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In this paper, two-dimensional heat transfer solution of natural convection around an iso-
thermal cylinder located beneath an insulation wall is studied. The effects of distance ratio
of the cylinder to the wall as well as the impact of the dimensionless Rayleigh number in
the flow and heat transfer are taken into account. Solving the flow equations for L/D ratio
with values 0.5, 0.7, and 1.5 and the Rayleigh number ranging from 1000 to 40000 is carried
out. The results are compared with the experimental data which present a good agreement.
The results indicate that the effect of weakened natural convection flow in the cylinder com-
mences when decreasing L/D ratio from the value 1.5 to 0.5 leading to a decline in heat
transfer and the Nusselt number. This process occurs in all values of the Rayleigh num-
ber. For the ratio number greater than 1.5, the impact of adiabatic wall is neglected, and
there is no significant influence on the natural convection flow. Increasing the angle from
0◦to180◦results in a fall in the Nusselt number which is as a consequence of growth in the
distances of isothermal lines.
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Nomenclature

c – discrete lattice velocity

D – diameter of cylinder

F – external force

f, g – distribution function for density and temperature, respectively

gy – gravity acceleration in y direction

L – distance between cylinder and adiabatic wall

Nu,Ra – Nusselt and Rayleigh (Ra = gβ∆TD3/(αν)) number, respectively

t,∆t – time and lattice time step, respectively

T = (Θ −Θ∞)/(Θc −Θ∞) – non-dimensional temperature
W = 20D – width of insulation wall

w – weighing factor

x = (xi+ yj),u = (ui+ vj) – location and velocity vector, respectively

β – thermal expansion coefficient

δ = |xf − xw|/|xf − xb| – fraction of intersected link in fluid region
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θ – angle from stagnation

Θ – temperature

ν – kinematic viscosity

ρ – density

τt, τv – relaxation time for temperature and velocity equation, respectively

χ – weighing factor

Subscripts: avg – average, b – boundary nodes, c – cylinder, f , ff – first and second fluid
nodes, respectively, i – lattice model direction, L – local, s – sound, ∞ – ambient condition.
Superscripts: eq, neq – equilibrium and non-equilibrium distribution function, respectively.

1. Introduction

In general, natural convection heat transfer occurs as a result of temperature difference between
the fluid and the solid boundary. The temperature gradient leads to creation of a non-uniform
density field. But, it is in fact a body force dependent on the density causing the fluid to move.
This force is the gravitational force. As a whole, because of various functions of the heat transfer
around a cylinder, the issue is highly prominent to the scientists and there have already been a
lot of studies conducted on this subject. Morgan (1975) reviewed more than 250 scientific articles
about the natural convection around an individual cylinder in a review paper. Numerical solution
of Qureshi and Ahmad (1989) and benchmark solution of Saitoh et al. (1993) are known to be
among the most authentic solutions. Heat transfer around a horizontal cylinder close to the
wall or surrounded by walls has been studied thoroughly by a lot of researchers. Marsters (1975)
studied the effect of the existence of the wall near the horizontal cylinder for the Rayleigh number
ranging from 10 to 500000 and presented a correlation among Nusselt distribution, Rayleigh
number and geometric parameters. Sadeghipoor and Razi (2001) developed a code using the
finite element method to simulate the two-dimensional transient convective flow in a laminar
regime. They also studied heat transfer from a horizontal cylinder surrounded by two insulation
walls. The results show good agreement with the experimental data. Moreover, the optimum
wall distance from the cylinder, in order to reach the maximum value of the Nusselt number,
was achieved in the study. Natural convection heat transfer around a horizontal cylinder located
between two walls was studied by Ma et al. (1994). The effect of vertical displacement of the
cylinder was also taken into consideration in this study. Convection heat transfer on a horizontal
cylinder laid under a flat plate has a lot of applications including heat transfer around pipes
carrying hot fluid, electronic industry and heat transfer in the cylindrical components assembled
under electronic boards. Koizumi and Hosokawa (1996) utilized a flow detector to draw the
flow regime around an isothermal cylinder located under an adiabatic wall. The experiment was
conducted using air as the working fluid for the Rayleigh number ranging from 4.8·104 to 1·107.
It was concluded that the patterns of streamlines and temperature counter are dependent on the
Rayleigh number and the ratio of the plate length to the cylinder diameter. It was also proved
that for small values of the Rayleigh number (Ra ¬ 105), the two-dimensional steady flow is
observed for all the values of L/D. For average and high Rayleigh numbers, a three-dimensional
flow is created for small values of L/D. Also, a plume which oscillates from side to side is
observed above the cylinder. Meanwhile, a new method has recently been developed, named the
Lattice Boltzmann Method that has been vastly successful in simulation of heat transfer and
fluid flow (Shan and Chen, 1993; Fattahi et al., 2010; Mehrizi et al., 2012, 2013). Dixit and Babu
(2006) simulated natural convection in a cavity for high values of the Rayleigh number using
the Lattice Boltzmann method. And the results closely correspond to the previous experimental
studies. Mohammad and Kuzim (2010) investigated mainly three different schemes of adding
a force term to LBM with the BGK method. They added a term of the buoyancy external



