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In the first part, the mathematical problem of flow modelling in gas
transmission network was formulated. In the paper, the method of so-
lution is explained for the model with the postulate T = const . The
method of automatic generation of the system of algebraic equations is
described. The results, good and bad experiences are described.
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1. Solution method

The system of equations, boundary and initial conditions in dimensionless
form are described for the isothermal model.

1.1. The problem in dimensionless form

All dimensional quantities are related to characteristic quantities. For
example: pref = 5MPa, Vref = 5m/s, tref = 3600 s xref = 1000m,
href = 1m, Tref equal to average temperature of the gas, ρref is calcu-
lated on the basis of formula (3.6)4 in Fedorowicz et al. (2002) (Part I).
pref = ρrefZ(ρref , Tref ), qref = ρrefVref

ζ =
x

xref
τ =

t

tref
(1.1)

As the unknowns we take ρ(x, t) and dimensionless density of gas flux
q(x, t)

q = ρV =
Q

AρrefVref
(1.2)
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We have also used other pairs of the unknowns, but the pair ρ, q seems to
be the most suitable. The equations of the problem are derived from (3.6)1,2
(Fedorowicz et al., 2002, Part I)
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∂τ
+
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(1.3)
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Z(ρN , TN )

(1.4)

The dimensionless pressure and temperature are equal to

p = ρZ(ρ, 1) T = 1 (1.5)

1.2. Reduction of the partial differential equations to the algebraic

equations

Each pipe of the network is divided into Nip equal parts, Nip ∈ [1, 64],
ip is the index of the pipe

∆ζip =
Lip
xrefNip

(1.6)

The number Nip is chosen in such way that ∆ζip is almost the same for
each pipe ip if it is possible. The time step is ∆τ = 1/Nτ , where Nτ is a
natural number. The values of the unknowns at point ζk = k∆ζip at time
τ = t∆τ , are ρk,t, qk,t, where k ∈ [0, 1, 2, ..., Nip ], t ∈ [0, 1, 2, ..., Nτ ]. The
unknown functions ρ, q, and V are approximated by straight lines between
the points ζk. Integrating equations (1.3) in the intervals (ζk, ζk+1), we get
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The symbol av is explained under the formula (1.11). The τ derivatives are
approximated by the difference quotients

dρk
dτ
=
1

∆τ
(ρk,t − ρk,t−1)

dρk+1
dτ
=
1

∆τ
(ρk+1,t − ρk+1,t−1) (1.8)

but in the remaining terms of equations (1.7), the unknowns ρk, qk are repla-
ced by

ρk ⇒ αρk,t + (1− α)ρk,t−1 qk ⇒ αqk,t + (1− α)qk,t−1 (1.9)

Unknowns ρk+1, qk+1 are replaced in the same way. The weight α ∈ (0, 1).
The influence of the value of α, on the results of calculations, was investigated
in Fedorowicz (2001). When α = 0.5, the method is equivalent to the Crank-
Nicholson method for linear equations. Rearranged equation (1.7)1 assumes
the form

qk,t(−wip) + ρk,t + qk+1,twip + ρk+1,t =
(1.10)

= ρk,t−1 + ρk+1,t−1 + νip(qk,t−1 − qk+1,t−1)

where

wip =
2∆τ

f1∆ζip
α νip =

2∆τ

f1∆ζip
(1− α)

Rearranged equation (1.7)2 takes the form

qk,t(1 + wipBk) + ρk,twipAk + qk+1,t(1 + wipBk+1) + ρk+1,twipAk+1 =

= −νip(ρk,t−1Ak + qk,t−1Bk + ρk+1,t−1Ak+1 + qk+1,t−1Bk+1) + (1.11)

+qk,t−1 + qk+1,t−1
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Vk+1 =
αqk+1,t + (1− α)qk+1,t−1
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qav =
1

2
{[αqk,t + (1− α)qk,t−1] + [αqk+1,t + (1− α)qk+1,t−1]}

ρav =
1

2
{[αρk,t + (1− α)ρk,t−1] + [αρk+1,t + (1− α)ρk+1,t−1]}

The values qav, ρav are used for calculation of Reav.

