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Some problems of neurocomputing in the dynamics of structures are
presented: 1) damage detection using wave propagation, 2) updating of
portal frames finite element models, 3) detection of the void and additio-
nal mass in cantilever plates, 4) neural network modelling of an ”artificial
boundary condition”. The analysed problems are related to both data
prepared by computational systems and that taken from experimental
evidence.

Key words: neural networks dynamics, identification

1. Introduction

In recent years, interest in Artificial Neural Networks (ANN) has grown
rapidly (Haykin, 1999; Waszczyszyn, 1999). The main reason is because of
their powerful and adaptive abilities to treat various complex problems. Such
a co-disciplinary approach can give solutions which are difficult to achieve by
methods specializing in the analysis of inward-disciplinary oriented problems.
Development of computer hardware and software causes, beyond doubt, for-
mulation of new nonstandard methods of data processing. A wide range of
applications were evoked by well known advantages of ANNs which offer com-
plementary possibilities to computer sequential processing. This corresponds,
first of all, to computer simulations of ANNs, sometimes called ”neurocom-
puting”.
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In the paper, some results related to research done at the Faculty of Ci-
vil and Environmental Engineering of Rzeszów University of Technology are
discussed in short. Only selected problems are reported, corresponding to
dynamics of structures. In the paper, the main attention is given to Back-
Propagation Neural Networks which are mostly used in the analysis of me-
chanical problems. The achieved results enable us to point out promising
prospects of neurocomputing applications in dynamics of structures. Back-
Propagation Neural Network (BPNN) applications in analysis of the following
dynamics problems are discussed: (1) damage detection using wave propaga-
tion (Ziemiański and Piątkowski, 2000), (2) updating of portal frames finite
element models (Miller and Ziemiański, 2001, 2003), (3) detection of the void
and additional mass in cantilever plates (Piątkowski, 2003; Piątkowski and
Ziemiański, 2003), (4) neural network modelling of an ”artificial boundary
condition” for infinite domains (Ziemiański, 2003). The analysed problems are
related to both data prepared by computational systems and that taken from
experimental evidence. Much attention was focused on preprocessing of input
data and selection of the best type of a neural network and correct architec-
ture. The influence of random noise inserted into data patterns on the neural
network generalization process was analyzed. The results of performed calcu-
lations show that adding the noise to learning patterns significantly decreases
values of MSE errors and increases resistance to the disturbance.

2. Damage detection using wave propagation

Non-destructive methods of detection of change of material properties and
damage in structural elements present an important and valuable tool. The-
se methods allow estimating the state of a structure as well as predicting a
period of safety usage. An ultrasonic method is one of the most often used
non-destructive methods (Thompson, 1983). For structures such as rods, pla-
tes, shells another widely used method is the one based on structural waves
propagation. In this method, unlike in the classical method of ultrasonic te-
sting, the wavelengths are large compared to the characteristic dimension of
the structure, and a wave pulse propagates along the whole structure. More-
over, the excitation of structural waves is in one point while the measurements
of structural waves velocity are in a few other points instead of surface scan-
ning used in the ultrasonic testing. It simplifies the structural wave tests in
rods, beams, plates and some other structures.
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The Backpropagation ANNs with the Rprop learning algorithm were ap-
plied. Neural networks with one or two hidden layers were tested. The input
vectors consisted of a preprocessed time signal. The outputs provided all pa-
rameters describing damage. Some of these parameters were identified by the
network with satisfactory precision while other with a significant error. Ba-
sed on the previous research done by the author (Ziemiański and Piątkowski,
2000). Cascade neural networks were built to improve the generalisation of
networks. The first network was fed with the input vector as for a simple
net. The first network’s output is the most precisely determined parameter.
The second network has got an input vector with an additional value of the
parameter predicted by the first net. The output of this network is the next
desirable parameter. The cascade networks with two or three stages were used
(Figure 1).

Fig. 1. A three stage cascade network

2.1. Preprocessing of signals

One of the used methods of preprocessing of input data was compression
of a time signal (Ghaboussi and Lin, 1998; Haykin, 1999; Waszczyszyn and
Ziemiański, 2004). The compression was performed by the dedicated neural
network called replicator shown in Fig. 2.

