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This paper presents a theoretical study of the process of damping of
nonlinear vibrations in a two-mass model of a mechanical system with a
torsion damper. The steady-state motion of the system subject to har-
monic excitation is considered on the assumption of a uniform frequency
and constant amplitude of the forcing torque. Simultaneous structural
friction phenomena (passive damping) and the piezoelectric effect (active
damping) are been considered as well. The problem is considered on the
assumption of a uniform unit pressure distribution between the contac-
ting surfaces of the friction discs and plunger. The aim of the analysis is
to asses the influence of geometric parameters, external load, unit pres-
sure and electric parameters on the resonance curves of the steady-state
vibrations. The equations of motion of the examined system are solved
by means of the Van der Pol method.
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1. Introduction

Facing the complexity of problems concerned with structural friction in
mechanical systems, including transmission systems with clutches, simplifi-
cations of the friction model are being assumed. The elastic strain of discs
and plunger as well as the influence of the piezoelectric effect on damping of
vibrations in such systems are taken into account. The author based his con-
siderations on previously derived physical formulations of a frictional torsion
damper. In the design process of a power transmission system and selection of
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existing models of dampers, basic standard calculation methods are applied. It
is essential, however, to take into account the natural source of vibration dam-
ping by means of the structural friction and piezoelectric effect. Development
in new materials have made it possible to create the so-called ”intelligent”
materials (electrorheological fluids FL, ML; alloys with shape memory, piezo-
electric polymers). These materials change their properties under the influence
of magnetic and electric field, temperature or mechanical stress.

The basic electromechanical properties of the piezoelectric material – lead
zirconate titanate (PZT) are presented in the paper in terms of their capacity
to damp torsional vibrations in the considered mechanical system. Piezoce-
ramics exhibit natural shear effect, which is three times stronger than the
longitudinal one. This phenomenon can be successfully utilized in torsional
systems for vibration control, as piezoceramics constitute perfect elements for
actuator applications. Active control is achieved through closed loop with pro-
portional and velocity feedback (proportional-plus-derivative controller).

Meng-Kao Yeh and Chih-Yuan Chin (1994) proved the applicability of
piezoelectric sensors for measuring torsional vibration of shafts. Introduc-
tory theoretical studies of shafts vibration induced by piezoelements ba-
sed on PZT ceramics were presented by Kurnik and Przybyłowicz (1995),
Przybyłowicz (1995), Tzou (1991). Experimental investigations dealing with
an actively controlled torsional system were carried out by Chia-Chi Sung et
al. (1994).

2. Equations of motion

We assume a two-mass model of a mechanical system which contains a
frictional torsion damper, as shown in Fig. 1. Structural friction occurs between
the cooperating surfaces of discs 2 and plunger 1. Discs 2 are pressed down to
plunger 1 by means of springs 3. The shaft is equipped with two piezoelectric
elements: actuator 4 and sensor 5. The actuator is posed by a ring-shaped
element of considerable thickness, thus, its moment of inertia must be taken
into account. The sensor may be made of PZT or with PVDF (piezoelectric
foil), yet it must be thin enough to be neglected in the total inertia balance
of the system. The actuator and the sensor are electronically coupled with
proportional and velocity feedback ruling the performance of the thus arranged
control system. Therefore, the equations of motion of the considered system
can be written down as follows
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Fig. 1. Physical model of the considered friction torsional damper

I1ϕ̈1 +M(ϕ,A, ϕ̇) =Mm +M(t) +Ma
(2.1)

I2ϕ̈2 −M(ϕ,A, ϕ̇) = 0

where

ϕ1, ϕ2 – angular displacements of the active and passive damper
ϕ,A – relative angular displacement of the discs and plunger

and its amplitude, respectively
I1, I2 – reduced moments of inertia of the movable parts of the

engine, actuator and plunger and of the discs in the
damper

M(t) +Mm – variable engine torque described by a constant ave-
rage value Mm and a discrete torque M(t) in the
form of harmonic excitation with a uniform frequ-
ency and constant amplitude as in Giergiel (1990),
Grudziński et al. (1992), Osiński (1986), Osiński and
Kosior (1976), Skup (1987, 1991, 2002), Szadkowski
and Morford (1992), Zagrodzki (1994)

Ma – torque generated by the actuator.
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M(ϕ,A, ϕ̇) – damper torque in a cycle represented by a structural
hysteresis loop (Fig. 1) dependent on the relative dis-
placement, amplitude and its velocity signum.