Lattice Boltzmann simulation of natural convection flow ... 731

force to the Lattice Boltzmann Method and studied natural convection in an enclosure. In
addition, Mohammad and et al. (2009) studied natural convection in an open cavity and tested
the capability of Lattice Boltzmann method in simulation of natural convection. A number
of researchers have already taken into consideration the natural convection around a heated
cylinder in an enclosure as well. Simulation of natural convection in the space between the
internal circular cylinder and an external square enclosure was done by Peng et al. (2003),
using Taylor series expansion and least-squares-based Lattice Boltzmann method. Jami et al.
(2007) utilized the Lattice Boltzmann Method to simulate natural convection in a differentially
heated, square enclosure with a heated cylinder at its center. The difference between their work
and previous studies is heat generation in the inner conducting cylinder. Jami et al. (2008)
considered the impact of internal cylinder displacement on the heat transfer in a separate study.
In this paper, the simulation of natural convection around a horizontal cylinder located under

an insulation wall is carried out using the Lattice Boltzmann Method. The effect of the Rayleigh
number between 1000 and 40000 and L/D ratio (the distance from the cylinder to the insulation
wall divided by cylinder diameter) ranging from 0.5 to 1.5 is also taken into consideration. The
results are compared with the experimental results achieved by Ashjaee et al. (2007) and also
illustrated as streamlines, average values as well as local values of the Nusselt number and
isotherms.

2. Geometry description and boundary conditions

As shown in Fig. 1, the geometry is an isothermal cylinder with a diameter as long as D which
is located under a wide insulation plate. The distance from the cylinder to the plate is L and the
insulation wall length is W . The temperature of the cylinder wall is taken constant Θc and the
wall above the cylinder is assumed to be adiabatic. Air (Pr = 0.7) with ambient temperature Θ∞
is selected as the working fluid. Also, the inlet boundary condition is taken an open boundary
and the boundary conditions at both sides are taken to be constant ambient pressure. Boundary
conditions of the wall with a constant temperature, insulation wall, no-slip boundary condition
and Zou and He’s (1997) pressure boundary condition are thoroughly discussed in the applied
Lattice Boltzmann Method for transport phenomena momentum heat and mass transfer written
by Mohammad (2007).

Fig. 1. Computational domain and boundary conditions

In the open boundary condition, the normal practice is to use extrapolation for the unknown
distribution functions. So, at this boundary

f2,n = 2f2,n−1 − f2,n−2 f5,n = 2f5,n−1 − f5,n−2 f6,n = 2f6,n−1 − f6,n−2 (2.1)

For the adiabatic boundary condition, a second order finite difference approximation was used

3Tb = 4Tn − Tn−1 − 2∆x
∂T

∂x
(2.2)
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where subscript b denotes the boundary node, subsequently n and n − 1 denote the first and
second nodes in the domain, respectively.