Fig. 2. The use of a replicator in a damage identification problem
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Networks of architecture n-h-n were learned to replicate at the output
the time signal data points given at the input – the input variables we-
re mapped into the same output variables. The compression networks of
200-8-200 and 200-12-200 architectures were created. After training, the out-
puts from hidden neurons (see Fig. 2) were used as preprocessed data for the
damage identification net.

2.2. Identification of cross-section changes

The next analysed task was a rod with a defect simulated as a notch (Zie-
miański and Piątkowski, 2000). Removal of certain finite elements simulated
the failure of the cross-section. Various widths b = 0.1, . . . , 1.1m, various he-
ights h = 0.1, . . . , 0.8m and various locations l = 3.5, . . . , 5.5m of notch were
considered (Figure 3a).

Fig. 3. A test on propagation of structural waves

Table 1. Comparison of errors of identification of cross-section parameters

St. par. Height of defect Location of defect Width of defect

Learn Test Learn Test Learn Test

Standard net

R2 0.996 0.994 0.994 0.994 0.990 0.988

Stε 0.0149 0.0177 0.0193 0.0192 0.0215 0.0232

Cascade net

R2 1.000 0.999 0.999 0.997 0.994 0.986

Stε 0.0043 0.0071 0.0094 0.0121 0.0165 0.0253

The input vector was described with values of first three peaks of the
time signal (Ziemiański and Piątkowski, 2000) and by use of the replicator.
Both standard and cascade nets were used at this stage. Better results were
obtained from neural networks with two hidden layers. The width of the defect
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has no influence on the quality of results. Damage identification is significantly
better in the case of use of cascade networks. In Table 1 the results of neural
simulation are put together.

2.3. Identification of the yielding zone

A group of finite elements with an elasto-plastic material occurred inside
the rod. A plastic-bilinear material model was used. Young’s modulus and
strain hardening modulus were fixed. A failure was simulated by the change of
yield stress σ0. The width b and location l of the defect were changed (Fig. 3d).
A concentrated force with a sine characteristic and duration of 400µs was
applied to the free end of the rod. The measured points were located behind
the zone of yielding. For the identification networks the input vectors consisted
of compressed time signals. A compression network with 8 neurons in the
hidden layer was used. The output vectors consisted of three failure parameters
(σ0, b, l). When simple nets were used, the yield strength parameter and the
location of the yield zone were identified correctly. The width of the defect
was identified significantly worse. The use of cascade networks improved the
identification of width of the defect (see Table 2).

Table 2. Learning errors in the identification of parameters of the yielding
zone

St. par. Yield stress Location Width

Standard net

R2 0.922 0.995 0.769

Stε 0.0222 0.0117 0.0970

Cascade net

R2 1.000 1.000 0.886

Stε 0.0039 0.0012 0.0680

3. Updating of finite element models of portal frames

3.1. Models and the experiment

This section presents an application of ANNs in updating models of two
frames: one-storey portal frame and two-storey frame (Miller, 2002; Miller and
Ziemiański, 2001). The height of both frames was 40 cm, the span was 46.9 cm.
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The beam and columns had a rectangular cross-section of 2.6 cm by 0.6 cm.
The beam-to-column connections and the footings were treated as rigid or
flexible, depending on the used dynamic model.
Several FE models of each frame were built, the differences between them

were as follows:

• the column footing and the beam-to-column connection were treated
either as rigid or as flexible,

• the effective length of both columns was in the range of 40 cm (overall
length of the columns) and 30 cm (the length of the columns above the
steel connection plate); in dynamic models the columns length was 35 cm
(flexible column footing) or 40 cm (clamped columns),

• the models were considered to be symmetrical or not.

Each model consisted of 12 (one-storey frame) or 16 (two-storey frame)
finite beam elements and it had 39 or 48 DOFs. The laboratory models of
both considered frames are shown in Fig. 4, while the FE models are shown in
Fig. 5.

Fig. 4. Laboratory models of both considered frames

Vibrations of the laboratory models were excited by an impact. The re-
sponse of the structure was measured in the range of 0 to 1024 Hz with the
step of 0.25 Hz. The measurements were done using eight accelerometers at-
tached in points corresponding to the nodes of the computational model. The
FE models presented in this paper took into account concentrated masses cor-
responding to the masses of the accelerometers (10.2 g). The laboratory set-
up involved PCB accelerometers, Brüel&Kjær modal hammer and CADA-X
acquiring system with multichannel analyser Scadas III.
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Fig. 5. The FE models of considered frames: (a) one-storey frame model FRAME1a,
(b) one-storey frame model FRAME1b, (c) two-storey frame model FRAME2

3.2. The updating procedure

The model updating procedure consists of the following steps:

1. generation of a set of training data vectors based on the dynamic model,

2. training of the neural network with the training data,

3. exposition of expected data to obtain a set of changes,

4. application of the changes to the original model in order to generate a
new model,

5. repetition of the previous steps if necessary.

