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The paper presents near-wall turbulence models which incorporate the
idea of elliptic relaxation. The simplified elliptic blending model is ap-
plied in the Lagrangian probability density function (PDF) approach.
The PDF method is extended to compute near-wall viscous momentum
transport. Computations are performed for fully developed turbulent
channel flow and validated against available DNS data.
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1. Introduction

One of the inherent difficulties in modelling the turbulent flow is related
to the near-wall regions. At the same time, most of the technically important
turbulent flows are bounded, at least in part, by solid surfaces. In the im-
mediate vicinity of the wall experimental investigations and the DNS results
show the existence of complicated vortical structures of considerable kinetic
energy (Aubry et al., 1988). DNS computations give insight into the dynamics
of the turbulent eddies, mechanisms of their generation, and interactions be-
tween them. However, due to high numerical cost of such simulations, engine-
ering applications to date are limited to the Reynolds averaged Navier-Stokes
(RANS) methods which provide statistical description of turbulent flows. The
mean (ensemble averaged) variables are also affected by the presence of walls.
In particular, the wall effects should be accounted for within RANS models.

1The author won the first prize awarded at the biennial young researchers’ con-
test for the best work presented at the 15th Polish Conference on Fluid Mechanics,
Augustów, September 2002
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First, the molecular transport of heat and momentum becomes important and
cannot be neglected, as is sometimes done for high-Re turbulent flows far from
solid boundaries. Due to the no-slip condition large gradients of mean stati-
stics occur in the vicinity of the wall. Another effect is the lack of separation
of macro- and microscales of turbulence which also arises from the viscosity
action in the near-wall region. Moreover, the Reynolds stresses are strongly
anisotropic which is caused by the blocking of wall-normal fluctuations.

Most often, the modelling of near-wall flows is performed in the Eulerian
approach, and so-called low-Re models are introduced for the purpose. They
can be based on the damping function method (Rousseau et al., 1997) or ellip-
tic relaxation model of Durbin (1993). The functions which damp particular
terms in the equations are derived from comparison with experiments, and
often involve wall distance as an argument. For this reason, the damping func-
tion approach is likely to fail in more complex geometries or complicated flow
cases (e.g. with separation or reattachment zones). The elliptic relaxation me-
thod is based on the Poisson equation for pressure fluctuations. The method
accounts for the non-local character of pressure fluctuations and is therefore
sounder from the physical point of view in comparison to the damping func-
tions approach.
The paper presents a model for near-wall turbulent flows derived for the

Lagrangian (PDF) approach; there, the non-local wall effects should also be
included. A PDF model for low-Re numbers was derived by Dreeben and Pope
(1998). In the model, viscosity was introduced through the Brownian motion
in physical space and some additional terms in the equation for velocity. Non-
local effects were originally modelled by the full six-equation elliptic relaxation
method. However, in our work we apply a simplified approach of Manceau
and Hanjalić (2002), derived for the Eulerian Reynolds stress transport model
(RSM). The method is adapted here to the Lagrangian PDF approach. Due
to numerical problems with down-to-the-wall integration, the previous scheme
developed for high-Re turbulent flows (Minier and Pozorski, 1999) had to be
changed and is now based on the exponential form of stochastic equations.
The computations have been performed for the fully developed channel flow.
The DNS data of Moser et al. (1999) are used for comparison.

2. Modelling of near-wall flows: elliptic relaxation method

The instantaneous turbulent velocity field is influenced considerably by the
wall proximity. As a consequence, the wall effects have also an impact on the
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flow statistics, like the mean velocity 〈Ui〉, the turbulent kinetic energy k,
or the turbulent stresses 〈uiuj〉. Let us recall here that, according to the
Reynolds decomposition, the instantaneous velocity can be written as a sum
of its mean and fluctuation parts Ui = 〈Ui〉+ui. The wall boundary condition
〈Ui〉 = 0 leads to large velocity gradients and consequently to large values of
the turbulence production term

P = ∂〈Ui〉
∂xj
〈uiuj〉 (2.1)

(with summation over repeating indices) in the near-wall region. Due to the
no-slip and impermeability conditions all components of velocity fluctuation
are zero at the wall. Hence, in its proximity the components can be written as
the Taylor series expansion (see eg. Manceau et al., 2001)

u ∼ a1y + a2y2 + ...
v ∼ b1y + b2y2 + ...
w ∼ c1y + c2y2 + ...

where the streamwise, wall-normal and spanwise fluctuation components are
denoted by u, v and w, respectively. Applying the above formulae to the
continuity equation we obtain

0 =
∂v

∂y

∣∣∣∣∣
y=0

∼ b1 + 2b2y (2.2)

hence b1 = 0 and
v ∼ b2y2 + ...