3. Lattice Boltzmann Method

The Lattice Boltzmann Method is one of the computational methods used to simulate fluid
flow and heat transfer. This is based on the theory of kinetic energy of particles in mesoscopic
scale and study of movement and collision of particles. In this method, the distribution function,
which is the probability of finding particles with a certain range of velocity and place in a certain
time, is replaced with studying each individual particle in the molecular dynamic simulations. In
order to solve the flow and temperature fields, the values of velocity f and energy distribution
functions g must be calculated in the discretized Lattice Boltzmann equation. The main equation
of Boltzmann model for fluid flow with a term of an external force is expressed as follows

fi(x+ ci∆t, t+∆t) = fi(x, t) +
∆t

τv
[f eqi (x, t)− fi(x, t)] +∆tciFi (3.1)

And this equation for the temperature field is expressed as below

gi(x+ ci∆t, t+∆t) = gi(x, t) +
∆t

τt
[geqi (x, t)− gi(x, t)] (3.2)

where ∆t indicates the time step, ci represents discretized velocity of the Lattice in the direc-
tion i (i = 0, . . . , 8), Fi as the external force and finally τv = 3ν + 0.5 and τt = 3α + 0.5
show the lattice relaxation time for the flow and temperature field, respectively. The values of
relaxation times are set to be 0.59 and 0.629 for the flow and temperature field respectively.
Also in equations (2.1) and (2.2), the BGK model which was introduced by Bhatnagar, Gross
and Krook (1954) is used to model the collision term in the Boltzmann equation. In the present
study, the D2Q9 model with 8 directions is used for both fluid and thermal fields, and the values
of weighing factor, w0 = 4/9 for |c0| = 0 (for the static particle), w1−4 = 1/9 for |c1−4| = 1 and
w5−9 = 1/36 for |c5−9| =

√
2 are assigned in this model. The equilibrium distribution functions

of temperature and velocity in the above equations are expressed as follows

f eqi = wiρ
[
1 +
ciu

c2s
+
(ciu)

2

2c4s
− u

2

2c2s

]
geqi = wiT

(
1 +
ciu

c2s

)
(3.3)

The buoyancy force in the direction y, with the Boussinesq approximation applied to that, is
calculated below and substituted in equation (2.1)

F = 3wigyβθ (3.4)

Solving the equation, the values of the distribution functions f and g are defined. Using
these functions, velocity, momentum, the non-dimensional temperature and macroscopic density
are calculated as follows

ρ =
∑

k

fk ρui =
∑

k

fkcki T =
∑

k

gk (3.5)

where T = (Θ −Θ∞)/(Θc −Θ∞) is the non-dimensional temperature.
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4. Curved boundary treatment

In the present study, a second-order accuracy method is used to define the curve boundary
condition (MLS boundary condition) which was developed by Mei et al. (1999). Figure 2 shows
a part of arbitrary curved wall geometry. In this figure, the white and gray sides show the fluid
and solid regions respectively. The clear white nodes in the solid region indicate the boundary
nodes xb, the hatched nodes show the first fluid nodes xf , the solid gray nods show the second
fluid nods xff and the solid block nodes on the boundary xw indicates the intersections of the
wall with various lattice links.

Fig. 2. Characteristics of Lattice nods and the curved wall boundary (Mei et al., 1999)

The fraction of an intersected link in the fluid region δ, is determined by

δ =
|xf − xw|
|xf − xb|

(4.1)

At the collision step, the fluid side distribution function on the fluid nod f̃k is determined but
the solid side distribution function at the opposite direction f̃

k
is unknown. On the other hand,

to finish the streaming step, we need to know f̃
k
at the boundary node xb.

