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The paper presents strategies for implementing decomposition based ge-
netic algorithms in multicriteria design optimization. The decomposition
approach requires that the system design problem be partitioned into
smaller sized subsystems, and the system solution obtained as a com-
bination of the solutions from the subsystems. The absence of gradient
information in a genetic algorithm based search strategy requires alter-
native methods for communicating the design information in different
subsystems. Two newly developed methods referred to as experiential
inheritance and interspecies migration were used to coordinate the so-
lutions of subsystems in the decomposition based approach. Both the
weighted sum and weighted minimax methods were explored in the so-
lution to the multicriteria design problem. The proposed strategies were
validated through implementation in representative algebraic and struc-
tural design problems.
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1. Introduction

Many practical design optimization problems require that multiple crite-
ria be considered simultaneously, a task often requiring compromise between
conflicting goals. Among the efforts to help in this decision-making process,
developing search methods to find Pareto solutions have been central. Pare-
to optimality (Pareto, 1906), often referred to as ”non-dominance” or ”non-
inferiority” is a mathematical concept that can be defined as a characteristic
of multicrieria optimization solutions that cannot yield an improvement in one
criterion without adversely affecting another criterion. When using GA’s to
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locate a Pareto optimal solution, it is interesting to note that multiple nondo-
minated solutions can be identified in a single run due to the population-based
nature of the search process. A number of interesting multicriteria genetic al-
gorithms have been introduced in recent years (Horn et al., 1994; Srinivas and
Deb, 1994, Fonseca and Fleming, 1995; Zitzler and Thiele, 1999; Deb et al.,
2002). Most of these approaches do indeed exploit the population based GA or
evolutionary algorithm to identify the complete Pareto front in multicriteria
optimization problems.

Among the many techniques developed to identify Pareto solutions is the
well-known weighted sum method, wherein a sum of weighted criteria values
are minimized or maximized. Another well-established method is the weighted
minimax method. In minimization problems for example, the weighted mini-
max method minimizes the criterion that has the maximum value among the
weighted multiple criteria. The present paper describes the adaptation of these
methods in a decomposition based design optimization strategy for multicri-
teria problems, with genetic algorithms (GA’s) used as the search technique.

Decomposition based design methods have been proposed as a solution
to large-scale coupled problems, wherein the original problem is decomposed
into a number of smaller, more tractable subproblems (Sobieszczański-Sobieski
and Haftka, 1997). The ability to create smaller subproblems that represent
the full complexity of the original problem, may allow for parallel processing
of solutions and contribute to a better understanding of the problem domain.
In order that the optimal solution to the original design problem is obtained
through solutions of several smaller sized subproblems, solution coordination is
necessary to account for any interactions among the decomposed subproblems.
When using traditional gradient-based optimization methods, such interac-
tions are typically considered on the basis of sensitivity information. Many
problems, specifically those involving discrete and integer design variables are
not amenable to such an approach due to the lack of gradient information;
other problems may suffer from the existence of multiple relative optima and
require that global search algorithms be used instead. The GA has emerged as
a leading global search method that increases the probability of identifying the
global optimum in such generically difficult optimization problems. The issue
of solution coordination, however, requires special attention in the context of
genetic search.

Two strategies, referred to as the experiential inheritance strategy and in-
terspecies migration method (Ryoo and Hajela, 2002), have been proposed to
facilitate the coordination in GA driven decomposition based design. As in a
traditional decomposition approach, each subproblem is assigned a subset of
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design variables and constraints. In each subproblem, GA based searches are
conducted in parallel (co-evolution) and the aforementioned strategies are used
to communicate changes in a subproblem to other subproblems. Experiential
inheritance compares the shared design variable values from two different sub-
problems and modifies the survival chances of each on the basis of its ability
to generate a globally coordinated compatible design. The interspecies mi-
gration method directly carries information from one subproblem to another
where the information is needed for evaluation of objectives and/or constraints.
In the present paper, the experiential inheritance and interspecies migration
methods have been extended to coordinate a global solution in multicriteria
design optimization problems.