This result reveals the effect of kinematic blocking of the wall-normal fluctu-
ations, which is felt even far from the wall and consequently introduces strong
anisotropy to the Reynolds stress tensor. On the other hand, the enhancement
of the pressure fluctuations, due to their reflection from the surface, induces
isotropisation of the Reynolds stresses. However, this effect is weaker than
the kinematic blocking. As the wall is approached and the viscous transport
becomes dominant, characteristic length and time scales of turbulent eddies
become comparable with those of dissipative eddies. Hence, the Kolmogorov
hypothesis is not valid in this region; this fact irrevocably limits the validity
of standard turbulence models.
In the case of incompressible flows considered here, the kinematic effects of

wall blocking and pressure reflection are definitely of non-local elliptic nature
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and are immediately felt far from the wall. They represent a major challenge
for turbulence models where only one-point closures (i.e. functions of only one
point x of the flow) are involved. Let us recall here the transport equations
for the Reynolds stresses (cf. Pope, 2000) which take the following form

D〈uiuj〉
Dt

= − ∂〈uiujuk〉
∂xk︸ ︷︷ ︸
DT
ij

−〈uiuk〉
∂〈Uj〉
∂xk

− 〈ujuk〉
∂〈Ui〉
∂xk︸ ︷︷ ︸

Pij

+Πij + ν∇2〈uiuj〉︸ ︷︷ ︸
Dν
ij

(2.3)
where D/Dt stands for the material derivative along mean streamlines, the
diffusion tensor DTij is connected with turbulent transport, D

ν
ij stands for the

viscous transport and Pij is the production of turbulent stresses 〈uiuj〉. The
non-locality of the flow field is represented by the tensor Πij which contains
mean velocity-pressure gradient correlations and dissipation

Πij = −
1

̺

〈
ui
∂p

∂xj

〉
− 1
̺

〈
uj
∂p

∂xi

〉
− 2ν
〈 ∂ui
∂xk

∂uj
∂xk

〉
= φij + ǫij (2.4)

The dissipation ǫij is a function of the fluctuating velocity gradient which can
be interpreted as a quantity describing a ”short-range” non-locality, connec-
ted with the length scales of dissipative eddies. Phenomena occurring at the
smallest turbulent scales are difficult to model, especially when the hypothe-
sis of separation of integral and viscous scales is no longer valid (Bradshaw,
1994). The Kolmogorov assumption breaks down in this region, as the rate of
energy transfer from the large to the smaller eddies is not equal to the rate
at which the energy is being dissipated by the smallest vortices. The pressure
fluctuations p, present in the RHS of Eq. (2.4), can be computed from the
elliptic Poisson equation (cf. Pope, 2000). Hence, they represent a long-range
non-locality of turbulence.

It is evident that non-local effects should be somehow included in turbu-
lence models, whereas usual hypotheses applied to derive the basic version of
closure are: high Reynolds number, local isotropy and quasi-homogeneity of
turbulence. The tensor Πij is then a function of one-point statistics like the
dissipation rate of the kinetic energy ǫ, turbulent stresses 〈uiuj〉 and mean
velocity gradients. The dissipation ǫ is computed from its own transport equ-
ation. In order to derive a physically sound closure for near-wall flows, Durbin
(1993) proposed a model which is based on an integral form of the tensor φij.
From the Poisson equation for pressure fluctuations the tensor φij can be writ-
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ten as an integral containing a function of two-point statistics (i.e. non-local
information)

̺φij(x) =

∫

Ω

Ψij(x,x
′)GΩ(x,x

′) dV (x′) (2.5)

where GΩ is a Green function of the flow domain Ω, further replaced by its
free-space form G = −1/(4πr), with r = |x − x′|. The exact form of the
function Ψij is detailed in e.g. Manceau (2000) and Pope (2000). As evidenced
by experiments, the two-point correlations can be approximated, for a wide
range of r values, by exponential functions. Durbin proposed the following
form for the function Ψij

