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A transient 2-dimensional problem of heat flow with a moving heat sour-
ce is considered. It is assumed that the heat source is moving along one
of the sides of a rectangle with a constant velocity. The unknown is the
temperature distribution in a flat rectangular area. The paper presents
an approximate solution which is based on the finite element method
with a modified basis function. The space-time basis functions are com-
binations of heat polynomials which strictly satisfy the heat equation.
Cartesian coordinates were used to solve the problem.

Key words: moving heat source, 2D heat conduction, FEM, heat poly-
nomials

1. Introduction

Among approximate methods of solving problems related to heat conduc-
tion specified in references Ciałkowski and Magnucki (1982), Gdula (1984),
Szargut (1992), the noteworthy ones include:
• finite element method
• boundary element method
• method of elementary balances
• finite difference method.

Paper by Ciałkowski and Magnucki (1982) presented a mathematical basis
of finite element methods, the examples provided referred to FEM applica-
tions to theory of elasticity. Papers by Gdula (1984), Szargut (1992) outlined
approximation methods. The authors also showed how those methods could
be used to solve stationary and non-stationary issues in heat transfer.
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All these approximate methods belong to a group of numerical methods.
They have been widely applied due to rapid development of computers. Unli-
ke analytical methods, they can simply allow for a complex shape of a body,
nonlinearity of boundary conditions, dependence of material coefficients on
temperature. They usually result in simple relations which do not require the
use of complicated mathematical calculations to be solved. They are rather so-
lved with the use of elementary calculation methods. A method that combines
characteristics of analytical and numerical methods is the so called method
of heat polynomials. It makes it possible to achieve a solution that strictly
satisfies a differential equation, and approximately satisfies given initial and
boundary conditions. It is suitable for solving stationary and nonstationary
problems, while taking into consideration any size.
The problem of the identification of the temperature field generated by

a moving heat source has been investigated in numerous papers. Particular
attention should be paid to work by Rożnowski (1988) as it dealt exclusive-
ly with moving heat sources. This paper aimed at the determination of the
temperature field and thermal stress tensor in a cylinder and half-plane un-
der dynamic loads of movable heating sources. The investigations focused on
nonstationary issues of heat conduction and thermal stresses in the cylinder
and half-plane resulting from a discontinuous temperature field moving on the
external surface. Apart from the subject matter, it also provided an extensive
overview of the literature on the problems under investigation.

2. Formulation of the problem

The aim of the present paper is to provide an approximate solution to a
transient two-dimensional problem of heat flow in the case when a part of the
boundary of the area under analysis is subject to heating with a moving heat
source. The approximate solution is based on the method of finite elements,
taking advantage of heat polynomials as base functions. Due to the fact that
heat is assumed to spread bidirectionally, the temperature distribution is so-
ught in a flat rectangular area with the length l and the width b. It is assumed
that the heat source with the length a is moving along one of the sides of the
rectangle with a constant velocity v in a periodic manner. A boundary con-
dition of the second kind is adopted for calculations. This condition may be
expressed in the form: −λ∂T/∂n = qn, where λ denotes thermal conductivi-
ty coefficient [W/mK], ∂T/∂n – a derivative in the direction perpendicular
to the rectangle side, −qn = qnf(x, t) – normal component of the heat flux
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density [W/m2], qn its extreme value (qn > 0), f(x, t) – polynomial function
(f(x, t) > 0), Fig. 1.

Fig. 1. Distribution of the heat flux for y = b at a fixed time instant

Apart from the contact of the source with the side of the rectangle (also
at the opposite side), it is assumed that thermal insulation is present. At the
remaining boundaries of the rectangle, the boundary condition of the fourth
kind is adopted in order to realise a process of repeated heating of the body
with the moving source (heating of a rail by a passing train, heating of a brake
drum at breaking, heating of a body during a grinding process).
It is assumed that the body is made of a homogenous and isotropic ma-

terial, and the thermal conductivity coefficient λ and thermal diffusivity κ
of the body do not depend on temperature. It is assumed that, at the ini-
tial moment, the temperature of the body and environment is constant and
equal to Θ0. The problem under analysis is formulated mathematically in a
dimensionless form. Dimensionless (reduced) temperature is defined as follows