2. Communication based on experiential inheritance and

interspecies migration

The following mathematical representation describes a coupled design pro-
blem where the design variable vector X = {XS , XA, XB} can be categorized
into three subsets of variables; subsets XA and XB contain design variables
encountered only in constraints gA and gB , respectively

minimize f = f(XS , XA, XB)
with respect to gA = gA(XS , XA) ¬ 0

gB = gB(XS , XB) ¬ 0
(2.1)

The subset XS represents shared variables common to both of these constra-
ints. In this representation, all of design variables may be used in the objective.
The optimization problem can be decomposed into two subproblems as follows

minimize fA = fA(XS , XA, X
∗

B)
with respect to gA = gA(XS , XA) ¬ 0

gB = g
∗

B ¬ 0

(2.2)

minimize fB = fB(XS , X
∗

A, XB)
with respect to gA = g

∗

A ¬ 0
gB = gB(XS , XB) ¬ 0

In GA-based search, these two subproblems can be assigned their respec-
tive subpopulations and co-evolved in parallel. Note that the variables with
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asterisk are referred to as migration variables, and are not included in the chro-
mosomal representation of the design for a particular subproblem. Therefore,
these variables do not participate in the crossover and mutation operations.
The constraints with asterisk are referred to as migration constraints, and are
not calculated within the subproblem but are rather carried from other sub-
problems. These two subproblems cannot be solved independently as a unique
value for XS is required. There is a need, therefore, for coordination between
the solutions to the two subproblems. To coordinate a global solution, both
experiential inheritance and interspecies migration are used to communicate
information between the subproblems.

In experiential inheritance approach, the fitness of an individual design in
a particular subproblem is evaluated in terms of the objective and constraint
functions of that particular subproblem. The shared variables of this individual
design are compared to those from a different subproblem, and this comparison
used to modify the objective values of the former.

In addition to the experiential inheritance method, another strategy refer-
red to as interspecies migration method was used to carry information from
one subproblem to another. In Eq. (2.2), objectives using variables with aste-
risk should be calculated using information from other subproblems; similarly,
constraint values with asterisk should be carried from other subproblems. In
the context of co-evolution, when the evaluation of an individual design in sub-
problem A requires information from subproblemB, the interspecies migration
method uses a binary tournament selection method to choose an individual
from this subpopulation B and uses the selected individual’s information for
the evaluation of the individual in subpopulation A.

The co-evolution process is schematically shown in Fig. 1. As can be seen
from this figure, a population pool with modified objective values is created in
both subpopulations and referred to as the experiential inheritance population.
This pool serves as the selection source for all experiential inheritance and
interspecies migration operations during the co-evolution process.

For the first generation of evolution, no comparison of shared variables is
performed and the modified objective has the same value as the original objec-
tive. In subsequent cycles, the designs and their associated modified objective
values comprise an experiential inheritance population and preserved for use
in the next generation of evolution. For example, for evaluation of every indivi-
dual in one population, the interspecies migration method selects information
from the experiential inheritance population of another subproblem. Similarly,
for comparison of every individual in one population, experiential inheritance
operation chooses a comparison mate from the experiential inheritance po-
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Fig. 1. Schematic illustration of co-evolution

pulation of another subproblem. This is repeated for each individual in all
subproblems. Since the experiential inheritance population includes results of
both local evaluation and those obtained through comparison, the information
in this population is indicative of the global performance of the individual.
Three distinct issues are pertinent in the experiential inheritance approach.