Ψij(x,x
′) = k(x)

Ψij(x
′,x′)

k(x′)
exp
(
− r
L

)
(2.6)

where L is the characteristic length scale defined as the maximum of the
turbulent length scale and the scale connected with dissipative eddies (valid
close to the wall)

L = CLmax
{k3/2

ǫ
, CT
(ν3

ǫ

)1/4}
(2.7)

where CL and CT are model constants. Now, integral (2.5) becomes

̺
φij(x)

k(x)
= −
∫

Ω

Ψij(x
′,x′)

k(x′)

exp(−r/L)
4πr

dV (x′) (2.8)

The term G′ = − exp(−r/L)/(4πr) which appears inside the integral, is the
Green function connected with the operator 1/L2 − ∇2; therefore φij is the
solution of the following elliptic Helmholz equation

L2∇2φij
k
− φij
k
= −
φhij
k

(2.9)

Above, φhij denotes a standard quasi-homogeneous model used to compute
turbulent fields far from walls, e.g. Rotta’s return to isotropy or isotropisation
of production (IP) model. It is assumed that far from walls the Laplacian term
in Eq. (2.9) disappears and then φij is equal to its quasi-homogeneous form.
The same elliptic equation is solved also for the dissipation tensor ǫij and
hence for the tensor Πij.

A simplified elliptic relaxation approach was specified by Manceau and
Hanjalić (2002). They state that six elliptic equations (2.9) of the original mo-
del of Durbin are somewhat redundant and unnecessarily increase the compu-
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tational cost. Manceau and Hanjalić solve only one additional elliptic equation
for the so-called blending function α

L2∇2α− α = −1
k

(2.10)

The velocity-pressure-gradient tensor φij is then found from an interpolation
between its near-wall and quasi-homogeneous limits

φij = (1− kα)φwij + kαφhij (2.11)

It follows from the above formula that the required near-wall value of kα is
0; in the core region of the flow we expect kα = 1. Hence, Eq. (2.10) is solved
with the following boundary conditions

α
∣∣∣
y=0
= 0 α

∣∣∣
y=H
=
1

k
(2.12)

The same blending method is used for the dissipation tensor ǫij.

3. Turbulence modelling using PDF method

The modelling of a turbulent field can be performed in two basic appro-
aches, i.e. in the Eulerian or Lagrangian point of view. In the first one, most
often used, flow variables are connected with a certain point in space (x, y, z)
and time t. Thus, discretized equations can be solved on a space-time grid.
A good example of the Eulerian approach are the Reynolds stress equations
(2.3), presented in the previous section. In the Lagrangian approach flow pa-
rameters are related to a certain element of fluid which has the initial position
(x0, y0, z0) in the time instant t0. In the Lagrangian approach used in the
paper we solve equations for stochastic particles which model fluid elements.

3.1. High-Reynolds models

In the modelling of high-Reynolds number flows, viscosity is not accounted
for explicitly, the viscous action is modelled only by the dissipation ǫ. Trans-
port equations for stochastic particles take the general form (Pope, 2000)

dXi = Ui dt
(3.1)

dUi = −
1

̺

∂〈P 〉
∂xi
dt−Gij(Uj − 〈Uj〉) dt −

1

2

ǫ

k
(Ui − 〈Ui〉) dt +

√
B dWi
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where

B =
2

3
Gkl〈ukul〉

Above, dW is an increment of the Wiener process, written in the discrete
form as ∆W =