T =
Θ −Θ0
qnd
λ

where Θ denotes absolute temperature [K], Θ0 – absolute temperature at the
initial moment [K], qn – extreme value of density of the heat flux originated as
a result of action of the moving heat source [W/m2], d – linear characteristic
dimension [m], λ – thermal conductivity coefficient [W/mK]. Because the main
direction of thermal conductivity is the direction perpendicular to the acting
surface of the source, so the linear characteristic dimension is the height of
the body b [m]. The dimensionless coordinates are expressed in the following
manner: x = x/d, y = y/d, t = κt/d2 where κ is the thermal diffusivity
coefficient (temperature balance coefficient) [m2/s]. We define dimensionless
parameters: b = b/d, l = l/d, a = a/d, v = vd/κ (a is width of the source [m],
b – height of the body, l – length of the body [m], v – actual velocity of the
source [m/s]).
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Fig. 2. Model for identification of temperature in a process of heating with a moving
heat source

The following dimensionless form of the problem under analysis is achieved

∂2T

∂x2
+
∂2T

∂y2
−
∂T

∂t
= 0 (2.1)

for (x, y) ∈ Ω, t > 0, Ω = {(x, y) ∈ R2 : 0 < x < l, 0 < y < b}.
The initial and boundary conditions are

T (x, y, 0) = 0
∂T

∂y
(x, 0, t) = 0

(2.2)

∂T

∂y
(x, b, t) = f(x, t) =





(2
a

)4
A2(−a+A)2 for A ¬ a

0 for a ¬ A < l

where A = (x− vt)mod.l gives the remainder of the division of (x− vt) by l.
Additionally, the consistency conditions are required in the following form

T (0, y, t) = T (l, y, t)
∂T

∂x
(0, y, t) =

∂T

∂x
(l, y, t) (2.3)

Equations (2.1)-(2.3) have the following analytical solution (Maciejewska,
2004)

T (x, y, t) =
q0t

bl
+
2
bl

∞∑

k=1

(−1)kq0 cosαky
α2k

(1− e−α
2

k
t) +

+
2
bl

∞∑

n=1

qn1 cos γn0
λ2n

[cos(λn(x− vt) + γn0)− e−λ
2
nt cos(λnx+ γn0)]

(2.4)

+
4
bl

∞∑

n=1

∞∑

k=1

(−1)kqn1 cos γnk cosαky
λ2n + α

2
k

·

·[cos(λn(x− vt) + γnk)− e−(λ
2
n+α

2

k
)t cos(λnx+ γnk)]
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where n = 1, 2, ..., k = 0, 1, 2, ... and

cos γnk =
λ2n + α

2
k√

(vλn)2 + (λ2n + α
2
k)
2

λn =
2πn
l

αk =
kπ

b
q0 =

8a
15

qn1 = −
8l3 cos(nπ)[3alnπ cos anπ

l
+ ((aπn)2 − 3l2) sin anπ

l
]

a4(nπ)5

3. Approximation of the solution to the thermal conductivity

equation on the entire area Ω× < 0, tk >

The approximate solution of system equations (2.1)-(2.3) has the form

T (x, y, t) ≈
N∑

n=1

Anvn(x̂, ŷ, t̂) = T̂ (x, y, t) (3.1)

where (x, y) ∈ Ω, t ∈< 0, tk >, tk denotes the length of the time interval,
x̂ = x−x0, ŷ = y− y0, t̂ = t− t0 and vn(x̂, ŷ, t̂) denote heat polynomials. Co-
efficients An are sought from the minimization of functional (3.2) of fitting the
approximate solution to the given initial and boundary conditions (Ciałkowski
and Frąckowiak, 2000; Hożejowski, 1999)

I =
b∫

0

l∫

0

[T̂ (x, y, 0)]2 dxdy +
b∫

0

tk∫

0

[∂T̂
∂x
(0, y, t) −

∂T̂

∂x
(l, y, t)

]2
dtdy +

+
b∫

0

tk∫

0

[T̂ (0, y, t) − T̂ (l, y, t)]2 dtdy +
l∫

0

tk∫

0

[∂T̂
∂y
(x, 0, t)

]2
dtdx+ (3.2)

+
l∫

0

tk∫

0

[∂T̂
∂y
(x, b, t) − f(x, t)

]2
dtdx

With N → ∞, the solution expressed by formula (3.1) tends to the exact
solution. The application of the method of heat polynomials to numerical cal-
culations requires a finite number of polynomials. A satisfactory approximation
of a particular problem can be achieved in two ways
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1. By finding global solutions (on Ω× < 0, tk >) with the use of higher
degree polynomials

2. By finding local solutions (on parts of Ω× < 0, tk >) with the use of
lower degree polynomials.

The first approach is presented in the fourth section of the paper and the
second one in its fifth section.