These include the selection of the two individuals for comparison, the metric
for comparing these individuals, and the algorithm to modify their original
objective values.
The binary tournament selection was used to choose an individual to parti-

cipate in the comparison process. From an experiential inheritance population,
two individuals were selected and the better of these used for comparison.
The difference of real values of the variables was used as a metric for

comparison of shared design variables; this metric, referred to as the difference
measure, was defined as follows

DM =
n∑

i=1

αi|x
A
Si − x

B
Si| (2.3)

where xSi indicates shared design variables, n is the number of shared de-
sign variables, xA indicates that the value is from current subproblem A and
xB indicates that the value is from the experiential inheritance population of
subproblem B. The coefficients αi are weighting factors. For example, if x1
varies from 0.0001 to 0.0002 while x2 varies from 2 to 3, simple addition of
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differences may de-emphasize the difference in x1. Proper coefficient values αi
would balance the significance of x1 and x2.

Following a comparison of individuals, the objective values were modified
and resulted in changing the survival chance of the individual. In this study,
the difference between two designs (DM) was appended as a penalty to the
objective function; in a function minimization problem, decreasing the penalty
would ensure greater compatibility between the shared design variables of the
two subproblems. The modified objective function is as follows

modified objective = objective + γ DM (2.4)

where the coefficient γ should be increased as DM decreases to improve the
matching continually. Note that the objective term, as defined in Eq. (2.4),
may include any penalty term associated with the violation of the design
constraints.

3. Elitist communication and consistency of selection

Before the GA operations (crossover and mutation) of the local popula-
tion, the best performer is identified and preserved for the next generation; the
best performer in an experiential inheritance population is also similarly iden-
tified. These individuals are then matched against each other for experiential
inheritance and migration communication exclusively.

In this study, only one tournament selection was performed for the expe-
riential inheritance and interspecies migration. Therefore, the shared design
variable values for comparison, the migration design variables for objective
function, and the constraint values are from one individual in an experiential
inheritance population. In this way, combining favorable factors from vario-
us designs is avoided; such an approach may otherwise generate unrealistic
designs.

Figure 2 shows how the combination of favorable factors occurs if indepen-
dent selections were allowed for the experiential inheritance and interspecies
migration.

Experiential inheritance takes place between two designs which have x1=0
and interspecies migration takes place with a design which has x2 = 0 in expe-
riential inheritance population B. Although this combination gives a compa-
tible design in terms of shared design variable values and also gives a low
objective function value in subproblem A, the combination of x1 = 0 and
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Fig. 2. Combination of favorable factors

x2 = 0 in subproblem B violates its local constraint. The consistency of selec-
tion in the comparison process can help eliminate this unrealistic combination.
A stepwise description of the process used in this study is outlined below.

Step 1. Generate populations randomly for each subproblem.

Step 2. For each individual in subproblem populations, find a comparison
mate by performing binary tournament selection from experiential in-
heritance populations (of another subproblem) defined in Step 5; the
tournament selection is based on the modified objective value. The pre-
served elitist individuals in Step 6 are specifically matched against each
other instead of using the tournament selection. For the first generation
of co-evolution, perform random selection.

Step 3. Evaluate the objective values of each population (note that the ob-
jective includes an appended measure of constraint violation). When the
evaluation needs a migration design variable value and/or constraint va-
lue, use the values associated with the comparison mate identified as
described in Step 2.

Step 4. Use the experiential inheritance approach to obtain modified objec-
tive values.

Step 5. Associate design variables and constraint values with the modified
objective value computed in Step 4 to form experiential inheritance po-
pulations. These experiential inheritance populations are used in Step 2
where comparison mates are identified.

Step 6. Perform ordinary genetic algorithm operations with modified objec-
tive values and go to Step 2. Repeat until a prescribed termination cri-
terion has been satisfied.
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4. Multi-criteria design optimization in decomposition based

environment

A multi-criteria design problem can be represented as below

minimize fi = fi(XS , XA, XB) i = 1, . . . , k
with respect to gA = gA(XS , XA) ¬ 0

gB = gB(XS , XB) ¬ 0
(4.1)