1.3. Reordering of the unknowns

The unknowns ρk,t, qk,t are ordered in the vector x(No), where the symbol
No denotes the consecutive number of the unknown. The rule of ordering ρk,
qk =⇒ x(m) is illustrated in Fig. 1

Mip = 2
[

ip
∑

i=1

(Ni + 1)− (Nip + 1)
]

(1.12)

Fig. 1. The rule of ordering
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Taking into account the equations (1.10), (1.11), boundary conditions de-
scribed in Part I, and the rule of ordering ρk, qk =⇒ x(m) the software packet
generates the system of non-linear algebraic equations

J
∑

j=1

Aij(x1, x2, ..., xJ , xp1, xp2, ...xpJ )xj = Ri(x1, x2, ..., xJ , xp1, xp2, ...xpJ , t)

(1.13)

i = 1, 2, ..., J J = 2
IP
∑

ip=1

(Nip + 1)

where IP is the total number of pipes in the connected subnetwork. When we
calculate {−→x }, the values of ρk,t−1 and qk,t−1 are known and ordered in the
vector −→xp.

1.4. Iterative linearization of the nonlinear algebraic equations

The system of nonlinear algebraic equations (1.13) is reduced to the con-
secutive systems of linear algebraic equations

J
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x
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2 , ..., x

(k−1)
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)

where i = 1, 2, ..., J , k = 1, 2, ...,K.

For k = 0 we take x
(0)
j = xpj, j = 1, 2, ..., J . The matrix A = {Aij} is

sparse.
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are used to investigate the convergence.The measures (1.15) are related to
ρσ, qσ
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√
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2
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J/2
(1.16)

The fact that the iteration process is divergent, is signalized by the program
and calculations in this subnetwork are stopped. This happens when we try to
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simulate the transport of a too large amount of gas, but also, when we calculate
the flow in the middle of the summer, so, when the flow ratio is very small.
We can influence the speed of convergence by the changes of ∆τ and ∆ζip.
The changes of ∆ρσ/ρσ and ∆qσ/qσ as functions of k were investigated. The
q measure is more susceptible to the fluctuation than the ρ measure. After six
or seven iterations the measures of distance between iterations remain rather
constant. Our customers prefer the calculations with very small numbers of
iterations (K = 1 or K = 2) because the precision of calculation is practically
not very important for them. The customers knowledge of the parameters of
the network is rather small, so the precision of the mathematical solution is
very high from their point of view.

1.5. Solution of the system of linearized algebraic equations

One of the direct methods is applied – the Gauss elimination with back
substitution and row pivoting. The software realization is different than in
Pissanetzky (1984), Duff et al. (1986), because it is based on ordered storage
of the A matrix in the list. It seems to be a better solution when the class
”list” exists. The single linked list is used. The interesting details are given in
the Appendix.

2. Generation of the nonlinear system of algebraic equations

2.1. Gaining the information about the network, the gas, the network

control and load

2.1.1. Gaining the information about the network

The description of practical aspects of gaining information about real
transmission networks is contained in the conclusions. This information is in
principle imported from the database of GIS type. The packet has the interfa-
ce which enables the conversion and edition of the data. The user may change
the data, and even he may introduce a completely new network.
Each pipe is characterized by diameter D, length L, relative roughness ε,

number N . Each pipe is identified by its registration numbers. The first and
the second nodes incident with the pipe are identified by their registration
number. The consecutive number ip and the Boolean variable ”hasbeen” are
also included in the CPipe class.
Each node is characterized by the height h, the natural number

”whatnode” for the identification of the node type, the coefficient of local
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pressure loss Λ, and the registration number of the incident directional pipe
(see Fig. 6, Part I). The node is identified by its registration number. In the
CNode class we find members which characterize the one-sided constrains (see
Subsection 2.1, Part I). As in the CPipe class, the consecutive number and
the Boolean variable ”hasbeen” are also included in the CNode class. The
information about the network is stored in the tables PIPES, NODES.

2.1.2. Gaining the information about the gas

The data about the gas emerge from the chromatographic analysis. The
packet enables including the data into the small database, which is a part of
the packet. User-friendly interface enables the change of compounds, mixing
the new gas with the gases existing in the base. For the flow calculation, only
some parameters which are enumerated in Subsection 2.2 of the Part I are
necessary. Additionally, we include the variables which characterize the type
of the gas (high methane, high nitrogen). The type of the gas influences the
formulae µN/µ(ρ, 1) and Z(ρ, 1), (1.4).

2.1.3. Information about control of the network

The external nodes, such as pressure sources, sources with known flow-in
ratios, which may be controlled, get the control functions. The internal nodes
with compressor stations, pressure reducers, valves, gate valves also get the
control functions. The control function is a continuous step function, such as
that shown in Fig. 2.