4. Numerical example

Let us consider a thermal field in a body made of carbon steel. Charac-
teristics of the body are: λ = 45 W/mK, κ = 1.19 · 10−5 m2/s, l = 1 m
(length of the body), b = 0.1 m (height of the body). We take v = 0.006 m/s,
Θ0 = 0 K, qn = 13 · 10

3 W/m2, a = 0.3 m. 22 heat polynomials will be used
for approximation.
The polynomials have the following form (Ciałkowski and Frąckowiak,

2003): 1, x, y, xy, x
2

2 −
y2

2 ,
x3

6 −
xy2

2 ,
x2y
2 −

y3

6 , t+
y2

2 , tx+
xy2

2 , ty+
y3

6 , txy+
xy3

6 ,
x2y2

4 −
y4

12 + t
(
x2

2 −
y2

2

)
, x
3y2

12 −
xy4

12 + t
(
x3

6 −
xy2

2

)
, t
2

2 +
ty2

2 +
y4

24 , x
(
t2

2 +
ty2

2 +
y4

24

)
,

y
(
t2

2 +
ty2

6 +
y4

120

)
, xy
(
t2

2 +
ty2

6 +
y4

120

)
, x
2y4

48 −
y6

240 +
t2

2

(
x2

2 −
y2

2

)
+ t
(
x2y2

4 −
y4

12

)
,

t3

6 +
t2y2

4 +
ty4

24 +
y6

720 , x
(
t3

6 +
t2y2

4 +
ty4

24 +
y6

720

)
, y
(
t3

6 +
t2y2

6 +
ty4

120 +
y6

5040

)
,

xy
(
t3

6 +
t2y2

6 +
ty4

120 +
y6

5040

)
.

In Fig. 3 and Fig. 4, one can see a temperature graph for the instant
t = 25.2 s. Fig. 3 show the approximate temperature distribution established
on the basis of formula (3.1), whereas Fig. 4 present the precise temperature
distribution determined with formula (2.4). Pairs of Fig. 3 and Fig. 4 are only
different presentations of the temperature graph at the instant t = 25.2 s.
When comparing the temperature diagrams, one can see that the appro-

ximate solution is far from the exact one. An apparent effect of inertia caused
by the moving heat source active within the system is difficult to model. The
given number of polynomials is not sufficient for a satisfactory approximation
of the solution, and the use of polynomials of higher degrees results in an
adverse numerical conditions of the problem under analysis.
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Fig. 3. (a) An approximate temperature distribution achieved by combination of 22
heat polynomials; (b) a contour diagram

Fig. 4. (a) The exact temperature distribution; (b) a contour diagram

5. Approximation of the solution to the heat equation within an

area divided into finite elements

When the number of polynomials is increasing, equation (3.1) better ap-
proximates the temperature distribution within a particular area, however,
a greater number of polynomials causes numerical problems. Instead of ap-
proximating the solution within the entire area Ω× < 0, tk > with a great
number of polynomials, the area can be divided into smaller subareas and the
solution can be approximated in each of them with a combination of a consi-
derably smaller number of polynomials. The area Ω is divided into rectangles
Ωj for j = 1, 2, ..., J . The interval < 0, tk > is divided into subintervals
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< r∆t, (r+1)∆t > for r = 0, 1, 2, ..., R. The approximate solution to equation
(2.1) on Ωj = Ωj× < t0, t0 +∆t >, t0 = r∆t for fixed r has the form