This procedure leads to an updated model that can be updated again using
the same method.

Multi layer feed-forward networks and networks with the radial basis func-
tion were used. The input information was the values of the first four eigenva-
lues. On the basis of eigenfrequencies, the networks updated one, two, three or
four parameters of the models (for example rotational or translational stiffnes-
ses of the supports and beam-to-column connection). The learning data were
obtained from numerical simulations and then contaminated by an artificial
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noise. The trained networks were fed on the data obtained from the experi-
ment, and they predicted the updated values of selected model parameters.
The updated models were then used to calculate the eigenfrequencies of the
considered frames.

FRAME1a, FRAME1b and FRAME2 models were updated on the basis
of measurements of the laboratory model with attached eight accelerometers.

3.3. Model FRAME1a

The updated parameters were the stiffnesses of the joints in column fo-
otings. The updating ANNs were of architecture 4-h-1, the learning and te-
sting patterns were disturbed by the artificial noise (Gaussian) of variation
0.006. The number of learning patterns was equal to the number of the testing
patterns, both sets consisted of 1005 patterns. The results of updating are
shown in Table 3.

Table 3. The results of model FRAME1a updating on the basis of eigen-
frequencies – symmetrical model

Eigenfrequency Measured Calculated Relative
[Hz] value value error

f1 27.0 26 3.7%
f2 81.5 85 −4.3%
f3 169.8 174 −2.5%
f4 176.5 182 −3.1%

RMSE = 3.5× 10−2

The RMSE is Root Mean Square Errors of the eigenfrequencies obtained
from the updated model. RMSE is defined by the formula

RMSE =

√

√

√

√

1

n− k + 1

n
∑

i=k

(f0i − fi
f0i

)2

(3.1)

where
k – first of considered eigenfrequencies
n – last of considered eigenfrequencies
i – number of eigenfrequency, i = k, k + 1, . . . , n
f0i – ith eigenfrequency obtained from ”measurements”
fi – ith eigenfrequency obtained from numerical simulations.
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The comparison of eigenforms obtained from numerical calculations and
from measurements is shown in Fig. 6. The calculated eigenforms were, before
the comparison, reduced using the static method (see Friswell and Mottershe-
ad, 1996).

Fig. 6. The comparison of eigenforms obtained from calculations (symmetrical
model FRAME1a) and from measurements: (a) first, (b) second, (c) third

Fig. 7. The comparison of eigenforms obtained from calculations (non-symmetrical
model FRAME1a) and from measurements: (a) first, (b) second, (c) third

The matrix MAC (see Friswell and Mottershead, 1996) for the first four
eigenvectors is as follows

MACij =

∣

∣

∣

∣

∣

∣

∣

∣

∣

0.9918 0.0008 0.2719 0.0288
0.0004 0.9845 0.0003 0.0044
0.1576 0.0000 0.9421 0.1060
0.0001 0.0084 0.0507 0.8873

∣

∣

∣

∣

∣

∣

∣

∣

∣

The values on the main diagonal of the MAC matrix should be, in the case
of proper updating, higher than 0.8, all other values should not exceed 0.1
(Friswell and Mottershead, 1996). In the presented matrix two elements have
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values outside the expected range: MAC3,1 and MAC1,3 have values consi-
derably higher than 0.1. It is caused by the linear dependence of adequate
measured eigenforms. The MAC matrix calculated for measured eigenforms is
as follows

MACij =

∣

∣

∣

∣

∣

∣

∣

∣

∣

1.0000 0.0001 0.2099 0.0200
0.0001 1.0000 0.0000 0.0019
0.2099 0.0000 1.0000 0.0110
0.0200 0.0019 0.0110 1.0000

∣

∣

∣

∣

∣

∣

∣

∣

∣

The elements MAC3,1 and MAC1,3 are twice as high as they should be.