√
∆t ξ where ξ is a standard random Gaussian number. The

turbulence model is introduced by a specific form of the tensor Gij which is
a function of mean turbulence statistics and model constants. In the Monte
Carlo simulation stochastic differential equations (3.1) are solved for a large set
of stochastic particles. In order to compute the mean statistics the flow domain
is first discretized and then parameters connected with particles within one
cell of the spatial grid are averaged. PDF computations in the high Reynolds
number approach for fully developed channel flow were performed by Minier
and Pozorski (1999). Boundary conditions for stochastic particles were placed
in the logarithmic region.
It is important to note that from Lagrangian equations (3.1) one can de-

duce corresponding Eulerian equations for the one-point statistics, namely the
mean velocity 〈Ui〉, the Reynolds stresses 〈uiuj〉, as well as for higher order
moments, e.g. triple correlations 〈uiujuk〉. For this purpose we write the evo-
lution equation for the probability density function f = f(V ;x, t), also called
the Fokker-Planck formula (van Kampen, 1990). For the sake of an example,
let us consider the following stochastic equations

dX = U dt

dU = Adt +B dW

where A and B are constants. The probability density function connected with
the above equations is denoted by f(V ;x, t), where x, V belong to a sample
space of the position X and the velocity U . The expression f(V ;x, t) dV is
the probability that the variable U connected with a stochastic particle takes
a value within the bounds V ¬ U ¬ V + dV . The evolution equation for the
probability density function writes

∂f

∂t
+ V
∂f

∂x
= −A ∂f

∂V
+
1

2
B
∂2f

∂V 2

Similarly, stochastic equations (3.1) correspond to the following formula for
the PDF

∂f

∂t
+ Vi
∂f

∂xi
=
1

̺

∂〈P 〉
∂xi

∂f

∂Vi
+
∂

∂Vi

[
Gij(Vj − 〈Uj〉)f

]
+

(3.2)

+
1

2

ǫ

k

∂

∂Vi
[(Vi − 〈Ui〉)f ] +

1

2
B
∂2f

∂V 2j
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The mean velocity and other statistics can be computed from integration over
the sample space

〈Ui〉(x, t) =
+∞∫

−∞

Vif(V ;x, t) dV

(3.3)

〈uiuj〉(x, t) =
+∞∫

−∞

(Vi − 〈Ui〉)(Vj − 〈Uj〉)f(V ;x, t) dV

In order to derive the transport equation for the mean velocity, formula (3.2)
is multiplied by Vi and then integrated over V . Equations for the Reynolds
stresses are obtained after multiplying (3.2) by (Vi − 〈Ui〉)(Vj − 〈Uj〉) and
integrating. As a result we get

D〈Ui〉
Dt

= −∂〈uiuj〉
∂xj

− 1
̺

∂〈P 〉
∂xi

(3.4)

D〈uiuj〉
Dt

= −∂〈uiujuk〉
∂xk

− 〈uiuk〉
∂〈Uj〉
∂xk

− 〈ujuk〉
∂〈Ui〉
∂xk

−

−Gjk〈uiuk〉 −Gik〈ujuk〉 −
ǫ

k
〈uiuj〉+Bδij

At this stage, the PDF method corresponds to the Eulerian high-Re mean
velocity equation and the Reynolds stress transport (RSM) models; however
the turbulent transport term ∂〈uiujuk〉/∂xk is exact and does not require
modelling.
The particular form of Gij depends on an assumed turbulence model

(Pope, 1994). As an example, Gij = ǫ/2k(1 − 2C̃)δij where C̃ is a constant,
corresponds to the Eulerian return-to-isotropy model derived by Rotta.

3.2. Low-Reynolds models

In the modelling of low-Reynolds numbers flows it is important to inc-
lude viscous transport of momentum. This poses no particular difficulty in
the Eulerian approach, where viscosity appears explicitly in terms containing
Laplacians of mean quantities. A low-Re model for the Lagrangian approach
was derived by Dreeben and Pope (1998); first, the viscous diffusion term
was represented through a random motion of stochastic particles. Hence, the
equation for a particle position writes

dXi = Ui dt +
√
2ν dWXi (3.5)
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This form is chosen to retrieve the ν∇2f term in the evolution equation for the
PDF; this further leads to the Laplacian terms in the mean velocity and stress
transport equations. Next, the expression for velocity increment is derived via
the Ito equation (van Kampen, 1990)

dUi =
∂Ui
∂t
dt+
∂Ui
∂xj
dXj +

1

2

∂2Ui
∂x2k
(dXk)

2 (3.6)

After substituting formula (3.5) the above equation takes the form

dUi =
(∂Ui
∂t
+ Uj
∂Ui
∂xj

)
dt+
√
2ν
∂Ui
∂xj
dWXj + ν

∂2Ui
∂x2k
dt (3.7)

