γ)
− sinα cos γ + cosα cos β sin γ

rc cosα sin β cos γ + uoc(sinα cos γ + cosα cos β sin γ)
rc cosα cos β












(5.10)
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δo =












− cosα sin β
sinα

−ro cosα sin β + u0o sinα
cosα cos β

−u0o cosα cos β
−ro cosα cos β












where rc, ro are the radii of the central gear and of the planet wheel.

Fig. 6. Model of a planetary gear
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The stiffness matrix of the meshing Kvco can be determined when applying
Eqs (5.8) and (5.11).
Assuming that the toothed outer ring gear with internal teeth is undefor-

mable, we obtain the following expression for the force in the meshing ”planet
gear-outer ring gear”

Fow = kowδ⊤owqo
(5.11)

δow =












cosα sinβ
sinα

−ro cosα sinβ + u0o sinα
− cosα cos β
u0o cosα cos β
−ro cosα cos β












The matrix of stiffness of this meshing is described by the following relationship

Kvow = kowδowδ⊤ow (5.12)

In order to determine the matrix of bearing stiffness of the planet whe-
el Kvoj , elastic and damping elements are introduced, and they connect the
planet wheels with their axles mounted in the planet carrier. The matrices of
stiffness of the elastic and damping elements are determined on the basis of
relationships (5.2).
Proceeding in this way with a greater number of planet wheels, we deter-

mine the stiffness matrix of the constraints existing between the elements of
the model of the whole planetary gear

Kv =
n∑

i=1

(Kvcoi +Kvowi +Kvoji) (5.13)

where n is the number of planet wheels in the gear.
The blocks of matrices (5.9) are inserted into these blocks of stiffness matrix

of the whole system which correspond to relevant nodes of the model.
Because of a complicated nature of energy dissipation phenomena it is

necessary to make a number of simplifying assumptions when describing the-
se phenomena. Constructing the damping matrix as a linear combination of
the matrices of inertia and stiffness is a common practice in the process of
modelling of the systems under consideration (see Ginsberg, 2001)
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Cv = αvM+ βvK (5.14)

where αv, βv are scalar factors.
The method is very simple to apply and considerably simplifies the analysis

of vibrations of systems with a vibration damper. It is often assumed that
αv = 0, and βv is determined on the basis of material constants. Thus, the
damping matrix is considered to be proportional to the stiffness matrix.

6. Sensitivity analysis

A finite differences method provides the simplest way to calculate the de-
rivatives of the objective function. This method uses a very simple algorithm.
Nevertheless, the results obtained when employing this method can be burde-
ned with numerical errors. The accuracy of this method is sufficient for solving
of problems which are not too complicated. The semianalytical methods are
more accurate and quicker, but they are more labour-consuming at the stage
of data preparation. These methods cover direct and adjoint methods, which
are to be mentioned (Haug et al., 1986). The sensitivity analysis of time co-
urses needs solving of a mathematical model of the system. Such a model,
described in state coordinates, is conditioned by the selected design variables
as well. The equations of motion can be written as follows

ẋ = f(x, b) x(t0) = h(b) (6.1)

where x(t) is the vector of state variables, b is the vector of design variables,
t0 is the initial time.
The time tk defining the moment of occurrence of the tested system state

can also be a design variable. When a general case is considered, it is described
by the following function

F (tk,x(tk), b) = 0 (6.2)

The objective function can incorporate an integral term related to the descrip-
tion in a certain time interval and a term describing the state of the system
at a definite moment of time tk

ψ = g(tk,x(tk), b) +

tk∫

t0

T (t,x, b) dt (6.3)
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When differentiating functional (6.3) with respect to b, the following expres-
sion is obtained after transformations

dψ

db
= G⊤(tk,x(tk), b)

∂x(tk)
∂b

+
∂g

∂b
−

−
1

Ḟ (tk)

[ ∂g

∂tk
+
∂g

∂x
f(tk)

]∂F

∂b
+

tk∫

t0

(∂T

∂x

∂x

∂b
+
∂T

∂b

)

dt

(6.4)

G⊤(tk,x(tk), b) =
[∂g(tk)
∂x

]⊤

−
1

Ḟ (tk)

[ ∂g

∂tk
+
∂g

∂x
f(tk) + T (tk)