The third and fourth eigenforms shown in Fig. 6c and Fig. 6d indicate that
the considered frame in non-symmetrical. In the next step the values of the
stiffnesses of the joints in the columns footings were updated independently.
The ANNs were of architecture 4-h-2, the learning and testing patterns were
disturbed by the artificial noise of variation 0.006. The number of learning and
testing patterns was 5780 each. The results of updating are shown in Table 4,
the comparison of eigenforms is shown in Fig. 7.

Table 4. The results of model FRAME1a updating on the basis of eigen-
frequencies – non-symmetrical model435

Eigenfrequency Measured Calculated Relative
[Hz] value value error

f1 27.0 26 3.7%
f2 81.5 85 −4.3%
f3 169.8 174 −2.5%
f4 176.5 183 −3.7%

RMSE = 3.6× 10−2

The matrix MAC for the first four eigenvectors is as follows

MACij =

∣

∣

∣

∣

∣

∣

∣

∣

∣

0.9917 0.0010 0.2721 0.0275
0.0004 0.9847 0.0004 0.0041
0.1558 0.0001 0.9839 0.0390
0.0018 0.0081 0.0112 0.9499

∣

∣

∣

∣

∣

∣

∣

∣

∣

The independent updating of rotational stiffnesses of both joints made it
possible to obtain a model reproducing the eigenforms with a higher accuracy.
The improvement is evident also in the MAC matrix, all elements on the main
diagonal are equal or higher than 0.95.
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3.4. Model FRAME1b

The frame with eight accelerometers was modelled also with clamped co-
lumns. The local stiffness matrices of the clamped elements were calculated as
a product of the stiffness matrix of another column element (all others were
the same) and the computational coefficient α, which was being updated. Mo-
del FRAME1b was updated with different values of coefficients α1 and α2, so
the ANN was of architecture 4-h-2. The results of model FRAME1b updating
are shown in Table 5.

Table 5. The results of model FRAME1b updating on the basis of eigen-
frequencies

Eigenfrequency Measured Calculated Relative
[Hz] value value error

f1 27.0 27 0.0%
f2 81.5 85 -4.3%
f3 169.6 169 0.5%
f4 176.5 177 -0.3%

RMSE = 2.2× 10−2

The results are significantly better than those obtained from model FRA-
ME1a. The error of eigenfrequency prediction exceeds 4% only for the second
eigenfrequency f2, in other cases the error is smaller than 1%. The matrix
MAC for the first four eigenvectors is as follows

MACij =

∣

∣

∣

∣

∣

∣

∣

∣

∣

0.9918 0.0008 0.2719 0.0288
0.0004 0.9845 0.0003 0.0044
0.1576 0.0000 0.9421 0.1060
0.0001 0.0084 0.0507 0.8873

∣

∣

∣

∣

∣

∣

∣

∣

∣

3.5. Model FRAME2

The comparison of exemplary results obtained from the updated model
(Fig. 5c) and the data measured on the laboratory model are shown in Table 6.

The accuracy of the updated model was determined by the comparison
of the eigenforms and eigenfrequencies obtained from the measurements and
from the updated model, the maximum difference between the measured and
calculated eigenfrequencies did not exceed 5%, which must be considered as a
very good result. The results obtained from the updated models are precise in
the range of the eigenfrequencies used as input information of the ANNs.



678 L. Ziemiański et al.

Table 6. The results of updating of the FE model of the two-storey frame

Eigenfrequency Measured Calculated Relative
[Hz] value value error

f1 33.0 312 3.0%
f2 91.1 95 −4.3%
f3 106.1 105 2.9%
f4 123.0 121 1.6%

RMSE = 3.1× 10−2

4. Detection of the void and additional mass in a cantilever plate

The assessment of the structure state is a task which requires continu-
ous researches and their development. There are a lot of methods based on a
non-destructive testing of structural elements. Some of these methods utilize
dynamical parameters of the monitored structure, such as modal characteri-
stics (resonance frequencies), response of the structure to an impulse forcing
and structural waves analysis (Yagawa and Okuda, 1996). One of the most im-
portant objectives of these methods are detection and localisation of changes,
failures and defects in structural elements. This section presents the possi-
bility of application of Artificial Neural Networks (ANN) for non-destructive
detection of a circular void and additional mass in cantilever plates. Detection
methods are based on the analysis of eigenfrequencies and analysis of the struc-
ture response to a harmonic excitation. The backpropagation neural networks
with the Levenberg-Marquardt training function were applied. Standard ne-
tworks and cascade sets of MLFF backpropagation neural networks were used
(Waszczyszyn and Ziemiański, 2001; Piątkowski and Ziemiański, 2002).