Noting that the expression in parentheses is the RHS of Navier-Stokes equ-
ations, we get

dUi =
(
−1
̺

∂P

∂xi
+ ν
∂2Ui
∂x2k

)
dt +
√
2ν
∂Ui
∂xj
dWXj + ν

∂2Ui
∂x2k
dt (3.8)

The instantaneous velocity and pressure can be written according to the Rey-
nolds decomposition as a sum of their mean and fluctuation parts. However,
gradients of ui and p are unknown and require modelling. Hence, for these
terms we apply the same closure as for high Reynolds numbers

dUi =
(
−1
̺

∂〈P 〉
∂xi
+ 2ν
∂2〈Ui〉
∂x2k

)
dt+
√
2ν
∂〈Ui〉
∂xj
dWXj +

(3.9)

+Gij(Uj − 〈Uj〉) dt −
1

2

ǫ

k
(Ui − 〈Ui〉) dt +

√
B dW Vi

Next, a formula for the PDF corresponding to equations (3.5) and (3.9) can
be derived. After the proper integration we obtain the following transport
equations

D〈Ui〉
Dt

= −∂〈uiuj〉
∂xj

− 1
̺

∂〈P 〉
∂xi
+ ν
∂2〈Ui〉
∂x2k

(3.10)

D〈uiuj〉
Dt

= −∂〈uiujuk〉
∂xk

− 〈uiuk〉
∂〈Uj〉
∂xk

− 〈ujuk〉
∂〈Ui〉
∂xk

+

+ν
∂2〈uiuj〉
∂x2k

−Gjk〈uiuk〉 −Gik〈ujuk〉 −
ǫ

k
〈uiuj〉+Bδij

It should be noted that Reynolds equation (3.10)1 is exact and all the transport
equations contain the required Laplacians of mean quantities.
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3.3. Modelling of near-wall flows

Apart from the viscosity action, the modelling of near-wall flows should
also account for non-local kinematic effects which were described in Section 2.
For the purpose, Dreeben and Pope (1998) solved elliptic relaxation equations
for all components of the tensor Gij . In our work we applied the simplified
version of the method (Manceau and Hanjalić, 2002) where only one additional
equation for elliptic blending function (2.10) is solved. Components of the
tensor Gij are then computed from the relation

Gij = (1− kα)Gwij + kαGhij (3.11)

The elliptic blending method was initially derived for the Eulerian approach.
Here, we apply it to the Lagrangian equations. One of the differences is con-
cerned with the proper near-wall form Gwij . It should assure a proper scaling
of Reynolds stresses in the near-wall region, namely 〈u2〉 ∼ y2, 〈v2〉 ∼ y4,
〈w2〉 ∼ y2 and 〈uv〉 ∼ y3. Here, we recall a derivation proposed by Dreeben
and Pope (1998). Near the wall, the turbulent transport, convective and pro-
duction terms become negligible and Reynolds-stress equations (3.10)2 reduce
to

ν
∂2〈uiuj〉
∂y2

− 〈uiuj〉
k
ǫ = Gik〈ujuk〉+Gjk〈uiuk〉 −

2

3
Gkl〈ukul〉δij (3.12)

It is assumed that near the wall the tensor Gij takes the form Gij = Cǫ/k
where C is a constant. From the near-wall balance of terms in the kinetic
energy equation ν∇2k = ǫ we derive the scaling formula ǫ/k = 2ν/y2 which
is further used in (3.12), leading to the following differential equation

ν
∂2〈uiuj〉
∂y2

− aij
〈uiuj〉
y2
= O(y) (3.13)

(no summation over repeating indices). The solution to the above equation is

〈uiuj〉 = Aijy(1−
√
1+4aij)/2 +Bijy

(1+
√
1+4aij )/2 + Cijy

3 (3.14)

The value of exponent in the first term is negative, hence the no-slip boundary
condition forces Aij = 0. In order to assure that 〈u2〉 ∼ y2 and 〈w2〉 ∼ y2
we should have a11 = a33 = 2; with aij > 6 the last term on the RHS will
dominate the solution and 〈uiuj〉 ∼ y3. The boundary form Gwij used in the
present computations

Gw22 =
9

2

ǫ

k
Gwij = 0 for i 6= 2 or j 6= 2 (3.15)
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gives a11 = a33 = 2, a12 = 11, a22 = 14, which assure the proper scaling of
all Reynolds stresses except for 〈v2〉, which should be of the order y4. It is a
drawback of the elliptic relaxation method that it does not provide the proper
scaling of all Reynolds stresses. We also state that with the above definition,
Gwij does not contract to zero when the equation for the kinetic energy is
derived, however the remaining term is of a smaller order and can therefore
be neglected.

