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The study of spatial human movements requires the development and use
of a three-dimensional model. The model proposed here has 44 degrees-of-
freedom and it is described using natural coordinates, which do not require
an explicit definition of rotation coordinates. The biomechanical model con-
sists of 16 anatomical segments composed of 33 rigid bodies. Joint actuators
are introduced into equations of motion of the multibody model by means of
kinematic driver constraints in order to reflect the effect of the muscle forces
about each anatomical joint. After associating a Lagrange multiplier to each
joint actuator, the torques that represent muscle forces become coupled with
the biomechanical model through the Jacobian matrix of the underlying mul-
tibody system. The developed model is applied to identify net torques and
reaction forces at the anatomical joints in application cases that include the
take-off to aerial trajectories and standing backwards somersault.
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1. Introduction

The natural coordinates were first proposed by Jalón et al. (1986) and descri-
bed later in detail by Jalón and Bayo (1994). They provide a natural framework
for the description of complete spatial motion of multibody systems without
using rotation coordinates explicitly. Not only these coordinates lead to very
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efficient numerical models but also there is a direct connection between the
coordinates defining the bodies and the anatomical landmarks associated to
kinematic data acquisition typical to biomechanical modelling. Despite the
fact that the natural coordinates are commonly used to investigate different
types of mechanical systems, they are sporadically applied to biomechanics as
proposed by Celigüeta (1996), Silva et al. (1997), Silva and Ambrósio (2002),
and Ambrósio et al. (2001). Therefore, one of the purposes of this work is
to demonstrate that the modelling in biomechanics by means of natural co-
ordinates is not only efficient and attractive but also a natural way to map
the body anatomical landmarks into coordinates defining the biomechanical
system.

The number of natural coordinates used to represent a biomechanical mo-
del is always larger than its number of degrees-of-freedom, which means that
they are related by proper algebraic constraint equations. These are usually
nonlinear and play a major role in the kinematic and dynamic analysis of mul-
tibody systems. The number of independent algebraic constraint equations is
equal to the difference between the number of natural coordinates and the
number of degrees-of-freedom of a system. There are some aspects in which a
set of natural coordinates is advantageous. First, the whole multibody system
is defined directly in the global reference frame. Second, natural coordinates
are usually defined at the joints of the system and shared by adjacent bo-
dies, which reduces the total number of coordinates required to represent the
model and considerably simplifies the definition of the joint constraint equ-
ations. Third, with natural coordinates the constraint equations, that arise
from rigid body and joint conditions, are linear or quadratic. This means that
their contribution to the Jacobian matrix of the constraints is a constant or
linear function of the natural coordinates, which leads to efficient numerical
implementations.

The aim of this paper is to present a general purpose methodology for the
three-dimensional modelling in biomechanics. The approach is based on natu-
ral coordinates, and it focuses on the identification of internal reaction forces
and net torques at anatomical joints of an individual performing selected mo-
tor tasks. Two different human activities have been chosen to demonstrate the
method offered: the take-off for a jump and the standing backwards somer-
sault. The selected jump is being very often preformed when passing natural
obstacles like puddles or ditches, and it is undoubtedly a frequent human ac-
tivity. Many researches have so far conducted analyses of long jumps (e.g.,
Hay, 1993; Lees et al., 1994) and of other related motor task like vertical jum-
ping (e.g., Pandy et al., 1990, 1992; Bobbert and Schenau, 1988; Selbie and
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Caldwell, 1996; Eberhard et al., 1999). However, in the case of the specified
jump, these articles can be helpful in a very limited way since they are either
descriptive by nature or the results reported concern two-dimensional models
only. Numerous standing backwards somersault analyses deal mostly with the
methodology of learning this stunt neglecting its mechanical aspects (e.g.,
Mieczkowski, 1982). The quantitative description of the standing backwards
somersault is important for both cognitive and practical reasons, leading to
better understanding of the athlete movements and forms a basis for more con-
scious mastering of the evolution of the somersault technique. In the process
of studying the standing backwards somersault in terms of the biomechanical
analysis, a three-dimensional methodology is proposed in this work and is de-
monstrated in a movement of the human body that leads to a change in space
positions of anatomical segments by a complete revolution by 360 degrees,
emphasizing the robustness of the methods adopted.