4.1. Identification of a circular hole location

Numerical tests were carried out for rectangular plates with an internal
defect in the form of a circular hole (Piątkowski and Ziemiański, 2003). The
geometry of a plate is presented in Fig. 8. The plate has a unit thickness. The
position of the void centre is defined by two parameters which are OY and
OZ coordinates. These coordinates and the diameter are unknown parameters
of the inverse problem.

The extreme locations of centre of the hole are located 0.05m from the
plate edges. The location of the void is changed with a step of 0.01m. It has
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given 341 different positions. In eigenproblem analysis, due to symmetry of the
plate, only the 186 different positions of the hole are taken under consideration.
The centres are located under or on the axis of symmetry of the plate.

Fig. 8. The numerical model of the plate-scheme and main dimensions

For each considered location of the void, a FEM model of the plate was
found by means of the Adina finite element system. Numerical models were
made of 2D solid plane stress elements [1]. Thus, only the in-plane vibrations of
the plate were analysed. The meshes of elements were generated automatically
on the basis of sets of solid geometry faces.

An isotropic linear elastic material model was used. The plate had the
following material properties: Young’s modulus E = 215GPa, Poisson’s ratio
ν = 0.3, density ρ = 7850 kg/m3.

The artificial neural network analysis of the calculated eigenfrequencies
was performed to find the hole centre coordinates and its diameter.

The first neural experiment consisted in identification of two coordinates
of the centre of the void with diameter D = 0.002m on the basis of eigen-
frequencies. The computations showed that the acceptable accuracy could be
achieved by the input vector, which composed of only five elements. These
elements included relative changes of first five eigenfrequencies. The relative
changes were calculated as follows

∆fi =
fi − f

o
i

foi
(4.1)

where f oi are the eigenfrequencies of the homogeneous plate (without a void)
and fi respective values corresponding to the plate with the void.
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Better results were obtained from a cascade network (Piątkowski and Zie-
miański, 2002). The maximum error of prediction of centres locations for the
training data set was 1.4mm and for the testing dataset was 1.5mm. The
identified locations are shown in Fig. 9, where the centers from the training
and testing sets are marked by x in gray and black colours. This figure shows
the lower half of the plate due to symmetry of the solution to the eigenproblem
for the plate under consideration.

Fig. 9. Results for the OY .OZ cascade network of architecture 5− 7− 1 . 6− 7− 1

Next, the identification of three parameters of the void {OY,OZ,D} was
performed. In this task, the number of void positions was decreased to 39.
The voids were located in the lower half of the plate. Nine diameters of each
void were simulated in the range of 0.004-0.02 m. Thus, the total number of
patterns was 351. Relied on experiences from the previous expirement, a three-
stage cascade neural network was applied. It was experimentally determined
that the best results were obtained by the cascade network with the following
prediction order of parameters: D . OY . OZ.

The results presented in Fig. 10 multiple marks x which relate to different
diameters of voids at a given position. One can see that the vertical coordinate
of voids was predicted with a higher error than the horizontal one.

The histograms presented in Fig. 11 show that the maximum relative error
of the OY coordinate identification was ±2%, both for the training and testing
sets of patterns. The OZ coordinates were predicted with a relative error of
±10%. The third parameter of the void, its diameter, was identified with a
relative error of ±4% in the diameter range 0.004-0.020 m.
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Fig. 10. Results for the D . OY . OZ cascade network of architecture
5-7-1.6-7-1.7-7-1

Fig. 11. Histograms for (a) diameter of the hole D, (b) coordinate OY ,
(c) coordinate OZ for D . OY . OZ cascade network of architecture

5-7-1.6-7-1.7-7-1

4.2. Detection of an additional mass

Two laboratory models were built as it is shown in Fig. 12 (Waszczyszyn
and Ziemiański, 2004). The models were made of steel and aluminium alloy
plates, fixed to a massive stand by high-tensile bolts.