Fig. 2. Control function
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The data concerning the control function are stored in the table
OPERATION∈ CCF class. The members of CCF class are: the type of the
node ”whatnode”, the registration number of the node, the mode of control
(pressure, flow ratio, compression), the number of pairs of the data (ti, CFi),
and the table with the pairs. The table OPERATION is common for all sub-
networks.

2.1.4. Information about the loads

The information about the consumption of gas through the reduction sta-
tions of the first step (city gate), about certain sources of gas, are forecasted.
These data are not controlled. Each element of these data contains the daily
load Qd or mean pressure for the pressure source, and the consecutive number
of the profile in the base of different profiles (see 2.4, Part I). Taking these
data into account, we prepare the table of data, named SFORECAST, about
dimensionless forecasted: flow-off ratio, flow-in ratio, pressure. Each element
of the table contains: the registration number of the node, and tables ai, bi, ci,
Yi; i = 1, 2, ..., 48. The tables determine coefficients of the spline interpolation
of the data

Y (τ) = [(aiξ + bi)ξ + ci]ξ + Yi ξ = τ − int(τ) (2.1)

where the function int(·) returns the integer part of the argument.

The function (2.1) is determined for τ ∈ [0, 48] but it is used only for 24
hours. The table SFORECAST is common for all subnetworks.

2.2. Gaining the initial conditions

The flow calculations simulating the process remaining constant in time
(static model) are enabled in the packet. The static calculations are the only
possibility of gaining information about the flow in the initial moment of cal-
culation, in certain cases. The method of static calculations is not described
in this paper.

The last results of the previous calculations can be taken as the initial
conditions. We shortly name such situation the continued calculations. The
data are of the same standard, with the registration numbers of pipes included
into the data. It is a flexible system. For example, the results of calculations
of a more robust network may be taken as the initial conditions for a smaller
network. The initial conditions are stored in −→xp.
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2.3. Separation of connected subnetworks

2.3.1. Closed valves

The data concerning the network are given in tables NODES, PIPES. We
search the closed valves and gate valves in NODES and we check the table
OPERATION. If the valves are closed, then the virtual nodes are added with
the same registration numbers the as the existing nodes, but with the sign
”minus” before them. For all these nodes the flow ratio = 0.

2.3.2. Information about a subnetwork. The table ”incy”

When building equations (1.13), we apply the information about the con-
nected subnetwork (the subnetwork with connected graph) stored in a two-
dimensional table ”incy”. The name of the table suggests likeness to an inci-
dence matrix, but it contains much more data. The table enables us to find
all the necessary data once, not at all steps t. The second index of the table is
for the consecutive number of the pipe in ordered table. The meaning of the
first index is illustrated in Fig. 3

Fig. 3. The table ”incy”

Below, the symbols =⇒ and ⇐= are used. The symbol =⇒ means that
the considered pipe has the same direction as the pipe ip, the symbol ⇐= is
for the opposite direction. The consecutive position of the table are for:

• incy(1, ip), the consecutive number. In the final stage equal to ip

• incy(2, ip), the consecutive number of the first pipe incident with
the second node of the ip-pipe; if there is not such a pipe, then
incy(2, ip) = 0; if =⇒ then incy(2, ip) > 0; if ⇐= then incy(2, ip) < 0

• incy(3, ip), the consecutive number of the second pipe incident with
the second node of the ip-pipe; if there is no second pipe then
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incy(3, ip) = 0; if incy(2, ip) = 0 then incy(3, ip) = 0; always
|incy(3, ip)| > |incy(2, ip)| if incy(3, ip) 6= 0, if =⇒ then incy(3, ip) > 0;
if ⇐= then incy(3, ip) < 0

• incy(4, ip), the consecutive number of the first pipe incident with the
first node of the ip-pipe; if there is no such pipe then incy(4, ip) = 0; if
=⇒ then incy(4, ip) > 0; if ⇐= then incy(4, ip) < 0

• incy(5, ip), the registration number of the first node of the ip-pipe

• incy(6, ip), the registration number of the second node of the ip-pipe

• incy(7, ip), the consecutive number in the table SFORECAST conta-
ining data about the loads or flow-in ratio or the consecutive number
(plus the bias number) in the table OPERATION. The number is po-
sitive. If incy(7, ip) = 0 then the first node of the ip-pipe is without
known loads or flow-in ratio. If the node is a compression station and
the ip-pipe is not its directional pipe, then also incy(7, ip) = 0. If the
incy(7, ip) contains the consecutive number in the table SFORECAST,
then it is less than in the case of the table OPERATION