][∂F

∂x

]⊤

The partial derivatives in expression (6.4)1 can be determined analytical-
ly, except for the term ∂x(tk)/∂b, because x(t) is determined by numerical
integration of the equations of motion. A direct differentiation method or an
adjoint variable method should be employed to determine the lacking expres-
sion.
The direct differentiation method consists in the formulation of an addi-

tional initial problem, obtained in consequence of the differentiation of model
equations (6.1) with respect to b

∂ẋ

∂b
=
∂f

∂x

∂x

∂b
+
∂f

∂b

∂x(t0)
∂b

=
∂h

∂b
(6.5)

By solving initial value problem (6.5) we determine values of the derivatives
∂x(t)/∂b being sought. A method for formulating the equations of the direct
differentiation method for an electromechanical model will be presented the-
reinafter. With a view to the clarity of the description, the vector x is written
as composed of two vectors containing the coordinates of the electrical part xe
and of the mechanical one xm, respectively

x =

[

xe
xm

]

(6.6)

where the subscripts e, m refer to the quantities which describe the models of
the electrical system and the mechanical one, respectively.
Thus, equations of motion of the induction motor model (4.1) take the

form

ẋe = (L∗)−1Uz − (L∗)−1R∗xe
︸ ︷︷ ︸

f
e
(x,b)

(6.7)

L
∗ =

[

LSS LSR

LRS LRR

]

R
∗ =

[

RSS RSR

RRS RRR

]
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When differentiating system of equations (6.7)1 with respect to the design
variables, we obtain the following relationship

∂ẋe
∂b
=
∂f e
∂b
+
∂f e
∂xe

∂xe
∂b

(6.8)

where particular matrices of the partial derivatives are determined as

∂f e
∂xe
= −(L∗)−1

(∂R∗

∂xe
xe + R∗

∂xe
∂xe

)

(6.9)
∂f e
∂b
= −(L∗)−1

[∂L∗

∂b
(L∗)−1(Uz − R∗xe) +

∂R∗

∂b
xe

]

The form of the derivatives of matrices of the inductance and resistance as
well as of the electromagnetic moment of the motor will depend on the sim-
plifications assumed when constructing the model and on the number of the
assumed substitute circuits. Similarly, equations of the mathematical model
(3.2) are formulated, and the derivatives of coordinates of the mechanical part
of the system are determined

ẋm = Amxm + Bmum
︸ ︷︷ ︸

fm(x,b)

∂ẋm
∂b
=
∂fm
∂b
+
∂fm
∂xm

∂xm
∂b

(6.10)
∂fm
∂xm

= Am +Bm
∂um
∂xm

∂fm
∂b
=
∂Am
∂b
xm +

∂Bm
∂b
um + Bm

∂um
∂b

Particular partial derivatives of the matrix of the system are defined by the
relationships

∂Am
∂b
= −S−11

(∂S1
∂b
Am +

∂S2
∂b

)

∂Bm
∂b
= −Bm

∂S1
∂b
Bm (6.11)
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Because of the couplings existing between the models of the mechanical and
electrical parts it is necessary to take the derivatives of conjugate quantities,
i.e. the angular velocity of the rotor and the electromagnetic torque of the
driving motor into account. The couplings are considered when the following
equations have been introduced

∂fm
∂xe
=
∂Bm
∂xe
um + Bm

∂um
∂xe

(6.12)
∂f e
∂xm

= −(L∗)−1
∂R∗

∂xm
xe

Having regard to the above considerations, an additional system of differential
equations of the direct differentiation method for the electromechanical model
with an asynchronous motor can have the following form
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The advantage of the direct differentiation method consists in that the algori-
thm is relatively simple and it is possible to calculate the derivative ∂x(t)/∂b
and x(t) at the same time. However the necessity of solving a great number
of additional differentiation equations is a disadvantage.

7. Optimization

The discussed problem of optimization is a problem of a MinMax type, in
which maximal values of the objective function will be minimized. Hence, the
optimization problem can be formulated in the form

MinMaxψ(t) (7.1)

When beginning the calculations, we do not know at which step of the calcu-
lations the maximal values occur. First of all, it is also necessary to find the
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maximal value in each iteration and then to state the values of design varia-
bles, which minimize the maximal values. One of the methods used to solve
the optimization problem of the MinMax type consists in its transformation in
the problem of the Min type. In this instance, the variable ψmax is taken as an
additional unknown subjected to additional limitations. The most important
limitation is that the value of the objective function should not exceed ψmax
at each step of calculations. In this way the optimization problem becomes
transformed into a sequence of linear optimization tasks. With a very little
increase in this parameter it is possible to assume a linear increase in the ob-
jective function in the neighbourhood b. Optimization problem (2.1) can take
a form

Minψmax
(7.2)

ψj +∇ψj∆b− ψmax ¬ 0 j = 1, ..., k

where k is the number of peak values of the objective function under analysis,
ψj is the value of the objective function for jth peak value, ∇ψj is a gradient
of ψj with respect to the design variable, ∆b is an increase in the value b.