T̂j(x, y, t) =
N∑

n=1

Ajnvn(x̂, ŷ, t̂) (5.1)

where x̂ = x−x0j, ŷ = y−y0j, t̂ = t− t0j, (x0j , y0j , t0j) is a fixed point belon-
ging to Ωj (most often the centre of the element Ωj), vn(x̂, ŷ, t̂) denotes the
nth heat polynomial. The manner of solving equation (2.1) is a generalization
of the method presented in the paper by Ciałkowski and Frąckowiak (2000)
and amounts to sequential solving of the equation in subsequent time intervals.
We establish the number of appropriately situated nodes in the element Ω j .
Three coordinates (x̂, ŷ, t̂) are assigned to each node. In order to determine
constants Ajn in equation (5.1) on the assumption that temperatures in the
nodes of Ωj are known, the system of equations is solved

T̂j(xk, yk, tk) = Tjk =
N∑

n=1

Ajnvn(x̂, ŷ, t̂) k = 1, 2, ..., N (5.2)

The matrix form of that system has the form



v1(x̂1, ŷ1, t̂1) v2(x̂1, ŷ1, t̂1) ... vN (x̂1, ŷ1, t̂1)
v1(x̂2, ŷ2, t̂2) v2(x̂2, ŷ2, t̂2) ... vN (x̂2, ŷ2, t̂2)

...
...

...
...

v1(x̂N , ŷN , t̂N ) v2(x̂N , ŷN , t̂N ) ... vN (x̂N , ŷN , t̂N )







Aj1
Aj2
...
AjN



=




Tj1
Tj2
...
TjN




(5.3)
An abbreviated form of the system (5.2) is

vA = T (5.4)

Thus, inversion of the matrix v results in

A = v−1T = VT Ajn =
N∑

k=1

VnkTjk (5.5)

Substitution of (5.5) to (5.1) yields base functions ϕjk characteristic of the
element Ωj in the following manner

T̂j(x, y, t) =
N∑

n=1

( N∑

k=1

VnkTjk
)
vn(x̂, ŷ, t̂) =

(5.6)

=
N∑

k=1

( N∑

n=1

Vnkvn(x̂, ŷ, t̂)
)
Tjk =

N∑

k=1

ϕjk(x, y, t)Tjk
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thus

ϕjk =
N∑

n=1

Vnkvn(x̂, ŷ, t̂) (5.7)

where x̂ = x− x0j , ŷ = y − y0j, t̂ = t− t0j .
The characteristics of the base functions are

1.
(
∂2

∂x2
+ ∂2

∂y2
− ∂
∂t

)
ϕjk(x̂, ŷ, t̂) = 0

2. ϕjk(x̂m, ŷm, t̂m) =

{
1 k = m
0 k 6= m

(x̂m, ŷm, t̂m) is a node of an element,

k = 1, ..., N , m = 1, ..., N

3.
∑N
k=1 ϕjk(x, y, t) ≡ 1

In order to achieve an approximate solution to equation (2.1) on Ω =
Ω× < t0, t0 + ∆t >, a square grid parallel to the axis of the system was
introduced. The grid originated as a result of dividing the section of the axis
OX into L1 parts and the section of the axis OY into L2 parts. In each
cubicoid element Ωj , a system of eight nodes located at vertices of the elements
was designated, Fig. 5. Thus, there are 2(L1 + 1)(L2 + 1) nodes within the
entire area Ω. As it results from the form of formulas (5.1), (5.7) and the
system of equations (5.3), by introduction of a local coordinate system x̂, ŷ, t̂
it is sufficient to find only once the base functions in a local element and then
move them in accordance with formulas x̂ = x−x0j, ŷ = y−y0j, t̂ = t− t0j to
obtain the base functions characteristic for each element Ω j. These functions

are a combination of the following eight heat polynomials: 1, x̂, ŷ, x̂ŷ, t̂+ ŷ
2

2 ,

t̂x̂+ x̂ŷ
2

2 , t̂ŷ +
ŷ3

6 , t̂x̂ŷ +
x̂ŷ3

6 .