2. Biomechanical model

The study presented here uses the biomechanical model shown in Fig. 1a,
which consists of 16 anatomical segments. The biomechanical model is descri-
bed by natural coordinates that are used to construct its kinematic structure
made of 33 rigid bodies branching from the pelvis in open chain linkages
(Silva and Ambrósio, 2002). The rigid bodies that form the neck, arms, fo-
rearms, thighs, shanks, upper torso (numbered in Fig. 1b from 19 to 25) and
the lower torso (numbers 6, 7, 8) are defined by the Cartesian coordinates of
two points and one unit vector each. The hands, feet and head are defined by
the coordinates of three points and one unit vector. The first type of the rigid
body has a simpler kinematic structure but generates a non-constant mass
matrix in the equations of motion of the system. The second type of the rigid
body has a more complex kinematic structure but generates a constant mass
matrix (Jalón and Bayo, 1994). The complete set of rigid bodies is described
by means of 25 points and 22 unit vectors, accounting a total number of 141
natural coordinates.
The most common way of modelling the joints in the natural coordina-

tes environment, corresponding to the sharing points and vectors among the
adjacent segments, is depicted in Fig. 2.

The kinematic structure of the biomechanical model, shown in Fig. 1c, is
worth noticing as it suggests a more detailed discussion. The calculation of
the internal joint reactions is usually very important from the biomechanical
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Fig. 1. Biomechanical model. (a) Representation of sixteen anatomical segments;
(b) the structure of thirty three rigid bodies (with body numbers inside circles) used
to represent the sixteen anatomical segments, and fifteen kinematic joints (with the
joint numbers in bold); (c) an exploded view of the kinematic structure of the
biomechanical model with indication of the points (represented in italic) and unit

vectors

Fig. 2. The model of anatomical joints with natural coordinates: (a) the spherical
joint for the hip; (b) the revolute joint for the elbow; (c) the universal joint for the

ankle

standpoint. To calculate their anterior- posterior, medial-lateral and vertical
components, all the kinematic joint constraints must be explicitly defined. This
is achieved by introducing additional rigid bodies, points and unit vectors at
the joints that are physically the same but mathematically distinguishable
(Silva, 2003). As a result, the kinematic structure of the biomechanical model
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becomes more complex and the biomechanical model is provided with revo-
lute and universal joints only, as represented in Fig. 1c. The universal joints
are located in the ankle, in the radioulnar articulations, between the 12th tho-
racic and 1st lumbar vertebrae (designated by lower-upper torso joint) and
between the 7th cervical and 1st thoracic vertebrae (referred to as the upper
torso-neck joint). Since most of the joints are defined naturally by the sharing
points and vectors between the contiguous segments, there is a total number
of 97 non-redundant kinematic constraints only. The model has 44 degrees
of freedom that correspond to 38 rotations about the revolute and universal
joints, and 6 degrees-of-freedom associated with the pelvis, which is treated as
the base body. The degrees-of-freedom of the biomechanical model proposed
are numbered in Fig. 3a.

Fig. 3. (a) Degrees of freedom of the biomechanical model; (b) the joint actuator
driving the knee joint in the sagittal plane

One of the forms of calculating internal net torques at the joints of the
biomechanical model is to assume that each degree-of-freedom is driven by an
adequate joint actuator, such as the one depicted in Fig. 3b. Joint actuators
are introduced into equations of motion of the biomechanical model by means
of kinematic driver constraints of the scalar product type, which are described
in Table 1.

The body segment parameters for the biomechanical model, which include
the body mass, principal moments of inertia, segment lengths, and location
of the center of mass of each segment with respect to the proximal joint, are
estimated from the data reported by Laananen et al. (1983), Laananen (1991)
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and Zatsiorsky (1998). All these parameters are scaled according to the subject
height and mass using the procedures proposed by Laananen (1991).