Both the weighted sum and the weighted minimax approaches were implemen-
ted in the solution to this problem in a decomposition-based design environ-
ment. Using the weighted sum method, Eq. (4.1) can be decomposed into two
subproblems as follows

minimize FA =
k∑

i=1

wifAi(XS , XA, X
∗

B)

with respect to gA = gA(XS , XA) ¬ 0
gB = g

∗

B ¬ 0
(4.2)

minimize FB =
k∑

i=1

wifBi(XS , X
∗

A, XB)

with respect to gA = g
∗

A ¬ 0
gB = gB(XS , XB) ¬ 0

where FA and FB represent the weighted sums of the multi-criteria in each
subproblem. Note that the weights associated with the same criterion in both
subproblems are identical. Experiential inheritance and interspecies migration
methods were applied to communicate between subproblems decomposed as
in Eqs. (4.2).
When the weighted minimax method is applied to a decomposition problem

with multiple criteria, the problem can be represented as follows

minimize max
i=1,k
wifAi(XS , XA, X

∗

B)

with respect to gA = gA(XS , XA) ¬ 0
gB = g

∗

B ¬ 0
(4.3)

minimize max
i=1,k
wifBi(XS , X

∗

A, XB)

with respect to gA = g
∗

A ¬ 0
gB = gB(XS , XB) ¬ 0

Experiential inheritance and interspecies migration methods were applied to
this problem structure as defined earlier.
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5. Numerical examples

The proposed strategies have been implemented in three algebraic pro-
blems and a truss design problem.

A simple algebraic problem (Problem 1) with one shared variable is stated
as follows

minimize f1 = x0 + 3e
x1 f2 = x0 + 2x

2
2

with respect to g1 = x0 − 2x1 − 2 ¬ 0
g2 = 1− x0 + x2 ¬ 0

with 0 ¬ x0 ¬ 1 −1.0 ¬ x1 ¬ −0.5
−1.0 ¬ x2 ¬ 0

(5.1)

This problem can be decomposed into two subsystems as follows

minimize fA1 = x0 + 3e
x1 fA2 = x0 + 2x

∗2
2

with respect to g1 = x0 − 2x1 − 2 ¬ 0 g2 = g
∗

2 ¬ 0
with 0 ¬ x0 ¬ 1 −1.0 ¬ x1 ¬ −0.5

(5.2)

minimize fB1 = x0 + 3e
x∗
1 fB2 = x0 + 2x

2
2

with respect to g1 = g
∗

1 ¬ 0 g2 = 1− x0 + x2 ¬ 0
with 0 ¬ x0 ¬ 1 −1.0 ¬ x2 ¬ 0

The optimal solution to this problem results in a convex Pareto front, and
both of the proposed solution strategies are expected to yield the correct solu-
tions. The experiential inheritance and interspecies migration strategies were
implemented to obtain a coordinated solution from the decomposed subsys-
tems.

Another algebraic problem (Problem 2) as described below was also tested
to validate the proposed approach; the optimal solution to this problem results
in a non-convex Pareto front

minimize f1 = x0 f2 = x1 + x2
with respect to g1 = 1− (x0 − 1)

2 − (x1 − 1)
2 ¬ 0(10)

g2 = 1− (x0 − 2)
2 − (x2 − 2)

2 ¬ 0
with 2 ¬ x0 ¬ 3 1 ¬ x1 ¬ 2

2 ¬ x2 ¬ 3

(5.3)
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The problem was decomposed into two subproblems as follows

minimize fA1 = x0 fB2 = x1 + x
∗

2

with respect to g1 = 1− (x0 − 1)
2 − (x1 − 1)

2 ¬ 0
g2 = g

∗

2 ¬ 0
with 2 ¬ x0 ¬ 3 1 ¬ x1 ¬ 2

(5.4)

minimize fA1 = x0 fB2 = x
∗

1 + x2
with respect to g1 = g

∗

1 ¬ 0
g2 = 1− (x0 − 2)

2 − (x0 − 2)
2 ¬ 0

with 2 ¬ x0 ¬ 3 2 ¬ x2 ¬ 3

As in the previous example, both the weighted sum and the minimax appro-
aches were used in the proposed decomposition environment.