Fig. 5. Location of eight nodes in an element

The temperature in each element is expressed by the relation

T̂j(x, y, t) =
8∑

k=1

ϕjk(x, y, t)Tjk j = 1, 2, ..., L1 × L2 (5.8)
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Every node has its global numeration (which comes from numeration of
all nodes within Ω) and its local numeration (the number of an element and
the number of the node in the element is given). It is advantageous to assign
in calculations the global numeration to temperatures at the nodes because
it guarantees conformity of temperatures at the nodes between elements and
reduction of the number of unknowns from 8×L1×L2 to 2×(L1+1)×(L2+1).
An exemplary division of the area Ω into 24 elements (L1 = 6, L2 = 4) with
eight nodes in corners of each element is presented below. Assigning numbers
to nodes from 1 to 2× (L1 + 1)× (L2 + 1), like in the example in Fig. 6, and
marking the temperature at a node with T n, where n is the number of the
node, the temperature at points of Ω10 can be approximated with a relation

T̂10(x, y, t) = ϕ10,1T 11 + ϕ10,2T 12 + ϕ10,3T 18 + ϕ10,4T 19 + ϕ10,5T 46 +

+ϕ10,6T 47 + ϕ10,7T 53 + ϕ10,8T 54

Fig. 6. Exemplary global numeration of nodes in 24 elements with nodes located at
corners of these elements

The base functions ϕjk (as combinations of heat polynomials) strictly sa-
tisfy equation (2.1). Therefore, it is sufficient to fit an approximate solution
only for the initial and boundary conditions and minimise defects of heat quan-
tities flowing between the elements. Both, the temperatures at nodes and heat
fluxes must be consistent (in the square-mean sense). The boundary-initial
problem is solved sequentially in consecutive time intervals 〈0,∆t〉, 〈∆t, 2∆t〉,
〈2∆t, 3∆t〉,... (∆t – length of the time subinterval). In the first time interval,
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the initial condition has the form (2.2)1, while in the rest of time steps the
initial condition in the analysed time interval is equal to the temperature at
the moment ending the previous time interval. The temperatures at nodes
from n = 1 to (L1 + 1)(L2 + 1) (with eight-node elements with nodes loca-
ted in corners of those elements) are known from the initial condition, while
the temperatures at the remaining nodes are unknown. They are found by
solving a system of linear equations resulting from the minimization of the
functional J

J =WP +WI +WG +WPT +WPS +WSX +WSY (5.9)

Summands of the functional represent the fitting of the approximate solu-
tion to: the initial condition, the insulating of the surface y = 0, the heating of
the surface y = b, condition (2.3)1 that indicates periodicity of the tempera-
ture, the condition (2.3)2 that indicates periodicity of the heat flux, reduction
of the amount of heat flowing between the elements in the direction of the
OX axis, reduction of the amount of heat flowing between the elements in the
direction of the OY axis

WP =
L1L2∑

i=1

∫∫

Di
1

[Ti(x, y, t0)− T0]2 dxdy

(5.10)
L1L2⋃

i=1

Di1 = {(x, y, t0) ∈ R
3 : 0 ¬ x ¬ l, 0 ¬ y ¬ b}

WI =
L1∑

i=1

∫∫

Di
2

]
[
∂Tj−1+i
∂y

(x, 0, t)
]2
dxdt

(5.11)
L1⋃

i=1

Di2 = {(x, 0, t) ∈ R
3 : 0 ¬ x ¬ l, t0 ¬ t ¬ t0 +∆t}

WG =
L1∑

i=1

∫∫

Di
3

[∂Tk−1+i
∂y

(x, b, t) − f(x, t)
]2
dxdt

(5.12)
L1⋃

i=1

Di3 = {(x, b, t) ∈ R
3 : 0 ¬ x ¬ l, t0 ¬ t ¬ t0 +∆t}
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WPT =
L2∑

i=1

∫∫

Di
4

[Tp+(i−1)L1(0, y, t) − Tp−1+iL1(l, y, t)]
2 dydt

(5.13)
L2⋃

i=1

Di4 = {(0, y, t) ∈ R
3 : 0 ¬ y ¬ b, t0 ¬ t ¬ t0 +∆t}

WPS =
L2∑

i=1

∫∫

Di
4

[∂Tp+(i−1)L1
∂y

(0, y, t) −
∂Tp−1+iL1
∂y

(l, y, t)
]2
dydt

(5.14)
L2⋃

i=1

Di4 = {(0, y, t) ∈ R
3 : 0 ¬ y ¬ b, t0 ¬ t ¬ t0 +∆t}

WSX =
L2∑

i=1

∫∫

Di
5

[∂Tlm+(i−1)L1
∂x

(xm, y, t)−
∂Tlm+1+(i−1)L1

∂x
(xm, y, t)