4. Numerical results

The computations have been performed for the case of fully developed
turbulent channel flow at Reτ = 395. In the presence of large mean velocity
gradients it was necessary to use a turbulence model that accounts for the
rapid pressure term (Pope, 2000). For this reason, we implemented a model
that corresponds to the Eulerian basic pressure-strain model (Rotta+IP) used
by Durbin (1993), with the same values of constants. The tensor Ghij is

Ghij =
1

2

ǫ

k
(C1 − 1)δij − C2

∂〈Ui〉
∂xj

(4.1)

with C1 = 1.5 and C2 = 0.6. For this case, we do not solve a separate
equation for the turbulent frequency ω, but the values of the turbulent time
scale T = 1/〈ω〉 are read from a file with the DNS data of Moser et al. (1999).
It is left for further work to set the proper values of coefficients in the ω
equation and solve it together with the IP model for velocity. The dissipation
which appears in the model equations is a sum of two components

ǫ = 〈ω〉k + C2T ν〈ω〉2 (4.2)

the first of them stands for the turbulent time scale and the second one is
connected with the scale of dissipative eddies. The results illustrate the need
of a specific near-wall treatment, as actually done through the elliptic blending
equation. Both the mean velocity (Fig. 1a) and the turbulent kinetic energy
(Fig. 1b) are in better accordance with the DNS data when the elliptic rela-
xation model is applied. In Fig. 1b, a sharp maximum of the kinetic energy is
observed at y/H = 0.03 (around y+ ≈ 12) as evidenced by the DNS data,
although it is still somewhat underpredicted.
Contrary to the streamwise component u, the fluctuations of v are dam-

ped. This is illustrated by scatter plots of near-wall streamwise, spanwise and
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Fig. 1. Turbulent channel flow at Reτ = 395, the IP model: (a) mean velocity 〈U〉+,
(b) turbulent kinetic energy k+. DNS data (Moser et al., 1999) ■; PDF

computations: without elliptic relaxation (– – –), with elliptic relaxation (——–)

Fig. 2. Turbulent channel flow at Reτ = 395; Scatter plots of velocity components
near the wall: (a) streamwise (solid line – theoretical profile U+ = y+),

(b) wall-normal, (c) spanwise
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wall-normal velocity components presented in Fig. 2. The variance of wall-
normal fluctuations is much smaller than that of the two other components.

After applying the elliptic relaxation method also the shear stresses 〈uv〉
are in a good overall agreement with the DNS data (cf. Fig. 3a). This is also
clearly seen in the near-wall scaling presented in Fig. 3b. Although the elliptic
relaxation improves the results, we do not obtain exactly 〈uv〉 ∼ y3. This can
be caused by numerical problems with the near-wall integration.

Fig. 3. Turbulent channel flow at Reτ = 395; (a) turbulent shear stress 〈uv〉,
(b) near-wall scaling of turbulent shear stress and kinetic energy. DNS data (Moser
et al., 1999): symbols; PDF computations: without elliptic relaxation (– – –), with

elliptic relaxation (——–)

Let us only note here that in the vicinity of the wall, the turbulent kinetic
energy k tends to 0 as y2, while its dissipation rate attains a constant value.
At the same time the streamwise and spanwise velocity components scale as y.
As a consequence, when the Euler discrete scheme is used to solve stochastic
differential equation (3.9), two of its components tend to infinity with y → 0

ǫ

k
ui∆t ∼

1

y
→∞ for i 6= 2 (4.3)

This causes serious numerical problems in the near-wall integration, unless the
time step ∆t is very small. This is the reason for introducing another numerical
scheme based on the exponential solution to equations (3.9). The numerical
scheme presented in the work of Minier et al. (2001) has been further developed
here to account for a non-diagonal form of the matrix Gij and included in the
numerical algorithm.
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5. Conclusions and perspectives