3. Multibody formulation

Individual rigid bodies of the biomechanical model are described by means
of a set of natural coordinates that is composed of the Cartesian coordinates of
several points and unit vectors located at the joints and segment extremities.
The vector of generalized coordinates of the whole biomechanical model is
denoted by

q = [q1, q2, . . . , qn]
> (3.1)

where n = 3(np+ nv) is the total number of natural coordinates and np and
nv are the total number of points and unit vectors of the model, respecti-
vely. The number of natural coordinates is always higher than the number of
degrees-of-freedom of the system, which means that some kinematic constraint
equations need to be added to unequivocally define the kinematic structure
and topology of the biomechanical model. In addition to the joint and driving
constraints, there are also rigid body constraints utilized in the multibody
approach presented. They express physical properties of rigid bodies such as
constant distance between two points, constant angle between two segments
or constant length of a unit vector. The latter condition implies the norma-
lization constraint a2x + a

2
y + a

2
z = 1 on the coordinates of the unit vector

a = [ax, ay, az ]
>. The physical interpretation of a Lagrange multiplier associa-

ted with this constraint when performing the inverse dynamic analysis is an
axial pair of forces applied at the extremities of the unit vector. The rigid body
and driving constraints may be represented by the scalar product equation

Φsp(q, t) = v>u− LvLu cos(〈v,u〉(t)) = 0 (3.2)

where v and u are two generic vectors used in the definition of rigid bodies,
Lv and Lu are their respective norms and 〈v,u〉(t) is the angle between them,
which may be time dependent. It is worth pointing out that the parameters
(Lu, Lv and 〈v,u〉(t)) in Eq. (3.2) describe constraints imposed on u and v.
They have constant or varying values (for driving constraints) and are com-
puted (for non-driving constraints) only once at the beginning of the analysis
in the pre-processing phase. Equation (3.2) presents some innovative aspects
when compared with the original formulation proposed by Jálon and Bayo
(1994), since it comprises in a single analytical expression several kinematic
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constraints with different physical meanings, depending on the process of cal-
culation of the vectors v and u. Considering that ri, rj , rk and rl are the
Cartesian coordinates of the points i, j, k and l, and that a and b are unit
vectors, the most relevant kinematic constraints involving the scalar product
and their physical meanings are presented in Table 1.

Table 1. Physical meanings of the scalar product constraints

Constraint
v u Lv Lu 〈v,u〉

Graphical
description representation

Constant distance
between Bji Bji Lij Lij 0
points i and j

Unit module vector a a 1 1 0

Constant angle
between unit a a 1 1 α

vectors a and b

Constant angle
between segment rij Bji a Lij 1 β

and unit vector a

Constant angle
between segments Bji Bik Lij Lkl γ

rij and rkl
Rotational driver
around revolute joint
located in point i, Bji Bki Lij Lik φ

using segments
rij and rik

where Bij = (ri − rj) and φ = f(t).

With the natural coordinates, the constraint equations that arise from
a rigid body and joint conditions are quadratic, so their Jacobian matrix is
a linear function of the natural coordinates, which is very useful from the
programming standpoint. In addition, Equation (3.2) may express rheonomic
constraints when the angle 〈v,u〉 varies in time, which is used to define ro-
tational driver actuators, such as the one presented in Fig. 3b. All constraint
equations are assembled in a single vector denoted as

Φ(q, t) = 0 (3.3)
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The biomechanical model is implemented in a general purpose multibody
code (Nikravesh, 1988; Haug, 1989; Schiehlen, 1997; Silva, 2003). The dynamic
equations of motion for the model can be written in the generic form as

Mq̈ +Φ>q λ = g (3.4)

where M is the global mass matrix of the system, Φq the Jacobian matrix
of the constraints, q̈ the vector of generalized accelerations, g the genera-
lized force vector and λ the vector of Lagrange multipliers. Note that the
product Φ>q λ in Eq. (3.4) represents the joint reaction forces and the joint
net moments. A unique vector λ is obtained when solving Eq. (3.4) during
the inverse dynamics analysis. This is because the number of unknowns to cal-
culate became equal to the number of equations of motion after introducing
the driving constraints. It is worth pointing out that when solving the inverse
dynamics problem one can obtain real values for the net torques (limited by
the accuracy of the estimates of the angular accelerations only), but not real
values for the reactions at the joints. Irrespective of methods applied, whether
it is the Lagrange multipliers or conventional Newton-Euler approach, they
do not take into account the contributions of individual muscle forces to the
resultant joint reactions. Giving a graphic description of this fact, it is as if
the biomechanical model was driven by torsional actuators located directly at
the joints, instead of muscles. Nevertheless, the joint reactions computed this
way are of great importance in the presence of transient external forces, and
they can be easily adjusted after solving the individual muscle distribution
problem at a particular joint.

