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The theoretical and experimental research on the stability and free vi-
bration of a geometrically non-linear Euler’s column is presented in the
paper. The influence of the asymmetry of the flexural stiffness distribu-
tion of the rod in an individual column on the value of the critical force
and existence of local and global instability regions is determined. The
column consists of three planar members. Two outside members have the
same flexural stiffness while the third central one has different flexural
stiffness. The members are jointed in such a way that their deflection at
the joint points equals zero and the deflection angles are identical.
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1. Introduction

Geometric research on non-linear columns subjected to Euler’s load (with
a longitudinal force with the fixed-point of force application and a fixed direc-
tion) was presented by Godley and Chilver (1970), Tomski (1985), Przybylski
and Tomski (1992), Tomski and Kukla (1992), Przybylski et al. (1996), Tomski
et al. (1997).

The considered systems (in the bending plane) consisted of three beams
with asymmetrical distribution of the flexural rigidity was investigated by
Godley and Chilver (1970), Przybylski and Tomski (1992), Tomski and Kukla
(1992), Przybylski et al. (1996) or co-axially mounted rod and pipe by Tomski
(1985), Tomski et al. (1997). Those three beams or rod and pipe were connec-
ted in such a way that both displacements and deflection angles were identical
at the end of the columns.
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The following problems were presented in the above mentioned above
papers:

• buckling of a pre-stressed column (theoretical and experimental research)

• pre-buckling behaviour of a cantilever beam (without pre-stressing) in
the range from linear to bending line (Tomski, 1985) (theoretical rese-
arch)

• natural vibration and stability of the pre-stressed hinged-clamped co-
lumn (Przybylski and Tomski, 1992; Tomski and Kukla, 1992) (theoreti-
cal research) and Przybylski et al. (1996) (theoretical and experimental
research)

• free vibration and stability of a column with a member developing rota-
tional inertia (Tomski et al., 1997) (theoretical and experimental rese-
arch).

The small parameter perturbation method (Nayfeh, 1973) and the Ritz
method (Tomski and Kukla, 1992) were applied to solve natural vibration
problems by Przybylski and Tomski (1992), Przybylski et al. (1996), Tomski
et al. (1997).

A pre-stressed geometrically non-linear system (externally unloaded) was
tested (theoretically and experimentally) by Tomski et al. (1994). It was a
cantilever beam with a mass at the unloaded end. The geometrically non-
linear system was also considered by Tomski and Kukla (1990), but it was
constructed in a different way than in the above quoted papers. The system
consists of a column with hinged-clamped ends and an axially located spring
(at one end). The column is loaded eccentrically by a longitudinal force.

The natural vibration frequency depends on the pre-stress of the system,
which is the feature of geometrically non-linear systems.

The system, constructed from three beams with identical bending line, is
considered by Kerr (1976). Such a system is geometrically linear. It was stated,
on the basis of theoretical and experimental research, that the pre-stress does
not influence the natural vibration frequency – what is obvious in the case of
geometrically linear systems.

The theoretical research, concerning the stability of a geometrically non-
linear column (overbraced frame), is conducted in this paper. The influence of
the asymmetry of the flexural stiffness distribution of the individual column
rods on the critical force value and the existence of local and global instability
regions was determined.
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The experimental research on the course of the load – natural vibration
frequency curve in the case of local and global stability loss in the plane is
carried out. The influence of pre-stress on the stability of the considered system
in the range of local and global stability loss is also analysed.

2. Column classification

Three systems (A, B and C), presented in Fig. 1, are examined in the pa-
per. Both the flexural rigidity EiJi and the axial rigidity EiAi are identical
for all systems. Additionally, taking into account the symmetry of the consi-
dered system in the plane perpendicular to the vibration plane, the following
equations are assumed

E1J1 = E2J2 E1A1 = E2A2 (2.1)

Fig. 1. Physical schemes of the considered columns

The characteristic of columns is presented as follows:

A – geometrically non-linear column (overbraced planar frame). The system
consists of three rods with the symmetrical flexural stiffness distribu-
tion E1J1, E2J2, E3J3 and the compressive stiffness distributions E1A1,
E2A2, E3A3, respectively. The longitudinal displacements at the point
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of the hinged clamping of all rods are identical. Taking into account Ho-
oke’s law and the influence of the pre-stress, the distributions of forces
in the rods are as follows

S1 = P
E1A1
3
∑

i=1
EiAi

+
S0

2
S2 = P

E2A2
3
∑

i=1
EiAi

+
S0

2

(2.2)

S3 = P
E3A3
3
∑

i=1
EiAi

− S0

The pre-stressing of the geometrically non-linear column induces an additional
internal force. This force causes that:

• rods with E1J1, E2J2 flexural stiffness are totally compressed with the
force S0
• rod with E3J3 flexural stiffness is stretched with the force S0.