An algebraic problem with three subsystems (Problem 3) was used as below
in order to test the approach in the multi-subsystem environment

minimize f1 =
1

16(x0 + x1 + x2 + x3)2

f2 =
4

x0 + x1 + x2 + x3
with respect to g1 = x0 + 3x1 − 4  0

g2 = x0 + x2 − 2  0
g3 = 3x0 + x3 − 3  0

with 0 ¬ x0 ¬ 2 0 ¬ x1 ¬ 2
0 ¬ x2 ¬ 2 0 ¬ x3 ¬ 2

(5.5)

The problem was decomposed into three subproblems as follows

minimize f1 =
1

16(x0 + x1 + x∗2 + x
∗

3)
2

f2 =
4

x0 + x1 + x
∗

2 + x
∗

3

with respect to g1 = x0 + 3x1 − 4  0
g2 = g

∗

2  0 g3 = g
∗

3  0
with 0 ¬ x0 ¬ 2 0 ¬ x1 ¬ 2
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minimize f1 =
1

16(x0 + x
∗

1 + x2 + x
∗

3)
2

f2 =
4

x0 + x∗1 + x2 + x
∗

3

with respect to g1 = g
∗

1  0 g2 = x0 + x2 − 2  0
g3 = g

∗

3  0
with 0 ¬ x0 ¬ 2 0 ¬ x2 ¬ 2

(5.6)

minimize f1 =
1

16(x0 + x∗1 + x
∗

2 + x3)
2

f2 =
4

x0 + x∗1 + x
∗

2 + x3
with respect to g1 = g

∗

1  0 g2 = g
∗

2  0
g3 = 3x0 + x3 − 3  0

with 0 ¬ x0 ¬ 2 0 ¬ x3 ¬ 2

As in the previous examples, both the weighted sum and the minimax appro-
aches were used in the proposed decomposition environment.

Fig. 3. Global structure of truss problem

A truss system (see Figure 3) with multiple design criteria (Problem 4)
was considered as the third test problem. The weight of the truss structure
and the nodal displacements were minimized, and constraints on stress levels
in the bar elements were imposed in the design problem.
The structure can be decomposed into two substructures. One substructure

has a 7 bar truss as shown in Fig. 4a and the other has a 4 bar truss as shown
in Fig. 4b. Two substructures are under independent boundary conditions and
loads. However, the cross-sectional area of truss members, A− 1 and B − 1,
and of A−2 and B−2 should be set equal for manufacturing convenience. In



620 J.Ryoo, P.Hajela

Fig. 4. Sub structures of truss problem

addition, horizontal locations of node A and node B, which can move freely
horizontally, are to be the same; these are considered as shared design variables
for the problem. Stresses in the truss members were restricted to 172 · 103 Pa.
Young’s modulus was given as 6.9 · 108 Pa and material density was set to
2768 kg/m3. In this problem, the weight of the structure and the average of
the nodal displacement of node 1 and node 2 were minimized.

6. Results and discussions

For each of the test problems, multiple simulations were conducted to acco-
unt for the random nature of the search process. Figure 5 shows the simulation
results for Problem 1 using the weighted sum approach in the proposed decom-
position environment. The solid line represents the criteria values of designs
with the active constraints and Pareto front.

The results obtained using the weighted minimax methods in the decom-
position based environment are shown in Fig. 6. In each case, simulations with
three different initial populations were conducted and the results from diffe-
rent initial populations are marked with different symbols. The weight factors
used for f1 in the weighted sum method varied from 0 to 1 in increments
of 0.1, and the sum of two weights was set to unity. The weight factors for f1
in the weighted minimax method varied from 0.3 to 0.7 in increments of 0.05,
and the sum of weights was set to unity. For each simulation, the number
of function evaluations was restricted to 100000. Table 1 shows the objective
values of a test simulation of Problem 1 from an initial population. The search
process was able to converge to the known Pareto optimal front of solutions.
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Fig. 5. Simulation results of Problem 1 using weighted sum approach