4.1. Velocity in the curved boundary condition

The unknown distribution function f̃
k
is calculated by linear interpolation that was suggested

by Fillipova and Hänel (1998)

f̃
k
(xb, t+∆t) = (1− χ)f̃k(xf , t+∆t) + χf∗k (xb, t+∆t) + 2ωkρ

3

c2k
e
k
uw (4.2)

where

f∗k (xb, t+∆t) = ωkρ(xf , t+∆t)
[
1 +
3

c2k
ekubf +

9

2c4k
(ekuf )

2 − 3
2c2k
ufuf

]
(4.3)

In Eq. (4.1) uf ≡ u(xf , t+∆t) is the fluid velocity near the wall, ubf is the imaginary velocity
for interpolations, ek is the unit vector in the direction of k, χ is the weighting factor which
depends on ubf and, at the MLS scheme, it is calculated as below
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ubf =





(
1− 3
2δ

)
uf +

3

2δ
uw when δ  1

2

uff = uf (xf + ek∆t, t+∆t) when δ <
1

2

χ =






2δ − 1
τ + 1/2

when δ  1
2

2δ − 1
τ − 2 when δ <

1

2

(4.4)

where uff is the velocity of the second node on the fluid side and ek ≡ −ek.

4.2. Temperature in the curved boundary condition

In this study, the developed scheme of Yan and Zu (2008) is used in order to apply the curve
boundary condition on the temperature field. This scheme is based on the extrapolation method
with the second order accuracy. The distribution function for temperature is divided into two
parts, equilibrium and non equilibrium

g̃k(xb, t) = g
eq
k (xb, t) + g

neq
k (xb, t) (4.5)

By substituting Eq. (4.4) into the temperature streaming equation gk(x + ck∆t, t + ∆t) =
= g̃k(x, t+∆t), one arrives at

gk(xb, t) = g
eq
k (xb, t) +

(
1− 1
τt

)
gneqk (xb, t) (4.6)

To determine the value of g
k
(xb, t), values of the equilibrium and non-equilibrium parts of the

distribution function should be defined. The equilibrium distribution function geq
k
(xb, t) can be

expressed as

geqk (xb, t) = ωkTb
(
1 +
3

c2
ekub

)
(4.7)

ub ≡ u(xb, t) and Tb ≡ T (xb, t) are the velocity and temperature on boundary nodes, respectively,
and they can be approximated by

ub =






1

δ
[uw + (δ − 1)uf ] if δ  3

4

[uw + (δ − 1)uf ] +
1− δ
1 + δ

[2uw + (δ − 1)uff ] if δ <
3

4

Tb =





1

δ
[Tw + (δ − 1)Tf ] if δ  3

4

[Tw + (δ − 1)Tf ] +
1− δ
1 + δ

[2Tw + (δ − 1)Tff ] if δ <
3

4

(4.8)

where Tf , Tff , uf and uff are the temperature and velocity in the node xf and xff , respec-
tively.
The non-equilibrium distribution function at the boundary nodes gneq

k
(xb, t) could be appro-

ximated by

gneqk (xb, t) =






gneqk (xf , t) if δ  3
4

δgneqk (xf , t) + (1− δ)g
neq
k (xff , t) if δ <

3

4

(4.9)

In this estimation, the second order approximation of Chapman–Enskog and Taylor series expan-
sions are used, which were presented by Yan and Zu (2008).
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5. Results and discussions

In this study, a simulation of natural convection around a horizontal cylinder laid under an
insulation wall is carried out using the Lattice Boltzmann Method. The effect of the Rayleigh
number in the range of 1000 to 40000 and L/D ratio (the distance from the cylinder to the
insulation wall divided by cylinder diameter) ranging from 0.5 to 1.5 is also taken into consi-
deration. The gird sensitivity was tested using three levels of grid size (1120 × 224, 1400 × 280
and 1680× 336). The results show small differences on the average Nusselt number between the
three sets of grid size, so the moderate grid case 1400× 280 is selected to simulate the thermal
and fluid field. By this selection, the size of D in the lattice unit is equal to 70.
The local Nusselt number is defined as

NuL =

−kc ∂T∂r
∣∣∣
r=D
2

D

(Θc −Θ∞)kfi
(5.1)

where kc and kf are the thermal conductivity of air evaluated at the cylinders surface tempe-
rature Tc and at the film temperature Θfi = (Θc +Θ∞)/2, respectively.
Also, the average Nusselt number can be evaluated as

Nuavg =
1

2π

2π∫

0

NuL dθ (5.2)

The criterion of convergency is selected as max |(T n+1 − T n)/T n| ¬ 10−6. Furthermore, to
ensure the convergence of the solution, the velocity and temperature of some points between the
cylinder and adiabatic wall are monitored. When these values were fixed, the solution converged.
Figure 3 illustrates the comparison between the numerical and experimental results for L/D

ratios of 0.5 and 0.7 in the Rayleigh value of 250000 and for L/D ratios of 1 and 1.5 in the
Rayleigh value of 40000.