Because of the pre-stress, suitable denotations of the geometrically non-linear
column (A) are introduced in the further part of the paper:

• AUC – column loaded by an external compressing force without the
pre-stress

• APC – column pre-stressed and loaded by an external compressing force.

B – linear column consisting of two rods with E1J1, E2J2 flexural stiffness
and with E1A1, E2A2 compression (without the third member). The rod
stiffness of column B is the same as for rods with index 1, 2 of column A
at the assumed asymmetry of the stiffness of the geometrically non-linear
column.

C – linear column, which consists of three rods like column A, but rod 3
does not transmit the longitudinal force (movable mounting), so

S1 =
P

2
S2 =

P

2
S3 = 0 (2.3)

3. Solution to the boundary value problem

Equations of motion of the considered geometrically non-linear column,
after separation of variables of the Wi(x, t) function with respect to time and
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displacement given by

Wi(x, t) = yi(x) sin(ωt) (3.1)

take the following form

EiJiy
IV
i (x) + Siy

′′

i (x)− ρiAiω
2yi(x) = 0

3
∑

i=1

Si = P (3.2)

The boundary conditions in the hinge-mounted points are expressed as

y1(x)
∣

∣

∣

x=0

x=l

= y2(x)
∣

∣

∣

x=0

x=l

= y3(x)
∣

∣

∣

x=0

x=l

= 0

y′1(x)
∣

∣

∣

x=0

x=l

= y′2(x)
∣

∣

∣

x=0

x=l

= y′3(x)
∣

∣
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x=0

x=l

= 0 (3.3)
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i=1

EiJiy
′′

i (x)
∣

∣

∣

x=0

x=l

= 0

General solution to equation (3.2) gives

yi(x) = C1i cosh(αix) + C2i sinh(αix) + C3i cos(βix) + C4i sin(βix) (3.4)

where Cji are integration constants (j = 1, 2, 3, 4) and

α2i = −
1

2
k2i +

√

1

4
k2i +Ω

2
i β2i =

1

2
k2i +

√

1

4
k2i +Ω

2
i (3.5)

where

Ω2i =
ρiAiω

2

EiJi
ki =

√

Si

EiJi
(3.6)

i = 1, 2, 3 for column A and C, while for column B i = 1, 2.
By inserting solutions (3.4) into boundary equations (3.3) a transcendental

equation for eigenvalues of the considered geometrically non-linear column is
obtained (AUC, APC).

4. Buckling load. Stability of columns

The transcendental equations for the critical load value, obtained on the
basis of boundary conditions (3.3) with taking into account the identical longi-
tudinal displacements of all rods (1,2) of the considered systems, are as follows:
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— A (AUC, APC) column

−2k2Ik
2
IIµ(cos kI cos kII − 1) + kIkII(k

2
I + k

2
IIµ
2) sin kI sin kII +

(4.1)

+2(k2I + k
2
IIµ)[kI(cos kII − 1) sin kI + kIIµ(cos kI − 1) sin kII ] = 0

— B column

sin kI = 0 Pcr =
π2(E1J1 + E2J2)

l2
(4.2)

— C column

4µ(6µ− k2I )− 8µ(3µ+ k
2
I ) cos kI + kI [k

2
I − 12(µ− 1)µ] sin kI = 0 (4.3)

where according to (2.3) and (3.6), equations for kI , kII can be written as

k2I =
1

2
l2(k21 + k

2
2) k2II =

S3l
2

E3J3
= k23l

2 (4.4)

The flexural stiffness of columns A and C is assumed constant

3
∑

i=1

EiJi = idem (4.5)

The coefficient of the flexural stiffness distribution µ is defined in the form

µ =
E3J3

E1J1 + E2J2
(4.6)

The following relationship is derived from equations (4.5) and (4.6)

µ =
idem

E1J1 + E2J2
− 1 (4.7)

kI 6= 0 for the considered system and additionally kII 6= 0, µ 6= 0 for co-
lumn A.