4. Data acquisition

An adult male with the age of 23, height of 168 cm and a body mass
of 68 kg, carried out several jumps and back somersaults. Among different
trials, one of each activities was chosen as the most representative and was
used in this work to illustrate the methodologies proposed. In all jumps, the
force-plate data and the body motion kinematic data were synchronized and
recorded simultaneously. The ground reaction forces were measured using a
Kistler 9281B force platform at a sampling frequency at 1000 Hz, while the
body motion was videotaped at 50Hz by 4 synchronized cameras. The global
reference frame was attached to the center of the force platform. The positions
of the 23 anatomical points were used to reconstruct the motion. It is illustra-
ted by two pictures shown in Fig. 4a, obtained during the beginning and the
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end of the take-off phase. The coordinates of all anatomical points projected
in the video frames, were digitized manually. The DLT technique was used
to calculate the spatial coordinates of the anatomical points (Abdel-Aziz and
Karara, 1971). The raw data consisting on the spatial coordinates of the ana-
tomical points was smoothed by means of a low-pass Butterworth 2nd order
filter with zero-phase lag. Proper cut-off frequencies for every segment of the
biomechanical model were chosen after performing a residual analysis (Winter,
1990). Such a residual analysis provides, for the type of motion under analysis,
cut-off frequencies that range between 4 and 6Hz. Taking into account the first
investigated motor task, the average RMS differences (between raw and smo-
othed data) of 6.5mm, 3.0mm and 3.3mm were estimated for the x, y, and z
coordinates, respectively. The DLT procedure did not ensure constant lengths
of the anatomical segments during all instants of time. Therefore, a techni-
que that ensures the kinematic consistency of the motion data was applied to
avoid further problems in the estimation of the net torques and reactions at
the joints (Silva and Ambrósio, 2002). In the cited work, the time histories
of the net torques at the ankle, knee and hip joints during gait obtained for
consistent as well as non-consistent kinematic data were presented.

Fig. 4. Views from cameras 1 and 3; (a) long jump, white dots mark the positions of
the 23 anatomical points; (b) standing backwards somersault, the end of take-off

(left) and the beginning of landing (right)

5. Results

5.1. Long jump

The first step in order to apply the methods described is to acquire the force
and kinematic data according to the data acquisition procedures proposed.
The time characteristics of the measured ground reaction forces are shown in
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Fig. 5. This force data presents significant differences from that obtained in
the gait analysis not only due to the shapes of curves but also because of their
magnitude. The maximum vertical reaction is almost four times larger than
its equivalent in the gait and the peak value of the medial-lateral component
is seven times higher than its analogue in the gait (Silva, 2003). It is worth
noticing that the peak value of the anterior-posterior component of the force is
larger than what is observed during jumps performed on a trampoline (Blajer
and Czaplicki, 2003). An aliasing error during synchronization of the force
plate data with the frequency of the video cameras is also visible.

Fig. 5. Normalized vertical (Rz), anterior-posterior (Rx) and medial-lateral (Ry)
components of the ground reaction force measured in the force platform. The
markers denote the time instants for which there are video frames available.

BW – body weight

The inverse dynamic analysis of the biomechanical model was firstly carried
out to find the net moment of forces in the anatomical joints of the lower
extremities. The results obtained in the inverse dynamic analysis of the jump
are presented in Fig. 6. At the beginning of the trial, the jumper is in the
air. Having the trunk in a forward-lean position, the jumper raises it to an
upright position, which is achieved when the foot touches the ground. The
net torque in the hip joint starts with positive values because the described
movement requires the hamstrings and gluteus maximus to cooperate with
each other. The large peak of the net torque in the hip joint, occurring at
the beginning of the contact phase of the foot with the ground at t = 0.08 s,
reflects the impact nature of the ground reaction force at that time. The net
torque has a counterclockwise direction in the frontal plane, which means
that the hip abductors, like glutei muscles and tensor fasciae latae, are active.
The clockwise direction of the net torque in the sagittal plane in the hip
joint together with the net torque oriented opposite in the knee joint indicate
strong activity of vasti muscles. The ankle joint carries a considerable load
during the support phase as a consequence of the stimulation of the triceps
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surae muscle generating powerful ankle plantarflexion in order to push the
body forward and to prevent the shank bending down to the ground. Finally,
there is a distinguishable net torque in the hip joint in the transversal plane
at the beginning of the airborne phase, when the jumper starts moving his
thighs towards the trunk. The activity of the hip adductors, gluteus maximus
and iliopsoas muscles seems to ensure the medial rotation of the thigh.