Therefore

M(t) =M0 cosωt (2.2)

where
M0 – excitation amplitude of the forcing torque
ω – angular velocity of the excitation torque
t – time.

According to the studies presented in works by Skup (1976, 2002), the
relationship between the damper torque and the relative angular displacement
is as follows

M(ϕ,A, ϕ̇) =
k

κ1
sgn ϕ̇

[

2
√

1 + κ1(ϕ−A) sgn ϕ̇− 1−
√

1− 2κ1A sgn ϕ̇
]

(2.3)

Ma = κ2 sgn ϕ̇
(

1−
√

1− 2κ1ϕs sgn ϕ̇
)

where

k =
GI0
l

I0 =
πd4

32
κ1 =

G2I20
2l2kzπ2pµR5

kz =
k1k2
k1 + k2

k1 = Gh1 k2 = Gh2

κ2 =
πGaGsd

a
15d

s
15lsd(D

3 − d3)kpk

12GlaI0κ1ε0εs

(2.4)

The following denote: k – stiffness of the elastic shaft of the length l and
diameter d, κ1 – nondimensional parameter, k1, k2, h1, h2 – discs and plunger
stiffness and their thickness, µ – friction coefficient, p – pressure per unit
area, R – external radius of the discs, G – shear modulus, I0 – cross-sectional
moment of inertia of the shaft, Ga – shear modulus of PZT material (for
actuator), la – width of the actuator, d

a
15 – coupling constant of the actuator,

kp – gain factor introduced by the electronic circuit, d, D – inner and outer
actuator diameter, ε0, εs – absolute and relative dielectric permittivity of the
sensor, Gs – shear modulus of the sensor material, ls – width of the sensor,
ds15 – electromechanical coupling constant of the sensor.
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3. Solution to the equation of motion

After introducing the relative angular displacement

ϕ = ϕ1 − ϕ2 (3.1)

and the reduced moment of inertia

Iz =
I1I2
I1 + I2

(3.2)

we can transform equations of motion (2.1) into the following form

ϕ̈+
M(ϕ,A, ϕ̇)

Iz
=
1

I1
[M(t) +Mm +Ma] (3.3)

Let the solution to equation (3.3) be approximated by

ϕ = A cos z z = ωt+ ϕ0 (3.4)

where: z – forcing phase, ϕ0 – initial forcing phase, A, ϕ0 – are slowly varying
functions of time t. Then

ϕ̇ = Ȧ cos z −Aϕ̇0 sin z −Aω sin z (3.5)

By analogy to Lagrange’s method of variation of a parameter, it is permissible
to set

Ȧ cos z −Aϕ̇0 sin z = 0 (3.6)

Thus
ϕ̈ = −Ȧω sin z −Aω2 cos z −Aωϕ̇0 cos z (3.7)

Substituting equation (3.7) into the equation of motion (3.3), using formula
(3.4)2, gives

−Ȧω sin z−Aω2 cos z−Aωϕ̇0 cos z+
M(ϕ,A, ϕ̇)

Iz
=
Mm +Ma

I1
+
M0
I1
cos(z−ϕ0)

(3.8)
By multiplying equation (3.6) by ω cos z, equation (3.8) by sin z and substrac-
ting the sides while using formula (3.4)2, we obtain

−Ȧω −Aω2 sin z cos z +
M(ϕ,A, ϕ̇)

Iz
sin z =

(3.9)