4.1. Unprestressed column (AUC)

For comparison of columns A, B and C in relation to the critical force Pc,
the critical load parameter λ takes form

λ =
Pcrl

2

3
∑

i=1

EiJi

(4.8)
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The stability loss of the AUC and B column (A and B curves, Fig. 2) for
a given coefficient of the asymmetry of the flexural stiffness distribution (4.7)
in the µ = (0, 1) range is determined on the basis of equations (4.1)-(4.3).
Curve B (Fig. 2) represents the course of the critical parameter of the load
in accordance with equations (4.2) and (4.8). The rod rigidity of column B is
the same as for the rods with index 1,2 of the AUC column at the assumed
asymmetry of the flexural stiffness of the geometrically non-linear column.
Column B is comparable with column A, so the parameter of the critical
load (λA, λB) is compared to the coefficient of the asymmetry of the flexural
stiffness distribution of the column A. Column C (Fig. 1 and Fig. 2) losses its
stability in a global way at every considered range of the coefficient µ.

Fig. 2. The value of the critical load parameter λ in relation to the asymmetry
coefficient of the flexural stiffness distribution µ

The problem of local and global stability loss can be explained by taking
into consideration the values of the critical load parameter for the AUC and
B columns. Two values of the asymmetry coefficient of the flexural stiffness
distribution µL (where µL ∈ (0, µgr)) and µG (where µG ∈ (µgr, 1) were
pointed by broken lines in Fig. 2. The local loss of stability (λAL < λBL)
occurs on the L line, because if the rod with E3J3 stiffness is removed from
the system then a sudden increase in the critical force takes place (transition
from (µL, λAL) point to (µL, λBL) point – Fig. 2). Such a phenomenon takes
place for every µL. The system will lose its global stability (λAG > λBG) for
optional µG value (G line).
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4.2. Columns with prestress and external force (APC)

The influence of prestressing rate on the value of the critical load parameter
for a geometrically non-linear Euler’s column is determined. This column is
characterised by local and global loss of stability, which occurs respectively at
µ = µL and µ = µG (Fig. 2).

Fig. 3. The critical load parameter λ in relation to pre-stress λ0 for APC column
and asymmetry coefficient µL of the flexural rigidity

The numerical results obtained on the basis of equation (4.1), are presented
in Fig. 3 and Fig. 4. The changes of the critical load parameter in relation to
the λ0 parameter describing the influence of prestressing (Fig. 3a and Fig. 4a),
where

λ0 =
S0l
2

3
∑

i=1

EiJi

(4.9)
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and the range of changes of internal forces λ1, λ2 in the column rods (Fig. 3b
and Fig. 4b) corresponding to the critical load at different prestressing rates,
where

λ1 =
(S1 + S2)l

2

3
∑

i=1
EiJi

λ3 =
S3l
2

3
∑

i=1
EiJi

(4.10)

were also determined.

Fig. 4. The critical load parameter λ in relation to pre-stress λ0 for APC column
and asymmetry coefficient µG of the flexural rigidity

Additionally, the introduced nomenclature define:
λAL, λAG – value of the critical load parameter for the geo-

metrically non-linear column without pre-stress
(AUC) adequately for local and global stability loss

λBL, λBG – value of the critical load parameter for column B
adequately for local and global stability loss.
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The pre-stress of the geometrically non-linear column is realised along
O-D2 (Fig. 3b) and O-E2 (Fig. 4b) lines and produces the internal force λ

∗

0

in individual rods of the system. The column rods with index 1, 2 (Fig. 1) are
compressed while rod 3 is stretched. Then, an external force is loaded to the
system causing a change in the internal forces in the rods of the column along
the O1-D1 path until the loss of the system stability at the load parameter
λ∗ is reached (see D1 point in Fig. 3a).

The considered pre-stress in the presented model of the column causes an
increase in the critical load of the system. This increase is more intensive if
the asymmetry of the flexural stiffness of individual members of the system
increases. It was stated (Fig. 3a) that such a range of λ0 values (λ0 ∈ (λ

′

0, λ
′′

0)
exists when the critical load parameter λ for the geometrically non-linear sys-
tem (APC) is larger than the value of this parameter for the linear column B.