Fig. 6. Normalized net torques at the basic joints of the supporting leg of the
jumper. BM – body mass

Fig. 7. Normalized reaction forces in the selected joints of the supporting leg during
the jump

The joint reaction forces, associated with the type of analysis carried out,
are depicted in Fig. 7. Note that using the joint torques to represent the mu-
scle actions, the joint reaction forces are simply an approximation of the real
forces, which can only be obtained with a complete muscle model. It is clearly
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visible, when comparing the curves presented in Fig. 5 and Fig. 7, considera-
ble damping of the vertical reaction force between the ground and hip joint
that ranges from 4 to 2 times the body weight. The anterior-posterior and the
medial- lateral components of the resultant reaction in the knee and in the
hip joint have practically opposite directions during the take-off phase of the
jump, which means that the femur presses the knee joint anteriorly and me-
dially, being simultaneously pressed posteriorly and laterally at the hip joint.

5.2. Standing backwards somersault

Having been an elite acrobat several years ago, the jumper performed the
standing backwards somersault extremely well with a well developed techni-
que, as represented in Fig. 4b. The upper and lower extremities were collateral
during the stunt. The feet, having the same initial position in the anterior-
posterior direction, were shifted only 0.8 cm apart from each other after lan-
ding. Because the external forces were measured using one force plate only,
the correct technical performance of the jump allows assuming a symmetrical
distribution of the ground reactions for the feet. The application point of the
ground reaction was established on the heel-metatarsal line coinciding with
the cast of the center of mass of the body on the force plate in the anterior-
posterior direction.

The time characteristics of the measured ground reaction forces acquired
are shown in Fig. 8. The largest value, of about 10 times the body weight at
landing, is reached by the vertical ground reaction force. A decrease in the
force, below the body weight during the first 0.5 s of the stunt due to a down-
ward acceleration of the body performing a preparatory countermovement is
also noticeable. This is followed by the overweight phase marked by a double
humped pattern similar to that observed in high jumping (e.g., Pandy et al.,
1992). Peak magnitudes of the anterior-posterior component of the horizontal
ground reaction lie in the vicinity of 3 times the body weight during landing.
All presented characteristics distinctly emphasize the impact nature of the
ground reaction during the beginning of the landing phase, and an aliasing
error between the force plate and video data.

The time characteristics of the net torque components for the joints of
the right leg are depicted in Fig. 9. The largest magnitudes of the net torques
occur in the sagittal plane. Note that the My(t) characteristic in Fig. 9 is
split into two parts with different scales for the net torque to emphasize the
characteristics of the lower leg torques during the take-off phase. The negative
sign of the torque in the hip and ankle joint, in the second half of the support
phase, indicates a common action of the quadriceps and triceps surae muscles.
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Fig. 8. Time-histories of the components of the ground reaction force measured in
the force platform (left) and their expanded views during the beginning of landing
(right). The markers denote the time instants for which there are video frames

available

Just prior to the airborne phase, the net torque in the hip starts changing
its direction anticipating a later movement of the thighs towards the trunk.
The shapes of all curves for the net torques during flight are similar to those
reported in the work by Blajer and Czaplicki (2001). The landing phase begins
with a considerable load of the hip joint, changing rapidly from 6Nm/BM
(400Nm) to more then −10Nm/BM (−700 Nm). Such an instantaneous rise
in the magnitude of the net torque cannot be done by the muscles alone. This
impact seems to be conveyed by joints and ligaments and followed almost
immediately by a strong action of the hip extensors like gluteus maximus,
adductor magnus, semimembranosus and semitendinosus, and knee extensors.
The results obtained during landing are qualitatively similar to those presented



940 A.Czaplicki et al.

in the work of McNitt-Gray et al. (2001), where the landing phase of several
different jumps, including backwards somersault, was subjected to a detailed
dynamical analysis in a two-dimensional space.