]2
dydt

(5.15)
L2⋃

i=1

Di5 = {(xm, y, t) ∈ R
3 : 0 ¬ y ¬ b, t0 ¬ t ¬ t0 +∆t,

m = 1, 2, ..., L1 − 1}

WSY =
L1∑

i=1

∫∫

Di
6

[∂Tln+(i−1)
∂y

(x, yn, t)−
∂Tln+(i−1)+L1

∂y
(x, yn, t)

]2
dxdt

(5.16)
L1⋃

i=1

Di6 = {(x, yn, t) ∈ R
3 : 0 ¬ x ¬ l, t0 ¬ t ¬ t0 +∆t,

n = 1, 2, ..., L2 − 1}

where j, k, p, lm and ln are certain constant numbers corresponding to the
assumed numeration of elements within the area Ω.
Figures 7a,b show the reduced heat flux distribution assumed in (2.2)3.

Taking the height of the body as characteristic dimension we get: l = 10
(dimensionless length of the body), a = 3 (dimensionless width of the source),
v ≈ 50 (dimensionless velocity of the source).
We consider the problem in time intervals: 〈0,∆t〉, 〈∆t, 2∆t〉, 〈2∆t, 3∆t〉,

... where ∆t is the time needed for a source of heat to come from the beginning
of one element to the beginning of the next element. It is apparent from Fig. 7b
that the time step is so small that the initial location of the source only slightly
differs from the final location in a given time interval. An exemplary division
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Fig. 7. (a) A graph of the function described in condition (2.2)3 during passing of
the source along the length of the entire body; (b) a graph of the function described
in condition (2.2)3 during passing along a section equal to 1/40 of the length of the

body from t=0.025 do t=0.003 (dimensionless)

Fig. 8. Numbered bases of space-time elements and edges of the planes:
x = x1, ..., x = x5, y = y1, y = y2, y = y3

of the area Ω into 24 elements (L1 = 6, L2 = 4) is presented in Fig. 6. To
illustrate the assumed symbols, Fig. 8 presents numbered bases of particular
space-time elements and edges of the planes: x = xm, for m = 1, ..., 5, y = yn,
for n = 1, 2, 3. Because insulation is given at the boundary y = 0, thus the
formula (5.11) includes the temperature which is a combination of base func-
tions from six elements of the first line, thus j = 1 in the elements numbered
as in Fig. 8. The second-kind boundary condition is given at the boundary
y = b, thus in the formula (5.12) the temperature is a combination of base
functions from six elements of the fourth line, so k = 19. The condition of
periodicity requires conformity of temperatures and heat fluxes at the boun-
daries: x = 0, x = l, thus in formulas (5.13), (5.14), for p = 1, the conformity
of temperatures and heat fluxes (in the square-mean sense) occurs between
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elements: 1 and 6, 7 and 12, 13 and 18, 19 and 24. Additionally, we assume
conformity of heat fluxes qx between the elements, which is represented by
formula (5.15). For example, the assumption that lm = 3 in the plane x = x3
results in conformity of heat fluxes (in the square-mean sense) at the boundary
between the following pairs of elements: 3 and 4, 9 and 10, 15 and 16, 21 and
22. In general, in the planes x = xm, we have lm = m, for m = 1, 2, 3, 4, 5.
By analogy, from (5.16), we obtain that ln = n (n = 1, 2, 3) for the planes
y = yn.

Equation (2.1) with conditions (2.2) and (2.3) was solved with the help of
the presented method in the area Ω divided into 400 eight-node elements. The
local coordinate system was placed in the centre of an element. The tempera-
tures at nodes numbered from 1 to 451 are given as initial conditions and the
temperatures at nodes numbered from 452 to 902 are unknown and wanted.
The heat source (with the length of twelve elements) passes a section 1/40 m
in a period of time of 4.21 s. Figures 9a,b show an approximate temperature
distribution in the sixth time interval; the numerical data are the same as
in the fourth section of the paper. The difference between the exact and ap-
proximate solution is shown in Fig. 10. The exact and approximate solutions
are alike in terms of quantity and quality, i.e. the effect of inertia apparent in
Fig. 4 has the same character as observed in Fig. 9.