The experimental set consisted of eight PCB acceleration sensors. Sca-
das III analyzer with LMS software was applied to measure the response of
the structure. The out-plane vibrations of the plate were forced with a mo-
dal hammer. The locations of sensors and the point of impact are shown in
Fig. 12b.
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Fig. 12. (a) The experimental model of the steel plate, (b) scheme of the plate, main
dimensions

The additional mass, whose position was detected, had a mass of 3% or
8% of the plate mass, respectively for the steel or the aluminium alloy models.
The mass was located in nodes of the measurement grid. The grids for both
models are shown in Fig. 12b. The 27 locations of the additional mass in the
steel model were considered. For the aluminium alloy model the grid was
changed. Thus, the vibrations of the plate for 40 locations of the additional
mass were measured.

The acceleration signals in the time domain were transformed by means
of Fast Fourier Transformation into the frequency domain. The obtained fre-
quency characteristics had resolution of 0.25 Hz. These characteristics were
analysed in selected bands. Consequently, within these bands the harmonics
with the highest amplitudes were searched out. Finally, the sets of frequencies
of vibration of the plates with the additional mass were obtained.

The total number of frequency characteristics was equal to 8 · 27 = 216 as
the result of conducting of measurements with eight sensors for 27 locations of
the mass. The set of frequencies for the steel plate consisted of [216 × 5] fre-
quencies, because a searc for modal frequencies within five selected bands was
performed. The inputs vectors for ANN training were prepared by a process
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of elimination of outstanding measurements. After that, the average frequency
in each band for each location of the mass was calculated. Consequently, the
[27× 5] input data set was prepared for the training of the networks used for
mass identification.

In the case of the aluminium alloy plate the number of frequency cha-
racteristics was much higher and was equal to 1528. The number of 1528
characteristics was a result of considering 40 locations of the mass, conduc-
ting measurements with eight sensors and recording plate vibrations for at
least three hammer impacts. These characteristics were analysed in six selec-
ted bands. Finally the [1528× 6] set of characteristics was obtained. In order
to prepare input data, on averaging of the whole set of frequencies was perfor-
med using neural networks. Six networks of 2-10-1 architecture were built –
separately for six bands. These networks were learnt to re-map the two coor-
dinates of the additional mass into modal frequency within the selected band.
Consequently, the [40× 6] input data set was prepared.

Due to a small number of patterns (27 for the steel plate and 40 for the
aluminium alloy plate) it was decided to find additional patterns by adding the
artificial Gaussian noise with the variance σ = 0.001. The number of patterns
was increased to four hundreds that way. The two coordinates of location of
the additional mass were determined separately by means of neural networks
of architecture 5-5-1. 10% of the patterns was selected to testing.

Table 7. Statistical parameters for networks 5-5-1 and 5-5-2

5-5-1 5-5-2
OY OZ OY OZ

R2 0.992 0.991 0.939 0.980
Stε · 102 2.97 2.60 8.21 3.75

Next, two coordinates of location of the additional mass were determined
by means of the neural network of architecture 5-5-2. Statistical parameters,
which describe the trained networks are collected in Table 7. The first part
of this table refers to two 5-5-1 networks, which were used for separate de-
termination of two coordinates of location of the additional mass. The second
part refers to 5-5-2 network. This network did not manage to determine both
coordinates simultaneously.

The results of the identification of location of the mass are presented in
Fig. 13a. The horizontal and vertical bars are proportional to standard devia-
tion of determination of the OY and OZ coordinates due to noised input
vectors. The best accuracy was obtained from the OY . OZ cascade neural
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Fig. 13. Results of the identification of the additional mass in the steel plate,
(a) standard network 5-5-2, (b) cascade network 5-5-1.6-5-1

network of architecture 5-5-1.6-5-1. The results for the training (gray marks)
and testing sets (black marks) are shown in Fig. 13b.

For the aluminium alloy plate, the results were analogous to those obtained
for the steel model. Again, the best determination of location of the additional
mass was obtained from the cascade network, which was fed with the input
vector noised with the variance σ = 0.001.

The results for the training (gray marks) and testing patterns (black
marks) are shown in Fig. 14.