• incy(8, ip), the consecutive number of the first node of the ip-pipe in
the ordered table of nodes

• incy(9, ip), the consecutive number of the second node of the ip-pipe in
the ordered table of nodes

• incy(10, ip), the consecutive number of the second pipe incident with the
first node of the ip-pipe; if there is no second pipe, then incy(10, ip) = 0;
if incy(4, ip) = 0 then incy(10, ip) = 0; always |incy(10, ip)| >
|incy(4, ip)| if incy(4, ip) 6= 0, if =⇒ then incy(10, ip) > 0; if ⇐=
then incy(10, ip) < 0

• incy(11, ip) contains the consecutive number meaning the same as
incy(7, ip) but for the second node of the ip-pipe.

2.3.3. Separation of the connected subnetworks from the network

”Combing”.We comb the tables NODES and PIPES and take all nodes and
pipes with the consecutive number equal to 0 to the tables NODESNEW and
PIPESNEW. These nodes and pipes have not been included into the previously
”combed” subnetworks. If we ”comb” less than two nodes or no pipe, then the
process of separation is finished.
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The node number one. We select the node with the consecutive number
equal to 1 from the nodes in the table NODESNEW. The criteria:

• The nodes – pressure sources or the nodes – gasholder with compressor
stations in ”pressure mode”. From all such nodes the node with the
highest pressure is chosen. If such nodes do not exist, then

• The nodes – sources with known flow-in ratio or the nodes – gasholders
with compressor stations in ”flow-off mode”. From all such nodes, the
node with the highest absolute value of the flow ratio is chosen. If such
nodes do not exist, then

• The nodes – closed valves or gate valves. From all such nodes the node
incident with the pipe with the highest diameter is chosen. If such nodes
do not exist, then

• The nodes – external nodes with forecasted flow-off ratio. From all such
nodes, the node with the highest absolute value of the flow ratio is chosen.
If such nodes do not exist, then

• The flow in the subnetwork without any loads or supplies of gas is not
calculated. How, without any valves or gate valves, the gas has been
brought in?

The transient calculations of flow are enabled in the subnetwork without
the source of gas of a known pressure. It is an important difference between
static and transient models.

The subnetwork ordering. The node number 1 is stored in the table NO-
DESORDERED as number 1. The incident pipe gets number 1 in the table
PIPESORDERED. The fact that a pipe or a node is stored in the ordered ta-
bles is given in the tables NODES and PIPES where the consecutive numbers
are changed from 0. The service of the first node and the first pipe is different
from the service of the remaining pipes and nodes.
If the node no. 1 is the first node of the pipe no. 1 then the positions

1,4,10,5,8,7,6,9, of incy(∗, 1) get the values.
If the node no. 1 is the second node of the pipe no. 1 then the positions

1,2,3,11,5,8,7,6,9, of incy(∗, 1) get the values. The data about the adjacent
node are stored in NODESORDERD[2]. The members ”hasbeen” of the node
no. 1 (and all consecutive nodes stored in NODESORDERED) get the value
TRUE.
The service of the node no. 2. We count and register the incident pipes.
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Case 1. If there is 1 incident pipe then the position 2,3,11 of incy(∗, 1) get
the values, when the node no. 1 is the first or the positions 4,7,10 of
incy(∗, 1) get the values when the node no. 1 is the second node of the
pipe no. 1. We define the structure as a tree and we stop the subnetwork
analysis, because it consist of one pipe and two nodes.

Case 2. If there are 2 incident pipes then the positions 2,3,11 or 4,7,10 of
incy(∗, 1) get the values as in the previous case, so the service of the
pipe no. 1 is finished. The data about new incident pipe are stored in
PIPESORDERED[2]. The data about new adjacent node are stored in
NODESORDERD[3]. We begin the service of the incy(∗, 2). The posi-
tions 1,4,10,5,6,8,9, also 7, get the values if the node no. 2 is the first node
of the pipe no. 2 or the positions 1,2,3,5,6,8,9, also 11, get the values if
the node no. 2 is the second node of the pipe no. 2. When we bind the
node with the elements of the table SFORECAST or OPERATION, the
”directional pipe” is taken into account.