=
Mm +Ma

I1
sin z +

M0
I1
sin z cos(z − ϕ0)
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Since A and ϕ0 are slowly varying parameters in equation (3.3), equation
(3.9) takes, after integrating over the interval (0, 2π), the following form

−2πȦω +
1

Iz

2π
∫

0

M(ϕ,A, ϕ̇) sin z dz =

2π
∫

0

Mm +Ma

I1
sin z dz +

M0π sinϕ0
I1

(3.10)
Multiplying equation (3.6) by ω sin z, Eq (3.8) by cos z, adding the sides,
using formula (3.4)2 and averaging over one cycle of z, gives

−2πAϕ̇0ω − πAω
2 +
1

Iz

2π
∫

0

M(ϕ,A, ϕ̇) cos z dz =

(3.11)

=

2π
∫

0

Mm +Ma

I1
cos z dz +

M0π cosϕ0
I1

Steady-state equations (3.10) and (3.11) can be obtained when Ȧ = ϕ̇0 = 0,
therefore these equations are reduced to the form

sinϕ0 =
1

πβM0

2π
∫

0

M(ϕ,A, ϕ̇) sin z dz −
1

πM0

2π
∫

0

(Mm +Ma) sin z dz

(3.12)

Izω
2 +

βM0
A
cosϕ0 =

1

πA

2π
∫

0

M(ϕ,A, ϕ̇) cos z dz −
β

πA

2π
∫

0

(Mm +Ma) cos z dz

In accordance with the Ritz method, the integral with equation (3.3) as the
integrand must be equal zero. Therefore

2π
∫

0

[

ϕ̈+
M(ϕ,A, ϕ̇)

Iz
−
Mm

I1
−
Mm +Ma

I1
−
M0 cos(z − ϕ0)

I1

]

∂ϕ dt = 0 (3.13)

where the variation ∂ϕ is equal

∂ϕ = ∂A cos z + ∂ϕ0A sin z (3.14)

Substituting equation (3.4) and (3.14) into (3.13) and basing on the linear
independence of the variations ∂A and ∂ϕ0, we can obtain two independent
equations for the displacement amplitude A and phase shift angle ϕ0. We
obtain a result which is identical with equations (3.12).
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While integrating Eqs (3.12) there is a discontinuity of M(ϕ,A, ϕ̇) and
Ma encounterred for ϕ̇ = 0. To avoid this, we confine our considerations to a
single half-period (motion between two stops).

Thus, the integration interval (from 0 to 2π) of the right-hand terms of
the above equations is divided into two sub-intervals, from 0 to π for negative
dϕ/dt and from π to 2π for positive dϕ/dt. This is, for instance, the procedure
adopted by Giergiel (1990), Osiński (1986), Osiński and Kosior (1976), Skup
(1991, 2002).

Therefore, substitution of formulas (2.3) into equations (3.12), and subse-
quent integration gives after some transformations

sinϕ0 =
1

πβM0

(

π
∫

0

M(ϕ,A, ϕ̇) sin z dz
∣

∣

∣

sgn ϕ̇<0
+

+

2π
∫

π

M(ϕ,A, ϕ̇) sin z dz
∣

∣

∣

sgn ϕ̇>0

)

+

−
1

πM0

(

π
∫

0

(Mm +Ma) sin z dz
∣

∣

∣

sgn ϕ̇<0
+

2π
∫

π

(Mm +Ma) sin z dz
∣

∣

∣

sgn ϕ̇>0

)

=

=
2k

πM0

{ 1

βκ1

[√
x+
√
y + 2 +

2

3κ1A
(
√

y3 −
√
x3)
]

− κ2(
√
x+
√
y − 2)

}

x = 1 + 2κ1A y = 1− 2κ1A (3.15)

Izω
2 +

βM0
A
cosϕ0 =

1

πA

(

π
∫

0

M(ϕ,A, ϕ̇) cos z dz
∣

∣

∣

sgn ϕ̇<0
+

+

2π
∫

π

M(ϕ,A, ϕ̇) cos z dz
∣

∣

∣

sgn ϕ̇>0

)