5. Modelling of an ”artificial boundary condition” by neural
network

In many fields of engineering an infinite or semi-infinite domain (unboun-
ded structure) has to be analyzed. This kind of structure is considered in wave
propagation problems such as soil-structure interaction, fluid-structure inte-
raction, acoustics, electromagnetism and so on Wolf and Song (1996), Givoli
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Fig. 14. Results of the identification of the additional mass in the aluminium alloy
plate – cascade network 6-5-1.7-5-1

(1992). The numerical study of problems originally formulated on unbounded
domains requires the implementation of special techniques for the treatment
of ”infinity”. A number of methods were formulated for the reduction of the
problem to a bounded domain such as direct and indirect boundary element
methods, infinite elements, DtN method (Wolf and Song, 1996; Givoli, 1992).
One of the corresponding techniques is based on an artificial truncation of the
original infinite domain at a certain distance away from the region of interest,
which implies that one must set special boundary conditions on the exter-
nal (artificial) boundary of the newly formed finite computational domain. A
surface which encloses the most important part of the structure is often in-
troduced. The model can be obtained by the application of an approximate
boundary condition to the artificial surface – the so called Artificial Bounda-
ry Condition (ABC). In wave propagation problems, ABC is also the called
non-reflecting boundary condition or transmitting boundary (Givoli, 1992).

The modelling of the transmitting boundary using neural networks was
discussed by Ziemiański (2003). The assumption that the simulation of the
artificial boundary condition on the artificial surface is carried out by corre-
sponding neural networks is made (Ziemiański, 2003). The task of these neural
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networks is to simulate boundary conditions fulfilling the radiation condition
and avoiding appearance of the reflected wave. Back Propagation Neural Ne-
tworks are used for this task (Waszczyszyn and Ziemiański, 2001).

5.1. A semi-infinite strip with notch

In the presented example the wave propagation in a semi-infinite strip with
notch is discussed (see Fig. 15).

Fig. 15. A semi-infinite strip: (a) analyzed problem, (b) finite element mesh for the
extended model, (c) finite element mesh for the truncated model

The wave originates at the free end of the rod by a displacement excitation
in the form of a pulse with various durations and amplitudes. An extended
finite element mesh (Fig. 15b) was used for computation of dynamic responses
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in the nodes placed on the artificial boundary. The results of computation
were used to train the back-propagation neural network (BPNN). The input
for the neural network was defined as a vector including horizontal and ver-
tical displacements at the time t − 1 in three consecutive nodes on the line
perpendicular to the artificial boundary. The output vector determines the dy-
namic reactions R(t) (two components Rh and Rv) in nodes on the truncated
boundary (ABC) at the time t.

The learning patterns were obtained from the extended FE mesh. The tra-
ined neural network predicted the dynamic reactions R(t), which were checked
by the comparison of the displacement, velocities and accelerations of selected
nodes obtained from the extended mesh and those obtained from the trunca-
ted model with the neural networks used for the prediction of the dynamic
reactions on ABC. After some calculations and multi-fold cross-validations,
two-hidden-layer networks of architecture 6-12-8-2 were applied and the re-
sponses of the truncated hybrid NN/FE model were computed. In the Fig. 16
the response of horizontal and vertical displacements are displayed and traces
of the difference between two signals are also shown.

Fig. 16. Responses of horizontal displacements at points A and B and errors of
displacements

5.2. A semi-infinite wedge

In the second example, the wave propagates in a semi-infinite wedge fixed
on one edge, along the direction of the wave propagation. The considered FE
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model is shown in Fig. 17. The wedge angle equals 30 degrees, the distance from
the center of the angle to the beginning of the wedge and the width of the
wedge both equal 80m. The wave originates at the narrower (internal) end of
the wedge by the horizontal displacement excitation with various durations t
and amplitudes A (see Fig. 18a). The excitation is triangle-shaped, with the
amplitude A varying with the location on the excitated edge from zero at the
bounded end of the edge to the maximum value at the free end of the edge.

Fig. 17. A semi-infinite wedge: FE mesh

Fig. 18. (a) The triangle-shaped displacement excitation; (b) selected nodes of FE
mesh
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The extended model, shown in Fig. 15d, is used for computation of dyna-
mic responses in the nodes located at the artificial boundary. The values of
displacements, velocities and accelerations at the time t− 1 calculated at se-
lected points using the extended model were used to build up the input vector
of neural networks. The output vector determined the dynamic reactions R(t)
in nodes on the ABC at the time t. The learned network was used to predict
the reactions, which were applied to the truncated model in order to avoid the
reflection of the propagating wave.
The BPNN networks trained using the Levenberg-Marquardt algorithm

were applied. The networks had one or two hidden layers, the output vector
consisted of the values of two components (horizontal and vertical) of the
dynamic reaction in a selected point. The input vector consisted of:

• horizontal and vertical components of displacements of three consecutive
points on the line perpendicular to the artificial boundary (points 1, 2
and 3 in Fig. 18b)

• horizontal and vertical components of displacements of three consecuti-
ve points on the line perpendicular to the artificial boundary and the
dynamic reaction in point 1 (see Fig. 18b) at the time t− 1

• horizontal and vertical components of displacements of four points (po-
ints 1, 2, 4 and 5 in Fig.18b)

• horizontal and vertical components of the displacement, velocity and
acceleration in point 1.