The thus defined phenomenon is the so-called ”exit” of the system from
local loss of stability. An increase in the critical local parameter for the initial
values of the pre-stress is the result of unloading of the rod characterised by a
lower flexural rigidity. The unloading of a part of the geometrically non-linear
system enables a higher load to be transferred by the remaining member of
the column. The value of λ0, for which the biggest critical load is obtained
(λmax for µ = µL), was denoted as λ0max. The column losses its stability for
point D2 only because of the pre-stress.

A noticeable increase in the critical load was not stated for larger coeffi-
cients of the asymmetry of the flexural stiffness distribution (µ = µG), e.g. for
the column with the global loss. The opposite fact was stated for the column
with the local stability loss. Additionally, it was revealed that the pre-stress
of the geometrically non-linear column in the λ0 > λ0 range is not advisa-
ble because it is characterised by the critical value of the loss lower than the
corresponding value of the critical load for the linear system λBG.

5. Test stand, constructional solution of columns

The test stand for experimental research on vibrations of the considered
columns is presented in Fig. 5. The load head (1) can be moved horizontally
on guides (2) ensuring an axial character of the load applied to the system.
A dislocation of the belt system of the head causes the load of the considered
column to appear. The load force is measured by dynamometer (3). Hinged
supports of column (5) are mounted on slabs (4a,b). They provide the imposed
boundary conditions to be fulfilled.
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Fig. 5. The test stand for experimental research on the column system

Fig. 6. Constructional model of column (a) geometrically non-linear (AUC),
(b) linear (C)

The construction (Fig. 6a) of column A consists of three circular rods. Two
identical external rods (1) are made of steel with the flexural stiffness E1J1,
E2J2, while central one (2) is made of duralumin with the flexural stiffness
E3J3. The rods are connected together with the use of rigid elements (3, 6), the
threaded ends of the rods are immobilised using nuts (3, 6). The hinged clam-
ping of the column is realised by rolling bearings, connecting rigid elements
(3, 6) and frame (5). Additionally, element (6) can be moved in the longitudi-
nal direction under the external force P applied axially due to hinged-clamped
buckle (Nayfeh, 1973). The internal rod (central) does not carry the longitudi-
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nal force in the case of the geometrically linear system (Fig. 6b – column C).
The end of rod (2) is not clamped with respect to rigid element (3) and can be
axially moved. This model has the same total flexural stiffness as the system
in Fig. 6a, but the external force is transmitted only by rods (1). Internal rod
(2) is removed from the system in the constructional model column B (Fig. 1).

6. Frequency curves of free vibrations and vibration forms –
numerical and experimental results (AUC, B, C columns)

The solution to the boundary value problem for the considered systems
(Section 3 of this paper) leads to underestimated results with respect to frequ-
ency and free vibration forms. Two characteristic forms of the free vibrations
(Fig. 7) can be distinguished for the geometrically non-linear Euler column
(AUC column):

N1, N2, ... – normal correct forms of the free vibrations. They are identical as
for the geometrically non-linear column, which consists of two rods with
E1J1 and E3J3 flexural stiffness and ρ1A1, ρ3A3 mass per unit length,
and

EIJI = E1J1 + E2J2 ρIAI = ρ2A2 + ρ2A2

Nms – additional symmetrical forms of the free vibrations. The presence of
the above indicated vibration frequencies result from symmetrical divi-
sion of the flexural stiffness of the external rods; and such a model is
considered in this paper. The number of the rods for the m-th form is
equal to m− 1. The frequncies of free vibrations are numerically equal
to the frequencies of the one-rod column vibrations with the E1J1, E2J2
flexural stiffness. Two ends of the rod are rigidly fixed and the boundary
conditions can be written as

y(0) = y′(0) = y(l) = y′(l) = 0

The forms of the frequencies are shown in Fig. 7 where continuous lines –
correspond to the external rods, the dashed ones – to the internal rod.