Case 3. If there are 3 incident pipes then the diameters of the new pipes are
investigated. The new pipe with grater diameter gets the number 2 and is
stored in PIPESORDERED[2]. The node adjacent through this pipe gets
no. 3 and is stored in NODESORDERD[3]. The new pipe with smaller
diameter gets the number 3 and is stored in PIPESORDERED[3]. The
node adjacent through this pipe gets no. 4 and is stored in NODESOR-
DERED[4]. The node no. 2 is a three-way node. The positions 2,3,11 or
4,7,10 of incy(∗, 1) get the values as in the first case, so the service of
the pipe no. 1 is finished. We begin the service of pipes no. 2 and no. 3.
The positions 1,4,10,5,6,8,9, also 7, or the positions 1,2,3,5,6,8,9, also 11,
get the values.

After this analysis we have ”Jnod” nodes in the table NODESORDERED
and ”Ipip” pipes in the table PIPESORDERED.We begin the service of nodes
from no. 3 and we finish when, after the analysis, the consecutive number of
the node is equal to ”Jnod”. At each step of the node service the nodes and
pipes may be stored in the ordered tables and the value of ”Jnod” may grow
up.
For each analyzed node, we count and register the incident pipes.

Case 4. If there is 1 incident pipe, the positions 2,3,11 or 4,7,10 of this inci-
dent pipe get the values.

Case 5. If there are 2 incident pipes, then we investigate if there is one of
them which has not appeared in the table PIPESORDERED.
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1. If there is a new pipe then: we add 1 to ”Ipip”, we store the data
of the pipe in PIPESORDERED[Ipip], if the node adjacent thro-
ugh this pipe has not existed in NODESORDERED then we add
1 to ”Jnod” and we store the data about this node in the table
NODESORDERED[Jnod]. The positions 2,3,11 or 4,7,10 of incy,
for the second of the incident pipe, get the values. The positions
1,4,10,5,6,8,9, also 7 or 1,2,3,5,6,8,9 also 11 of the incy(∗, Ipip) get
the values.

2. If there is no new pipe, then the positions 2,3,11 or 4,7,10 of incy,
for the both incident pipes, get the values.

Case 6. If there are 3 incident pipes then we investigate which of them have
existed in the table PIPESORDERED.

1. If all of the above mentioned pipes have existed in the table PIPE-
SORDERED, then the positions 2,3,11 or 4,7,10 of incy, for these
incident pipes, get the values.

2. If there is one new pipe then: we add 1 to ”Ipip”, we store the
data of the pipe in PIPESORDERED[Ipip], if the node adjacent
through this pipe has not existed in NODESORDERED, then we
add 1 to ”Jnod” and we store the data about this node in the
table NODESORDERED[Jnod]. The positions 2,3,11 or 4,7,10 of
incy, for the remaining incident pipes, get the values. The positions
1,4,10,5,6,8,9, also 7 or 1,2,3,5,6,8,9 also 11 of the incy(∗, Ipip) get
the values.

3. If there are 2 new incident pipes then the diameters of the
new pipes are investigated. We add 1 to ”Ipip”. The new pi-
pe with greater diameter gets the number Ipip and is stored in
PIPESORDERED[Ipip]. If the node adjacent to the investiga-
ted node through this pipe has not existed in the table NODE-
SORDERED, then we add 1 to Jnod and we store this node in
NODESORDERED[Jnod]. We add 1 to ”Ipip”. The new pipe with
smaller diameter is stored in PIPESORDERED[Ipip]. If the no-
de adjacent through this pipe did not exist in the table NODE-
SORDERED, then we add 1 to Jnod and we store this node in
NODESORDERED[Jnod]. The positions 2,3,11 or 4,7,10 of incy
bound to the pipe which exists in PIPESORDERED get the values.
We begin the service of new pipes. The positions 1,4,10,5,6,8,9, also
7 or the positions 1,2,3,5,6,8,9, also 11, get the values.
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When this process is finished, then in Ipip elements of the tables incy,
PIPESORDERED and in Jnod elements of the table NODESORDERED, we
have ordered data about the connected subnetwork. These subnetworks are
counted and stored.

2.4. Generation of the system of algebraic equations

2.4.1. General remarks

We do not present these excerpts of the algorithm which concern the testing
and signaling incorrectness. An example of the incorrectness – the flow in the
forbidden direction through the compressor station.
The calculations are performed at the time t in all subnetworks. The cal-

culations increase in time up to the moment when in all subnetworks the
calculations are impossible, or up to the prescribed time. The subnetworks are
calculated one after another in the same order as they were called into being
(combed), so the calculations begin in the subnetwork with the highest pres-
sure or the highest flow ratio. When the calculation for a time t are finished
then the results are stored in the form suitable for visualizing the module, and
values from the table {−→x } are sent to the table {−→xp}.
The storage of the sparse matrix {Aij} is described in the Appendix.