+

−
β

πA

(

π
∫

0

(Mm +Ma) cos z dz
∣

∣

∣

sgn ϕ̇<0
+

2π
∫

π

(Mm +Ma) cos z dz
∣

∣

∣

sgn ϕ̇>0

)

=

= k
(

1 +
15

32
κ21A

2
)

Introducing the notations:

a – dimensionless vibration amplitude, a = A/ϕst
ϕst – static displacement in the form of the relative angular displa-

cement of the damper plates, ϕst =M0/k
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γ – dimensionless frequency, γ = ω/ω0
ω0 – frequency of the free vibration of the system, ω0 =

√

k/Iz

we find

sinϕ0 =
2k

πM0

{ 1

βκ1

[

η1 + 2 +
2

3aψ
(
√

y31 −
√

x31)
]

− κ2(η1 − 2)
}

(3.16)

γ2 +
β

a
cosϕ0 = 1 +

15

32
a2ψ2

where

ψ =
M0κ1
k

κ1A = aψ x1 = 1 + 2aψ

y1 = 1− 2aψ η1 =
√
x1 +
√
y1

(3.17)

Finally, in basic equations (3.16) we have the relations for the tangent of the
phase angle ϕ0 and the dimensionless frequency γ as functions of the external
load, geometric and electric parameters, friction forces and the dimensionless
amplitude a. Therefore

tanϕ0 =
2kβ
{

1
βκ1

[

η1 + 2 +
2
3aψ
(
√

y31 −
√

x31)
]

− κ2(η1 − 2)
}

πM0a
(

1 + 15
32
a2ψ2 − γ2

)

(3.18)

γ =

√

1 +
15

32
a2ψ2 ∓

β

a

√

1− sin2 ϕ0

4. Numerical results

The following data has been taken for numerical calculations:
h1 = 0.004m, h2 = 0.010m, R = 0.070m, D = 0.070m, M0 = 20Nm,
µ = 0.25, d = 0.054m, I1 = 0.560 kgm

2, I2 = 0.04 kgm
2, l = 0.65m,

p = 0.8 · 105N/m2, la = 0.04m, lc = 0.04m, G = 8.2 · 10
10 N/m2,

Ga = 6.3 · 10
9N/m2, Gs = 2 · 10

9N/m2, da15 = 5.6 · 10
−10m/V – for PZT

(PIC 255), ds15 = 0.23·10
−10m/V – for PVDF, εs = 12, ε0 = 0.088·10

−10 F/m,
kp = 1.0, a = 0.25.
On the basis of the results of numerical analysis it has been found that

all resonance curves start from zero, pass through a resonance and tend again
asymptotically to zero in the superresonance range (Fig. 2 to Fig. 4). They
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also become more steep in that range. In Fig. 2a we can see that the growing
amplitude M0 leads to a decrease in the dimensionless amplitudes a. It obvio-
usly results from the fact that increment in M0 entails enlargement of the slip
zone, thus the amount of the dissipated energy grows.

Fig. 2. Resonant curves for various values: (a) of the excitation torque
amplitude M0, (b) of the friction coefficient µ

Fig. 3. Resonant curves for various values: (a) of the unit pressure p, (b) of the
external radius R
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Fig. 4. Resonant curves for various values: (a) of the discs and plunger equivalent
rigidity kz , (b) of the gain factor kp

An extreme damping intensity can be observed for a particular value of
the friction forces q = pµ (the largest zone of the slip between the discs and
plunger surfaces). Figures 2a, 3a disclose a clear effect of the changing of va-
lues of µ and p on the nondimensional resonant amplitudes a (all the other
parameters remain fixed). The response curves for the two-degree-of-freedom
power transmission system reduced to a one-degree-of-freedom non-linear hy-
steretic system are reveal a typical ”soft” resonance (Fig. 2 to Fig. 4). For the
excitation frequency ω close to the natural frequency of vibrations ω0, the non-
dimensional amplitudes a assume big values. As the presented graphs (Fig. 2
to Fig. 4) and numerical calculations show, the most dangerous frequency ran-
ge for the real values of the parameters of the damper is 0.98 < γ < 1.02.