Fig. 3. Isotherms – the right half is the numerical solution and the left half, the experimental results
(Ashjaee et al., 2007); (a) L/D = 1.5, Ra = 4000, (b) L/D = 1, Ra = 4000, (c) L/D = 0.7, Ra = 2500,

(d) L/D = 0.5, Ra = 2500

As can be seen in the figure, the numerical results are in good compatibility with the expe-
rimental data obtained by Ashjaee et al. (2007).
Streamlines and isotherms for different Rayleigh numbers ranging from 104 to 4 × 104 for

different values of L/D are shown in Fig. 4.
In general, since there is a temperature gradient between the hot cylinder and the cold

fluid, a non-uniform density field is created which results in the development of a buoyant
force around the cylinder. Therefore, the fluid ascends the circumference of the cylinder until it
reaches the insulation wall located above the cylinder. Then the flow is divided into two similar
halves and moves to the left and right directions. As can be seen in Figs. 4(1), with a rise in
the Rayleigh number, the flow lines are more concentrated around the cylinder which means
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Fig. 4. Distribution diagram (1) flow lines, (2) isothermal lines for different Rayleigh numbers
and L/D; (a) Ra = 104, (b) Ra = 2 · 104, (c) Ra = 4 · 104
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that the flow intensity has increased and so has the impact of natural convection. According
to this phenomenon, it is predicted that with an increase in the Rayleigh number value, the
Nusselt number will increase as well. Furthermore, with a fall in the distance from the cylinder
to the insulation wall, flow lines interspaces increase. As displayed in Figs. 4(2), the isothermal
distribution lines are symmetric. This is due to the fact that the geometry is symmetric around
the central axis. In all the cases, a thermal plume is parted from the upper section of the
cylinder and moves upward. By increasing the distance from the cylinder to the wall, the thermal
plume becomes thinner, sharper and closer to the adiabatic wall. Some of the temperature
lines are perpendicular to the adiabatic wall. By moving from 0◦ to 180◦, the concentration of
isotherms reduces so the thermal boundary layer has a maximum thickness when approaching
to 180 degrees. This process is fully approved by the local Nusselt distribution diagram. As seen
in Fig. 5, with a growth in the angle from 0◦ to 180◦, the Nusselt value drops. In this figure, the
values of the local Nusselt number obtained by the Lattice Boltzmann Method are compared
with the results. The comparison indicates good consistency between the results.

Fig. 5. Local Nusselt distribution around a cylinder and the comparison made with the experimental
results (Ashjaee et al., 2007) for different values of L/D when Ra = 40000

Finally, the average Nusselt distribution for different Rayleigh numbers and ratios of L/D
is illustrated in Fig. 6. As it is observed, the average Nusselt value shows an upward trend
when increasing the Rayleigh number and decreasing the distance from the cylinder to the wall.
Moreover, the results present good agreement with the previously obtained experimental results.

Fig. 6. Average Nusselt distribution based on the Rayleigh number for different ratios of L/D
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6. Conclusion

In this paper, numerical solution of natural convective flow around a cylinder laid under an
insulation plate has been taken into consideration using the Lattice Boltzmann Method. The
impact of variation in the Rayleigh number and the distance from the cylinder to the insulation
plate has also been studied.
The results demonstrate that a growth in the angle θ from 0◦ to 180◦ leads to a fall in

the Nusselt value along the cylinder wall. Also, with an increase in the Rayleigh number and
a decrease in the distance ratio, the Nusselt number rises. Furthermore, such great consistency
between the numerical solution results and the experimental data represents the strength of
the Lattice Boltzmann Method in simulation of natural convection heat transfer in complex
geometry.
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