2.4.2. Generation of the system of algebraic equations for the subnetwork

The generation is rather simple. All nodes in the NODESORDERED get
the attribute hasbeen = FALSE. In the loop ip = 1, 2, ..., IP , the actions
described below are performed.

• If the first node of the ip-pipe has the attribute hasbeen equal to
FALSE, then the below enumerated actions are performed. The attribu-
te whatnode is analyzed. We include so many equations emerging from
the boundary conditions as it is proper for the whatnode. The equations
are coded in such way, that the coefficient A of the x with lower index is
before the coefficient of the x with greater index. The equations concer-
ning the mass conservation principle are divided by the cross-sectional
area of the ip-pipe, so we have the coefficient equal to 1. For the nodes
with compressor station, reducer or check valve, the directional pipe is
checked. We store the results in the list A, in the table of pointers p
which point to the first coefficient in the equation (in the row), and in
the table R containing the values of right side of the equation (see the
Appendix). We count how many equations have been included and the
first node of the ip-pipe gets the attribute hasbeen = TRUE.
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• We include Nip times equations emerging from (1.10) and (1.11) begin-
ning from the nearest point to the first node of the ip-pipe. The rules
concerning growing indices are applied.

• If the second node of the ip-pipe has the attribute hasbeen equal to
FALSE, then the analogues actions are performed as for the first node.

As the result, we get the sparse matrix Aij with the elements concentrated
near the main diagonal with splashes caused by boundary conditions. The
preference of the pipes with greater diameters causes that the equations with
more important unknowns are in the upper part of the matrix.

3. On the solution of the problem with heat exchange

We do not take into account the dissipation of heat along the pipes. The
explanation is in 4.1 (Part I) Fedorowicz et al. (2002). Two versions of the
problem are possible:

• the whole network is calculated with the principle of energy conservation
taken into account

• the pipes near the compressor stations are calculated with the principle
of energy conservation, but other pipes are calculated with the postulate
T known.

Submarine pipelines, pipelines in arctic zones (permafrost, marsh) must
be modelled with the principle of energy conservation, but calculation of most
pipelines in Poland may be performed as it is described in the second section.
We propose the method of solution shown below.

• All dimensional quantities are related to characteristic quantities as
in 1.1.

• The partial differential equations are reduced to the algebraic equations
as in 1.2. We get the system of equations

d

dτ

∑

i

wlizi =
∑

m

flm(z1, z2, ..., zM )zm (3.1)

where l = 1, 2, ...,M , M – number of unknowns. The sum with index i
has two elements, the sum with index m has six, or four elements or
even less.
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• As in 1.2, the τ derivatives are approximated by difference quotients
(1.8) and the unknowns ρk, qk, Tk are replaced by the sums with weight
α as in (1.9). We get the nonlinear set of algebraic equations analogous
to (1.10), (1.11) but with the equation of energy included.

• We apply the physical iteration.

1. The system of equations which emerged from the mass and mo-
mentum equations, is solved with the unknowns Tk taken from the
previous iteration.

2. The equations, which emerged from the energy equation, are solved
with the above calculated unknowns ρk, qk.

3. The process described in points 1 and 2 is repeated and the conver-
gence is tested.

We start the iteration assuming the exponential decrease of temperature
from the value known at the outlet of compressor station. The physical itera-
tion process was tested for a very simple pipeline system with a compressor
station (Komarec, 1999). The convergence was measured as in (1.15), (1.16).
The convergence is rather fast, nearly one decimal point after each iteration
(see also [8], Part I).

4. Results and predicted research

The packet is ready and in use ([1], Part I). The calculations concerning
different aspects of safety were performed, for example the survival time of a
subnetwork without supply of gas, influence of the acceptance of new loads at
the pressure in the subnetwork ([1, 5], Part I). The whole process of research
and development of the packet yields the information about: simulation of the
flow, methods of solution and the relations between the parameters we know
and the parameters we should know.

4.1. Application of the modelling packet

The accomplished research should prove to be useful. The packet is useful
if we know proper values of parameters and functions which influence the flow.
Costs of useful measurements are rather great, so this costs form the principal
barrier when we think about broad application of any modelling packet. If the
packet is linked with the computerized system of information then its records of
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repairs, inspections enable obtaining the necessary information rather without
costs, and vice versa, the computations enable verification of the data included
into the system.