8. Numerical calculations

The model has been constructed on the basis of the technical documen-
tation of a prototype driving system of a real working machine. The system
consists of an asynchronous squirrel-cage electric motor without any soft-start
system, a multistage gear transmission and a planetary gear. Power transmit-
ted by the system is about 300 kW. The selection of a number of degrees of
freedom and the division into finite elements has been carried out when ana-
lysing the design form and the predominant forms of vibrations (see Fig. 7).
In Fig. 7 the following designations are: 1,...,31 – numbers of division no-

des into finite elements, E1-E4 – elastic and damping elements modelling
fragments of the shafts, S1-S19 – rigid finite elements.
Simulation and optimization-oriented investigations were carried out in

MATLAB environment. The forms of matrices of stiffness and inertia of the
model are presented in Fig. 8 and Fig. 9. Because of the character of the ma-
trices of stiffness and inertia which have a large number of nonzero terms, the
sparse matrix algebra has been employed. This allowed the required operatio-
nal memory to be reduced and the numerical calculations to be accelerated.
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Fig. 7. Dynamical model of transverse torsional vibrations of the transmission
system

Further savings are possible by decreasing the number of degrees of freedom.
That is why the models with fewer degrees of freedom were utilized at the fur-
ther stage of the optimization-oriented investigations, whereas the complete
model served for verifying the effect the parameters obtained in the process of
optimization had on the dynamic characteristics of the system. Lower accura-
cy in the frequency domain is obtained in the case of neglecting these degrees
of freedom, which are of no importance for the objective of the investigations
being performed. But, this method makes it possible to maintain a physical
sense of the generalized coordinates of the reduced model and of its parame-
ters, which is of vital significance when selecting the objective function in the
time domain.
The objective function describing the maximal values in kinematic pairs

of the system was applied for the purpose of investigations. The dynamic
torque in the main shaft during the start up of the machine was utilized as
an objective function selected for the optimization-oriented investigations (see
Fig. 11). Three peaks of the torque caused by a change in the electromagnetic
torque of the motor are the subject of consideration. Such an objective function
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Fig. 8. Nonzero blocks of the inertia matrix referring to particular nodes of the
model

Fig. 9. Nonzero blocks of the stiffness matrix referring to particular nodes of the
model



Modelling and optimization of transmission systems... 191

Fig. 10. Electromagnetic torque of the driving motor

Fig. 11. Objective function ψ =M2
15
(t)

enables one to minimize the response of the system to a varying external
driving force (see Fig. 10). The results of investigations have proved that such
an objective function provides a minimization of the dynamic response both
during the start up of the system and the steady state (see Fig. 10, Fig. 13 and
Fig. 14).
The torsional stiffness of the safety shaft, installed in the driving motor

(between nodes 2-4, see Fig. 7), has been selected as a design variable in the
process of the optimization of dynamic characteristics of the system. When
analysing the sensitivity of the objective functions, which describe dynamic
forces in 15 selected kinematic pairs, to the value of the coefficient of stiffness
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of the shaft, it has been stated that this parameter has a similar effect on most
of the peak values (Fig. 12).

Fig. 12. Influence of the stiffness coefficient of the safety shaft on the peaks of
dynamic forces in particular kinematic pairs

Using a sequential linear programming method, the optimization process
has been performed. The obtained optimum value of the stiffness coefficient
was used for further numerical simulations. The aim of the calculations was
to compare the dynamic reactions taking place in the system before the opti-
mization with those occurring after the optimization.
The results of the calculations made for the selected kinematic pair are

presented in Fig. 13 and Fig. 14. From these results it is evident that the proper
selection of stiffness of the shaft under consideration brings about a decrease
both in the torsional moments (Fig. 13) in kinematic pairs of the system and
in the reactions in the points of support of the shafts (Fig. 14). This statement
has been proved true in the course of experimental investigations consisting
in the measurement of vibration accelerations in the gear housing.
The system under investigation is driven by an asynchronous, squirrel-cage

motor that has been modelled by means of the equations of motion formulated
in the coordinate system (x, y). The influence of major parameters of the
motor (such as Lm, Ls – inductances of the windings connected with the main
magnetic flux and with the leakage flux of the stator Lr – leakage inductance
of the rotor, Rs – resistance of the stator phase and Rr - resistance of the
rotor cage) on values of the dynamic reactions in particular kinematic pairs
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Fig. 13. Dynamic torsional torque in the 1st kinematic pair with the safety shaft
(a) before and (b) after optimization