Fig. 6. Simulation results of Problem 1 using weighted minimax approach

The shaded area in Fig. 7 represents the feasible region for Problem 2. The
optimal front for this problem is non-convex and was correctly identified in
simulation using the minimax method. Simulation results using the weighted
sum method for this problem were only able to find two Pareto optimal so-
lutions for various combinations of weights. These were designs with f1 = 3,
f2 = 2, and f1 = 2, f2 = 4 located at the extremities of the Pareto front,
demonstrating the inappropriateness of the weighted sum method in such si-
tuations. The weighted minimax method was used with the weight factors for
f1 varying between 0.5 and 0.7 in increments of 0.01, and the sum of we-
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Table 1. Simulation results of Problem 1

Weighted sum Weighted minimax

w1 f1 f2 w1 f1 f2

0.0 1.916 0.999 0.3 2.112 0.932

0.1 1.942 0.992 0.35 1.917 1.006

0.2 2.099 0.933 0.4 1.775 1.182

0.3 1.749 1.120 0.45 1.576 1.287

0.4 1.566 1.289 0.5 1.500 1.390

0.5 1.598 1.263 0.55 1.322 1.666

0.6 1.228 1.799 0.6 1.183 1.912

0.7 1.207 1.824 0.65 1.152 1.964

0.8 1.104 2.0 0.7 1.104 2.0

0.9 1.104 2.0

1.0 1.104 2.0

Fig. 7. Simulation results of Problem 2 using weighted minimax method

ights set to unity. Three different initial populations were used and marked
respectively. The weighted minimax method produced a smooth and complete
Pareto front. A total of 100000 function evaluations were allowed in the search
process. Objective values of Problem 2 from an initial population are given in
Table 2.
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Table 2. Simulation results of Problem 2

Weighted minimax

w1 f1 f2 w1 f1 f2

0.5 3.0 3.0 0.61 2.531 3.912

0.51 2.995 3.111 0.62 2.5 4.001

0.52 2.981 3.221 0.63 2.424 4.094

0.53 2.961 3.317 0.64 2.25 3.983

0.54 2.938 3.403 0.65 2.5 3.985

0.55 2.868 3.501 0.66 2.312 4.006

0.56 2.828 3.576 0.67 2.375 4.006

0.57 2.741 3.672 0.68 2.25 3.982

0.58 2.703 3.72 0.69 2.25 4.248

0.59 2.629 3.782 0.70 2.0 4.0

0.6 2.578 3.862

Fig. 8. Feasible region of Problem 3

The feasible region for Problem 3 was shaded with asterisk in Fig. 8. The
optimal front was identified in simulation using both of the weighted sum
and weighted minimax methods and was represented in Fig. 9 and Fig. 10,
respectively. The weight factors of f1 for both approaches varied between 0.0
and 1.0 in increments of 0.1. Three different initial populations were used and
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marked respectively. A total of 100000 function evaluations were allowed in
the search process. Objective values of Problem 3 from an initial population
are given in Table 3.

Fig. 9. Simulation results of Problem 3 using weighted sum method

Fig. 10. Simulation results of Problem 3 using weighted minimax method
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Table 3. Simulation results of Problem 3