The most difficult to obtain is the roughness of the pipes. The relations
between: the material of the pipe, production technology, the time the pipe is
in use, enable rough estimation of this parameter. The necessary next step is
tuning of the roughness. The measured pressure and flow ratio are compared
with the calculated values of pressure and flow ratio for different roughness of
the pipes, and the best fitting roughness is taken as the proper value. Such
process is realized even for the pipelines with very well known measured ro-
ughness, e.g. the pipeline from Sleipner field to Zeebrugge. As a positive fact,
we note that the roughness emerging from tuning in winter conditions fit the
flow calculation in summer ([5], Part I).

4.2. Remarks about the methods of solution

We get two successful methods of solution after some unsuccessful trials.

4.2.1. Uselessness of explicit finite differences schemes

It was known that the explicit finite differences schemes are useless for
this modelling, but the attempt to use this scheme to the 0 step of iteration

seemed reasonable. When the iteration process begins, we take x
(0)
j = xpj,

j = 1, 2, ..., J , so we take ∂ρ/∂τ = 0 and ∂q/∂τ = 0. It seems that if we take
the time derivatives from the previous time step and use them to calculate

x
(0)
j , we get better starting values for the iteration. The result obtained may
be useful only when we show to students of the numerical methods, that the
explicit methods are very doubtful. The figure of the function q(ζ, τ = const )
looks like a saw blade.

4.2.2. Other useless methods

The finite difference scheme of greater precision (central scheme) gave the
system of equations for which the iteration process was very often divergent.
Additionally, this central scheme of finite differences applied to the first-order
differential equations leads to the second-order system of finite differences, so
we had to add the new boundary conditions.

We tried to solve the problem by another version of physical iteration. We
have calculated the mass density ρ from the equations of mass conservation
principle and next, the flow ratio q from the momentum equation. The process
was unstable.
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The subsystem consisting of one pipe and two nodes may be solved by
a very stable finite difference scheme where the spatial difference of mass
density ρ is approximated backwards and the same difference of q – forwards.
Calculation of such element can be treated as a block with input and output.
The attempt to construct a system of interacting boxes did not give good
results, even for the network with a tree-structure.

The Gauss-Seidl method applied to the system (1.14) did not give good
results.

4.3. The method of solution for networks with tree-structure

The method may be applied when the local pressure drop is not taken
into account. The finite difference scheme, where the spatial difference of mass
density ρ is approximated backwards and the same difference of q is approxi-
mated forwards has been applied. Another link of the unknowns ρ and q with
the unknowns x was applied having in mind that the pressure is continuous
at the nodes and the relation between flow ratio in the node enabled reduction
of the number of unknowns. This link is especially effective for short pipes.
The method has been applied in the previous version of the packet (see [5],
Part I).

4.4. The packet development

4.4.1. Forecast module

The works are conducted aimed at designing a program or a module of
program for loads forecasting. The data concerning loads and the weather are
gathered. The base of aggregated and linked data for towns and reduction
stations of the first step is prepared. The program which enables visualization
of the relations between the weather factors, calendar factors and the daily
loads Qd and the profiles (see Section 2.4, Part I) is ready ([7], Part I).

The program calculating the load-forecast on the basis of approximation by
hyperplanes forecasts Qd with the error ≈ 6%. The program also calculates
the coefficients specific for each day of a week. The preliminary results are
more precise for the cold days. The final program will use the neural nets
methods.

4.4.2. Improvements

• The option, enabling the choice of the first node of the subnetwork by
the program operator is rather necessary. For example, when we analyze
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the survival time of the subnetwork, it is very useful to choose the closed
valve as the first node.

• In the pipes near to the outlet of the compressor station, the energy equ-
ation should be taken into considerations. In other pipes, the precision
of the isothermal model is quite good.

• The formulae for the station with reciprocating compression units should
be implemented.

• The packet performs calculations when the composition of the gas in the
network is constant. The problem of flow when the composition of gas in
the network changes, should be solved and implemented. The knowledge
about the vanishing influence of initial state will be useful in this case.

• The calculations with adaptive time and space step should be implemen-
ted. It is important if we want to automatize the calculations with initial
conditions taken from the results of previous calculations and when the
fast changes of the flow occurs.

• The modelling of big reservoirs of gas is rather precise. The big reservo-
irs are provided with compressor stations. The amount of gas in these
reservoirs changes with the seasons of the year, not with days. The big
reservoirs are modelled as compressor stations inside the network. The
program modelling phenomena in such gasholders is rather autonomous
to the program modelling the flow in the network.

• Modelling the networks with small gasholders is very interesting. A small
gasholder without any elements of active control has its state characte-
rized by pressure, temperature, mass of the gas and its own parameters
and elements. The parameters of flow in different nodes are mutually
dependent, so the boundary conditions incorporate different nodes.