Fig. 14. Displacement of one of the shaft bearings in the direction of the x-axis
(a) before optimization and (b) after optimization
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of the mechanical system has been determined. The results have been utilized
both for the optimization and for mutual ”tuning” of the subsystems as well
as for increasing of the accuracy of the dynamic model.

Fig. 15. Relative changes of the peak values of the objective function describing the
torque on the output shaft due to an increase in some parameters of the electric
(1-5) and mechanical (6-36) parts of the system during the start-up, where: 1 – Lm,
2 – Ls, 3 – Lr, 4 – Rs, 5 – Rr, 6-21 – selected mass moments of inertia and masses,

22-36 – selected stiffness coefficients of the shafts, meshes and bearings

From the analysis of the influence of particular parameters on the examined
dynamic phenomena it appears that the electric parameters have a considera-
ble effect on the peaks of forces in the shafts of the transmission gear during
the start-up (Fig. 15) and in the course of operation under a load. The further
optimization process was performed by using the selected parameters of the
electric motor (Lm, Rr) and torsional stiffness of the safety shaft. The presen-
ted results of numerical calculations (Fig. 16) indicate that the most effective
approach to the problem of optimization of dynamic properties of electrome-
chanical driving systems consists in mutual tuning of the electromagnetic part
with the mechanical part through a proper selection of their design parame-
ters. The simultaneous application of mechanical and electrical parameters
makes that the least peak values of dynamic reactions in kinematic pairs of
the system are obtained. High sensitivity of the force peaks in the mechanical
part to electromagnetic parameters indicates that the negligence of dynamic
phenomena in the driving motor can lead to considerable errors in the results
obtained from computer simulations, especially in unsteady state conditions.
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Fig. 16. Torque on the safety shaft (a) before optimization, (b) after optimization of
selected parameters of the electric motor (Lm, Rr), (c) after optimization of the

parameters Lm, Rr of the electric motor and stiffness of the shaft

9. Conclusions

The results of carried out investigations have proved that the application
of the sensitivity analysis and the optimization method enables an effective
shaping of dynamic characteristics of electromechanical driving systems. Con-
siderable decreasing of the maximal amplitudes of the forces in kinematic pairs
is a result. Such investigations can be successfully used to aid the process of
designing and constructing of prototypes of machines and their equipment.
The developed algorithms and computer programs are of a general charac-
ter and can be sucessfully utilized for determination of design parameters of
electromechanical systems, the design form of which is similar to the example
being considered.
The proposed mathematical model of electromechanical driving systems

takes the major phenomena that are determined by dynamic properties of the
systems into account. From the results of the sensitivity analysis of an elec-
tromechanical system it is evident that parameters of the driving motor have
considerable influence on maximal values and on courses of the dynamic forces
in kinematic pairs, which indicates that the electromechanical couplings must
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be taken into consideration in formulated models, especially when unsteady
states are analysed.
The assumptions made in the course of the modelling of the system have

proved to be true and the formulated algorithms of calculations related to
the qualitative description of dynamic phenomena proved to be correct during
the experimental measurements. The results of the investigations, which have
been performed hitherto, indicate that the mathematical modelling of the
dynamic phenomena, methods of the sensitivity analysis and optimization are
very effective.
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Modelowanie i optymalizacja układów napędowych z silnikami

asynchronicznymi

Streszczenie

W pracy omówiono sposób modelowania elektromechanicznych układów napędo-
wych z silnikami indukcyjnymi. Model silnika elektrycznego opisano w zastępczym
układzie współrzędnych (x, y). Model matematyczny przekładni zębatej opracowano
z wykorzystaniem hybrydowej metody sztywnych i odkształcalnych elementów skoń-
czonych. Szczególną uwagę zwrócono na modelowanie przekładni planetarnej. Analizę
wrażliwości i optymalizację przeprowadzono dla funkcji celu opisującej wartości mak-
symalne sił dynamicznych. Zaprezentowana metoda bezpośredniego różniczkowania
umożliwia określenie wpływu parametrów silnika napędowego na zjawiska dynamicz-
ne w części mechanicznej.
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