w1
Weighted sum Weighted minimax
f1 f2 f1 f2

0.0 0.9308 0.5194 0.9308 0.5194

0.1 0.9132 0.5251 0.9600 0.5107

0.2 0.9299 0.5196 0.9654 0.5091

0.3 0.7036 0.5961 0.9108 0.5260

0.4 0.5099 0.7008 0.8091 0.5563

0.5 0.3913 0.7995 0.6319 0.6319

0.6 0.3039 0.9074 0.4918 0.7184

0.7 0.2427 1.0168 0.3619 0.8446

0.8 0.2211 1.0869 0.2511 1.0043

0.9 0.2153 1.1554 0.1931 1.2445

1.0 0.1956 1.2206 0.1956 1.2206

Fig. 11. Simulation results of Problem 4 using weighted sum method

Figure 11 shows the results from the all-in-one solution and decomposition-
based approach for the truss problem (Problem 4) using the weighed sum me-
thod. Similarly, Fig. 12 shows the results of simulations using the weighted
minimax method. Three simulations with different initial populations were
used and the weights for f1 were varied from 0 to 1 in increments of 0.1
for all cases. A total of 20000 function evaluations were allowed in the se-
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arch process. The search results were comparable for both the all-in-one and
decomposition-based methods; both the weighted sum and the weighted mini-
max approaches identified almost identical solutions. Table 4 shows objective
values of Problem 4 for each case.

Fig. 12. Simulation results of Problem 4 using weighted minimax method

Table 4. Simulation results of Problem 4

w1

All-in-one approach Decomposition-based approach
Weighted Weighted Weighted Weighted
sum minimax sum minimax

f1 [lb] f2 [in] f1 [lb] f2 [in] f1 [lb] f2 [in] f1 [lb] f2 [in]

0.0 4580 1.09 4580 1.09 4510 1.11 4511 1.11

0.1 3562 1.14 4771 1.09 3732 1.15 4637 1.10

0.2 3371 1.17 4303 1.09 3397 1.21 4394 1.11

0.3 2825 1.37 3032 1.30 2881 1.36 3021 1.30

0.4 2439 1.59 2438 1.64 2395 1.64 2457 1.63

0.5 2026 1.91 2039 2.04 2099 1.89 2074 2.07

0.6 1596 2.44 1636 2.45 1695 2.41 1664 2.54

0.7 1345 3.09 1315 3.08 1439 2.75 1371 3.20

0.8 994 3.98 1039 4.16 1110 3.63 1053 4.22

0.9 683 5.90 685 6.04 699 6.04 711 6.16

1.0 339 13.22 334 13.42 313 14.51 313 14.51
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7. Closing remarks

The paper examines new strategies for adapting a GA search in a
decomposition-based multicriteria design environment. To identify Pareto so-
lutions in a multicriteria design problem, two well-established methods, name-
ly the weighted sum and weighted minimax methods, were implemented in a
decomposition-based approach. The approach requires communication betwe-
en the decomposed subproblems so as to direct the search towards a globally
compatible solution. These communication strategies are based on the pre-
viously developed mechanism of experiential inheritance and interspecies mi-
gration, developed specifically for GA implementations in the decomposition-
based design. The decomposition based approach is successfully extended to
incorporate multicriteria design problems; the proposed strategies are valida-
ted through numerical experiments conducted with algebraic and structural
design problems. The numerical examples considered include problems invo-
lving both convex and non-convex Pareto fronts.
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Rachunek ewolucyjny w obszarze wielokryterialnej optymalizacji oparty

na zagadnieniu dekompozycji

Streszczenie

W pracy zaprezentowano metodę zastosowania genetycznych algorytmów opar-
tych na zagadnieniu dekompozycji w zadaniu wielokryterialnej optymalizacji obiektu.
Zagadnienie dekompozycji wymaga rozbicia danego zadania na mniejsze podproble-
my i znalezienia cząstkowych rozwiązań, by w efekcie otrzymać rozwiązanie ogólne
na podstawie wcześniej wyznaczonych cząstkowych. Brak gradientowego charakteru
informacji w metodzie poszukiwania rozwiązania opartej na algorytmie genetycznym
skłania do zastosowania alternatywnej metody przekazu informacji pomiędzy obsza-
rami rozbitych grup problemowych. W zagadnieniu dekompozycji użyto dwie nowo-
sformułowane metody określone mianem dziedziczenia eksperymentalnego i migracji
międzygatunkowej. W poszukiwaniu rozwiązania zadania wielokryterialnej optymali-
zacji obiektu wykorzystano metody sumy ważonej i wartości min-max. Zaproponowa-
ne strategie postępowania zweryfikowano na reprezentatywnych modelach algebraicz-
nych i projektowych.
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