The effect of damping is also best for a suitable value of the external
radius R and a reduced discs rigidity kz because of the zone of the biggest
slide of the discs in the plunger. The graphs in Fig. 3b and Fig. 4a can serve as
an illustration of this conclusion as they show that with the same geometric
and electric parameters as well as loading and friction coefficient but varied
radius R and reduced rigidity kz, their influence on the resonance amplitude a
is clearly visible. The greater amplifier gain kp is the more visible the effect
(Fig. 4b).

The phase shift angle ϕ0 is a measure of the vibration damping in a me-
chanical system. If it increases, then the energy dissipation also increases and,
consequently, so does the damping. The dependence of the phase shift an-
gle ϕ0 upon the dimensionless frequency γ for different values of the external
radius R is represented by diagrams in Fig. 5a and, for different values of the
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friction coefficient µ, in Fig. 5b. A clear influence of the external radius R
and friction coefficient µ on the angle ϕ0 can be observed there. The energy
dissipation is the largest for big values of R (Fig. 5a) and µ (Fig. 5b) (big slide
zone).

Fig. 5. Pphase displacement angle ϕ0 as a function of the dimensionless frequency γ
for various values: (a) of the external radius R, (b) of the friction coefficient µ

5. Concluding remarks

Structural friction between contacting surfaces of the discs and plunger,
causes increased performance of the examined system as for as vibration dam-
ping is concerned. Further development of the damping level is achieved by ma-
king use of piezoelectric materials controlled by an electronic circuit. Proper-
ties of piezoelectric materials can be utilized in torsional systems for vibration
control as piezoceramics constitute perfect elements for actuator applications.

Active control by piezoelectric elements and structural friction proves to
be a powerful tool in reducing the vibration amplitude of torsional systems.
Application of the electronic damping gives excellent results, especially in sys-
tems with velocity feedback – even for different points of actuator application
and spatial sensor/actuator dislocation. This is highly important since real
technical conditions may not always allow arbitrary piezoelements applica-
tion. The paper emphasizes some aspects related to the active control under
more realistic conditions.

Admittelly, it should be said that the vibration damping by friction dam-
pers is considerably influenced by the following factors: forcing amplitude,
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stiffness of the discs and plunger, unit pressure, friction coefficient and ga-
in. The examined system has ”soft” frequency characteristic and attenuation
diagram.
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Aktywne i pasywne tłumienie drgań poprzez tłłumik drgań skrętnych

podczas ruchu ustalonego układu napędowego

Streszczenie

Praca dotyczy teoretycznego badania tłumienia drgań nieliniowych układu me-
chanicznego o dwóch stopniach swobody zawierającego tłumik drgań skrętnych. Roz-
ważany jest ruch ustalony układu przy wymuszeniu harmonicznym z jednostajną czę-
stością o stałej amplitudzie momentu wymuszającego. Uwzględniono tłumienie drgań
jednocześnie poprzez zjawisko tarcia konstrukcyjnego (tłumienie pasywne) i elementy
piezoelektryczne (tłumienie aktywne). Zagadnienie rozpatrywane jest przy założeniu
równomiernego rozkładu nacisków jednostkowych występujących pomiędzy współpra-
cującymi powierzchniami tarcz ciernych i bezwładnika. Zbadano wpływ parametrów
geometrycznych układu, nacisku jednostkowego, obciążenia zewnętrznego oraz pa-
rametrów elektrycznych na krzywe rezonansowe drgań ustalonych. Równania ruchu
badanego układu mechanicznego rozwiązano metodą Van der Pola.
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