Fig. 9. Normalized net torques at the anatomical joints of the right leg
of the jumper

The magnitudes of the net torque in the frontal and transversal plane are
one order lower to those achieved in the sagittal plane. A remarkable eversion
in the ankle joint at the beginning of landing is worth noticing. Simultaneously,
the feet and the shank are rotated medially as a consequence of the fact that
the jumper tries to hold his position standing on his fingers, as illustrated in
Fig. 4b. Finally, there are also distinguishable net torque values in both planes
during the second half of the supporting phase, which suggests the involvement
of passive elements of the joints in these directions.

The results of identification of reaction forces in the selected joints in the
case of the standing backwards somersault are shown in Fig. 10. It is clearly
visible, when comparing the curves presented in Fig. 8 and Fig. 10, the remar-
kable damping of the vertical reaction between the ground and hip joint that
ranges from 5 to 1.5 times the body weight. The shape of the vertical joint
reaction during take-off and landing correspond closely to the shape of the
ground reaction force. One should emphasize the positive signs of the verti-
cal joint reaction at the beginning of the airborne phase and the considerable
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values of the anterior-posterior reaction in the hip joint, changing suddenly
from 0.7N/BW (466,̇) to more than −1.1N/BW (−740 N) during the impact
phase of landing.

Fig. 10. Normalized reaction forces in the selected joints of the right leg during the
standing backwards somersault

6. Conclusions

In the present work a general three-dimensional multibody methodology for
calculating the net torques and reactions in joints has been demonstrated. The
methodology consists of a biomechanical model, data acquisition techniques
and an inverse dynamics analysis procedure integrated in a compact software
package. The biomechanical model of the human body is constructed with
rigid bodies interconnected by revolute and universal joints using the benefits
of a general multibody formulation based on natural coordinates, well suited
to define rigid bodies and kinematic joints and to a direct mapping between
anatomical landmarks and body coordinates.

The biomechanical model is controlled by joint and driver actuators. The
Lagrange multipliers assigned to all driver actuators effectively represent in-
ternal forces in the joints of the biomechanical model, either due to reaction
forces or net moment of forces. The solution to the problem of inverse dyna-
mics is unique and non-redundant, but it should be emphasized that the joint
reactions obtained this way are underestimated.

The application of the methodology developed to a long jump and a stan-
ding backwards somersault allows the identification of the internal forces acting
in the joints of the biomechanical model of the human body. The results have
been explained in terms of their relevance to both investigated motor tasks.
The results precisely reflect the impulsive nature of motions studied through
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its consequences in the shape of curves of the torques and reaction forces.
However, some care must be taken when interpreting the results because they
are sensitive to the procedure of smoothing the kinematic data. It also seems
to be important to collect a large number of video frames, particularly during
the supporting and landing phase of the motion. The obtained net torques
may be used as the input data to solve an individual muscle distribution pro-
blem by means of adequate optimization methods, which in turn allows one
to compute ”real” reactions in the joints. The answer of which loads, and in
which direction cross the joints during these activities may be of considerable
interest to clinicians and trainers.
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Biomechaniczne modelowanie trójwymiarowych ruchów człowieka

w środowisku współrzędnych naturalnych

Streszczenie

W pracy zaprezentowano pełną metodologię do badania ruchów człowieka. Pod-
stawowym elementem tej metodologii jest trójwymiarowy biomechaniczny model ciała
ludzkiego. Położenia członów modelu opisano za pomocą współrzędnych naturalnych,
co wyeliminowało konieczność użycia współrzędnych kątowych. Model składa się z 33
ciał sztywnych połączonych przegubami (stawami) i posiada 44 stopnie swobody. Wy-
padkowe momenty sterujące w poszczególnych stawach pochodzące od sił mięśniowych
wprowadzono do dynamicznych równań ruchu modelu za pomocą stosownych więzów
kinematycznych pomiędzy sąsiadującymi członami w danym stawie. Wartości tych
momentów wyznaczono wykorzystując formalizm mnożników Lagrange’a. Model wy-
korzystano do identyfikacji wypadkowych momentów mięśniowych i reakcji wewnętrz-
nych w głównych stawach kończyny dolnej człowieka podczas odbicia do skoku w dal
oraz w trakcie wykonywania salta w tył z miejsca.
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