The dynamic reaction was predicted only in point 1, in the middle of the
artificial boundary. The accuracy of the neural prediction was determined by
the comparison of the data obtained from the extended FE model and from
the truncated model with dynamic reactions applied to the artificial boundary
(one of them was predicted by the neural network).
In order to train and test the neural network 61 different excitation signals

were generated. The dynamic reaction in each point on ABC was calculated
numerically in 326 time moments with the step ∆t = 20× 10−6 s. The overall
time of observation was 0.0065 s. The excitation signals had different durations
and amplitudes. The duration of the excitation signal varied from 1.2×10−4 s
to 3.6×10−4 s with the step of 0.48×10−4 s (6 different values). The amplitude
of the signal varied from 6 × 10−2 to 14 × 10−2 with the step of 1.6 × 10−2

(6 different values), so together 36 excitation signals and 36 sets of dynamic
reactions (each consisting of 326 points) were obtained. The second set of
excitation signals and dynamic reactions, used to test the neural network, was
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obtained using 5 different durations and 5 different amplitudes (with values
between the values used to generate the learning signals). The number of
testing signals and the number of sets of dynamic reactions equaled 25.

In the first of considered examples, the input vector consists of six values:
vertical and horizontal displacements in points 1, 2 and 3 at the time t − 1.
The neural network was trained to predict the vertical and horizontal dynamic
reaction in point 1 at the time t. The learning set consisted of 11700 patterns
(36 excitation signals, 326 dynamic reactions calculated using each excitation
signal, one reaction rejected from each group in order to obtain patters consi-
sting of inputs at the time t − 1 and outputs at the time t). The testing set
consisted of 8125 patters (25 excitation signals, 326 minus 1 dynamic reac-
tions). Two hidden layer networks of architecture 6-12-8-2 were applied. The
network was able to predict the dynamic reaction on the basis of the displa-
cements in the input vector. However, the goal of the ANN application was
not to predict the proper values of dynamic reactions but to obtain the trun-
cated model with the transmitting boundary, without the excitation due to
the reflected wave. The results of calculations done using the truncated model
were used to test the accuracy of the artificial boundary built using the neural
networks.The results obtained from this network are presented graphically in
Fig. 19.

6. Final remarks

On the basis of the achieved results, the following conclusions can be drawn:

• ANNs can be efficiently applied in the field of dynamics of structures

• ANNs can deal with data prepared by computational systems and those
taken from experiments (also the data can be mixed)

• ANNs make it possible to use structural wave propagation analysis for
detection and assessment of damage in structural elements

• the hybrid approach (neural network – finite element) proves to be an
effective tool to solve the problem of the model updating

• ANNs can be effectively used as a tool for non-destructive detection of
a void and additional mass in plates
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Fig. 19. Displacements (a,b) and accelerations (c,d) in point 1 in relation with the
time calculated using the truncated model and 8-12-8-2 network in closed loop (the

input vector consists of displacements in points 1, 2 and 3)

• BPNNs can be efficiently applied to the implementation of an approxi-
mate boundary condition on an artificial surface.

• Application of cascade networks improves accuracy of neural approxi-
mation in all analysed cases.
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Identyfikacja parametrów konstrukcji na podstawie dynamicznych
odpowiedzi z wykorzystaniem sieci neuronowych – wybrane zagadnienia

Streszczenie

W artykule przedstawiono zastosowanie sieci neuronowych w wybranych zagad-
nieniach dynamiki konstrukcji: 1) wykrywanie uszkodzeń w elementach prętowych na
podstawie propagacji fali, 2) dostrajanie modeli MES ram portalowych, 3) wykry-
wanie pustki i dodatkowej masy w drgającej płycie wspornikowej, 4) modelowanie
„sztucznej granicy” w zagadnieniu propagacji fali. Rozpatrywane problemy dotyczą
zarówno modeli numerycznych, jak i eksperymentalnych.
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