The course of the free vibration frequency in relation to the external load
for AUC, B, C columns was numerically calculated and experimentally verified
on the test stand shown in Fig. 5. The geometrical and physical parameters of
the above mentioned columns are presented in Tables 1 and 2.
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Fig. 7. Vibration forms of the AUC column and the corresponding free vibration
frequencies

Table 1

d1 d2 E1 E2 ρ1 ρ2
Column

[m] [m] [MPa] [MPa] [kg/m3] [kg/m3]

B 0.014 0.014 1.9 · 105 1.9 · 105 7600 7600

Table 2

AUC, C d1, d2 d3 E1, E2 E3 ρ1, ρ2 ρ3 µ

column [m] [m] [MPa] [MPa] [kg/m3] [kg/m3] [ ]

1 0.014 0.006 1.9 · 105 6.63 · 104 7600 2530 0.0059

2 0.014 0.01 1.9 · 105 7.19 · 104 7600 2790 0.049

3 0.014 0.0218 1.9 · 105 7.19 · 104 7600 2790 1
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The column denotations, considered in the following part of the paper, are
as follows:

AUC1 – geometrically non-linear Euler’s column without pre-stress for
the geometrical and physical data from Table 2 (row 1)

B – linear column which consists of two rods with the E1J1 + E2J2
flexural stiffness for the geometrical and physical data from Table 1

C2 – linear column which consists of three rods like the geometrically
non-linear column, but the rod with the E3J3 stiffness does not
transmit the longitudinal force for the geometrical and physical
data from Table 2 (row 2).

The results of experimental investigations and the numerical simulations
are presented in Fig. 8 and Fig 9. The first four free vibration frequencies of
columns A and C and the first two free vibration frequencies of column B
were taken into account in the considered systems. The additional denotations
of the free vibration frequency curves in relation to the external load which
determine vibration forms of the non-linear system (see Fig. 7) are as follows:

M∗ – forms of vibrations of the non-linear column with the unloaded
internal rod (column C)

M – forms of vibrations of the linear column which consists of two
rods (column B).

The obtained numerical and analytical results are of good accuracy. The
maximal relative difference between the numerical and analytical results equ-
als 10%.

The choice of the physical and geometrical parameters was aimed to de-
monstrate the local loss of stability (Fig. 8a). The points on the first curve
of the free vibration frequency for f = 0 represent the value of the critical
load. The value of the critical load for the geometrically non-linear system is
lower than the critical load of the linear column, which consists of two rods
(comparison of eigenvalue curves M1 and N1). The changes in the free vibra-
tion frequencies in relation to the external load, presented in Fig. 8 and Fig. 9,
are related to the global loss of stability of the geometrically non-linear Euler
column.

7. Conclusions

The analysis of the obtained results for the geometrically non-linear Euler
column allows one to state that the considered system is characterised by
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Fig. 8. The free vibration frequencies of the AUC1, B, C1 columns (a) and AUC2, B
columns (b)
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Fig. 9. The free vibration frequencies of the AUC2, C2 columns (a) and AUC3, C3
columns (b)
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a local or global loss of stability depending on the value of the asymmetry
coefficient of the flexural stiffness. It has been proved that the part of the
compound column with the lower flexural stiffness is responsible for the local
loss of the system stability. Theoretical considerations of changes in the free
vibration frequencies in relation to the external load have been supported by
experimental investigations.

The range of pre-stress values, in which the increase in the critical load for
the considered geometrically non-linear Euler column over the border of the
local loss of stability takes place, has been determined. The pre-stress of the
system in the whole possible range is undesirable from the point of view of the
obtained value of the critical load. It especially concerns higher values of the
pre-stress for which opposite to the expected results are found (a noticeable
decrease in the critical load). The pre-stress should be applied to the columns
with the local loss of stability. In the other case (global loss of stability) the
influence of the pre-stress on the increase in the critical force is insignificant.

This paper has been supported by the State Committee for Scientific Research,

Warsaw, Poland, under statutory funds BS-01-302/99/P.
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Niestateczność lokalna i globalna oraz drgania przesztywnionej kolumny
Eulera

Streszczenie

W pracy prezentuje się badania teoretyczne i eksperymentalne dotyczące statecz-
ności i drgań własnych nieliniowej geometrycznie kolumny Eulera. Określa się wpływ
asymetrii rozkładu sztywności na zginanie poszczególnych prętów kolumny na war-
tość siły krytycznej oraz istnienia obszarów lokalnej i globalnej utraty stateczności.
Kolumna zbudowana jest z trzech prętów umieszczonych w płaszczyźnie. Dwa ze-
wnętrzne pręty mają jednakową sztywność na zginanie, a trzeci środkowy inną. Pręty
są połączone w taki sposób, że ich ugięcie w miejscu zamocowania jest równe zeru,
a kąty ugięcia są jednakowe.
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