Fig. 9. (a) An approximate temperature distribution in the sixth time interval, i.e.
from t = 21 s to t = 25.21 s; (b) a contour diagram
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Fig. 10. The difference between the exact and approximate solutions

6. Final remarks and conclusions

The area Ω× < 0, tk > under analysis has been divided into simplest
eight-node cubicoid elements with nodes at corners of the elements. The ba-
se functions have then eight constituents, and we can approximate the exact
solution with a polynomial of a low degree, which has a significant effect (po-
sitive) on numerical conditions of the analysed problem. However, a different
location of the nodes can be assumed as well as a different shape of the ele-
ments. While selecting the number and location of the nodes, one should take
into consideration the invertibility of the matrix v expressed by relation (5.4).
Any location of the nodes is related to a system of heat polynomials necessary
to formulate the base functions on the basis of formulas (5.2)-(5.6).

Fig. 11. Location of twelve nodes in an element
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Fig. 12. Location of sixteen nodes in an element

Examplary locations of the nodes are presented in Fig. 11 and Fig. 12. Whi-
le establishing the number of nodes in the area Ω, one should represent the
boundary conditions well. The presented example shows that the heat polyno-
mials are suitable for formulating time-space shape functions in the method of
finite elements in the case of a body heated with a moving heat source. After
performing a great number of numerical experiments consisting in different
divisions of the area Ω, the division of the area into 400 elements seems to
be sufficient to satisfy the initial and boundary conditions with the assumed
numerical data. For source moving with a greater velocity, it is necessary to
divide the area into a greater number of elements. Similarly, if the moving
heat source is smaller, the grid of finite elements must be more dense. Taking
advantage of heat polynomials and finite elements, one can solve the problems
in areas with more complex shapes and non-stationary boundary conditions.

The system of polynomials for twelve nodes in the element: 1, x, y, xy,
t+ y

2

2 , tx+
xy2

2 , ty+
y3

3! , txy+
xy3

3! ,
t2

2 +
y2t
2 +

y4

4! ,
t2x
2 +

y2xt
2 +

t4x
4! ,

t2y
2 +

y3t
3! +

y5

5! ,
t2xy
2 +

y3xt
3! +

y5x
5! .

System of polynomials for sixteen nodes in an element: 1, x, y, xy, t+ y
2

2 ,

tx+ xy
2

2 , ty +
y3

3! , txy +
xy3

3! ,
t2

2 +
y2t
2 +

y4

4! ,
t2x
2 +

y2xt
2 +

t4x
4! ,

t2y
2 +

y3t
3! +

y5

5! ,
t2xy
2 +

y3xt
3! +

y5x
5! ,

t3

3!+
y2t2

2!2! +
y4t
4! +

y6

6! ,
t3x
3! +

y2t2x
2!2! +

y4tx
4! +

y6x
6! ,

t3y
3! +

y3t2

3!2! +
y5t
5! +

y7

7! ,
t3yx
3! +

y3t2x
3!2! +

y5tx
5! +

y7x
7! .
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Zastosowanie zmodyfikowanej metody elementów skończonych do

identyfikacji temperatury ciała nagrzewanego ruchomym zrodłem ciepła

Streszczenie

W pracy rozważane jest dwuwymiarowe niestacjonarne zagadnienie przepływu
ciepła z ruchomym źródłem ciepła na brzegu obszaru. Zakłada się, że źródło ciepła
porusza się wzdłuż brzegu prostokąta ze stałą prędkością. Poszukiwany jest rozkład
temperatury w obszarze o kształcie prostokąta. Przybliżone rozwiązanie problemu
zaprezentowane w pracy opiera się na metodzie elementów skończonych ze zmody-
fikowanymi funkcjami bazowymi. Skonstruowane czasoprzestrzenne funkcje bazowe
są kombinacją wielomianów cieplnych, tzn. wielomianów ściśle spełniających równa-
nie przewodnictwa ciepła. Zagadnienie rozwiązame zostało we współrzędnych kartez-
jańskich.
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