The elliptic relaxation method was used to model the non-local effects
connected with the presence of the wall. The derivation of the method was
briefly recalled in the paper. An advantage of the elliptic relaxation in compa-
rison to the damping function approach is that there is no explicit dependence
on the wall distance y or local Reynolds number. Moreover, the method is
more physically sound and does not depend on flow geometry. Simplified va-
riants of the method like e.g. k-v2-f (Durbin, 1995) or elliptic blending model
(Manceau and Hanjalić, 2002) are interesting for engineering applications due
to a reduced numerical cost. Another promising perspective for the near-wall
RANS models is to solve the equations in conjunction with the Large Eddy
Simulation (LES) approach for the outer layer of the flow (Piomelli and Bala-
ras, 2001). This makes it possible to perform high-Re LES computations at a
reasonable cost.
In the paper we applied the elliptic blending approach in the Lagrangian

PDF model to compute velocity statistics in a fully developed turbulent chan-
nel flow. Reasonable accuracy has been achieved in comparison with the ava-
ilable DNS data of Moser et al. (1999) at Reτ = 395. The near-wall turbulence
modelling in the PDF approach is, to a certain degree, related to the Eulerian
second-moment closure. However, the turbulent transport term is closed and
does not require modelling. The PDF method is often used to model chemical
reactions (Libby and Williams, 1994) due to the closed source term. For the
purpose, either a joint velocity-scalar PDF approach can be used or velocity
statistics can be taken from external data with only scalar dynamics computed
by the PDF method (Pozorski, 2002).

When supplemented with a suitable scalar transport equation, the appro-
ach presented in the paper can be applied to the case of near-wall turbulence
with heat transfer to model the thermal fluctuations in the vicinity of the
wall. Ultimately, such a model will serve as a building block to be used in a
coupled solid-fluid case with the aim of predicting the thermal stresses in the
wall material.

References

1. Aubry N., Holmes P., Lumley J.L., Stone E., 1988, The dynamics of
coherent structures in the wall region of turbulent boundary layer, J. Fluid
Mech., 192, 115-173



Modelling of turbulent flow... 17

2. Bradshaw P., 1994, Turbulence: the chief outstanding difficulty of our subject,
Exp. Fluids, 16, 203-216

3. Dreeben T.D., Pope S.B., 1998, Probability density function/Monte Carlo
simulation of near-wall turbulent flows, J. Fluid Mech., 357, 141-167

4. Durbin P.A., 1993, A Reynolds-stress model for near-wall turbulence, J. Fluid
Mech., 249, 465-498

5. Durbin P.A., 1995, Separated flow computations with the k-ǫ-v2 model, AIAA
J., 33, 659-664

6. van Kampen N.G., 1990, Procesy stochastyczne w fizyce i chemii, PWN, War-
szawa

7. Libby P., Williams F., 1994, Turbulent Reacting Flows, Academic Press

8. Manceau R., 2000, Reproducing the blocking effect of the wall in one-point
turbulence models, Proc. ECCOMAS, 11-14 Sept., Barcelona, Spain

9. Manceau R., Hanjalić K., 2002, Elliptic blending model: A new near-wall
Reynolds-stress turbulence closure, Phys. Fluids, 14, 744-754

10. Manceau R., Meng W., Laurence D., 2001, Inhomogeneity and anisotropy
effects on the redistribution term in Reynolds – averaged Navier-Stokes mode-
ling, J. Fluid Mech., 438, 307-338

11. Minier J.-P., Peirano E., Talay D., 2001, Schémas numériques faibles
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Modelowanie przepływu turbulentnego w obszarze przyściennym

metodą PDF

Streszczenie

W pracy przedstawiono modele turbulencji dla przepływów przyściennych wyko-
rzystujące metodę relaksacji eliptycznej. Metodę tę zastosowano do obliczeń w po-
dejściu Lagrange’a. Zaprezentowano przy tym model dla funkcji gęstości prawdopo-
dobieństwa (ang. PDF — Probability Density Function) stosowany do przepływów
o niskich liczbach Reynoldsa. Wykonano obliczenia dla przypadku przepływu turbu-
lentnego w kanale płaskim; wyniki porównano z dostępnymi danymi DNS.
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