• The local pressure loss depends on the flow direction in the node. We
should take this fact into account when the boundary conditions in two-
way nodes are formulated.

4.5. Precise modelling of the station with centrifugal compressors

There exists packets modelling precisely, even very complicated stations
with centrifugal or reciprocating compressor units (e.g. [2], Part I). The pac-
ket modelling flow in transmission networks should take into account the com-
pressor efficiency which depends on the work point P (see Fig. 5, Part I). The
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compressor efficiency influences the temperature at the outlet and the amount
of gas used by the turbine driving the compressor unit. When we calculate,
successive approximations are necessary. The work-point P depends on the
flow and the flow depends on the work-point of the compressor. The calcu-
lations performed for a very primitive pipeline with a centrifugal compressor
disclosed that the iteration method is divergent, but the method based on
the falsi division is effective. The problem is fascinating and we are going to
implement the method into the packet.
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A. Gauss elimination with back substitution and row pivoting

A.1. Data

int J , double precision R[1 : J ], x[1 : J ]

Class CRROList members are: int col, double precision a, pointer to next
object of CRROList element.

One-dimensional table of pointers CRROList * P [1 : J ]. P [i] points at the
first element of the i row of data. In the Row-wise Representation Ordered
List the elements are ordered up with the col member in each row.

A.2. Method

for int i = 0, step up 1, to i equal to (J − 1)

• Pivot finding and row pivoting

• Elimination and R table modification

end of for-loop.

A.3. Pivot finding and row pivoting

For given i.

double precision big = |P [i].a|, int investigate[1 : J − 1],

int howmany = 0, pivot = i;

for int r = i, step up 1, to r equal to J
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if(P [r].col equal to i) 〈

howmany = howmany + 1, investigate[howmany] = r

if(|P [r].a| > big)〈 big = |P [r].a|, pivot = r〉〉

end of for-loop

if(pivot not equal to i) 〈 Change P [i] with P [pivot].

Change R[i] with R[pivot].〉.

A.4. Elimination and R table modification

We know the diagonal identifier i, howmany, and the table investigate.

for int h = 1, step up 1, to h equal to howmany

r = investigate[h]. Execute Arj = Arj − Ari(Aij/Aii) operation for
all j > i existing in i-row and r-row. Execute Rr = Rr −Ari(Ri/Aii).

end of for-loop.

A.5. Conclusions

The most troublesome is the Gauss subtraction Arj = Arj −Ari(Aij/Aii)
procedure. It must not be against the rule that the element of the resulting list
with greater col member must be after the element of the list with smaller col
member. At each step i the determinant not equal to 0 condition is verified.
The procedure does not contain the unnecessary operations of changing the
lower triangle of the matrix into zero. The back substitution is presented e.g.
in Flannery et al. (1998) for full matrices and it is easy to apply for the sparse
matrix in the presented conditions.
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Modelowanie przepływu gazu w sieci przesyłowej.

Część II – Metoda rozwiązania i algorytmy

Streszczenie

W części I został sformułowany matematyczny problem adekwatny do problemu
fizycznego, realnie występującego w sieciach przesyłowych gazu. W tej części przed-
stawiono rozwiązanie tego problemu. Składa się ono z części matematycznej, gdzie dla
postulowanego procesu izotermicznego przedstawiono szczegółowe wzory bezwymia-
rowe, zaproponowano dyskretyzację przestrzenną i czasową oraz otrzymane równania
algebraiczne nieliniowe. Zaproponowano metodę iteracyjną, gdzie na każdym kroku
iteracji rozwiązujemy układ równań algebraicznych liniowych wykorzystując fakt, że
macierz układu jest rzadka.
Pokazano, jak wiedzę o sieci, płynącym gazie, sposobie sterowania i poborach

gazu zawrzeć w programie. Szczegółowo pokazano, jak dla dowolnej sieci komputer
buduje układ równań algebraicznych, a następnie go rozwiązuje. Mamy nadzieję, że
dla badających ten problem publikacja będzie stanowić bazę, do której będą nastę-
powały krytyczne odniesienia wskazujące na modyfikację opisu, metod rozwiązania
i algorytmów. Rezultaty wskazujące na aplikacyjny charakter pakietu realizującego
modelowanie były już publikowane. W kolejnej części przedstawimy uzyskane za po-
mocą pakietu rezultaty dotyczące również aspektów fizycznych i obliczeniowych.
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