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In this paper, a recurrent neural network structure is proposed for the modeling of the
behavior of shape memory alloy springs. Numerous mathematical modeling and experimen-
tal evaluations show that the force exerted by SMAs, aside from their length and applied
voltages, depends on the loading path. Therefore, in addition to the applied voltage and
deformation, a feedback of the voltage applied to, and the force exerted by the SMA spring
in the previous time step is included in the inputs to this neural network to represent the
loading path. Fed by adequate inputs, the NN estimates the output force of the spring.
The results of some thermal loadings of the spring at various fixed lengths and mechanical
loadings at various constant voltages are used to train the NN. The performance of the NN
model is then evaluated for some constant weight loadings which are not learnt by the NN.
Simulation results indicate that compared to other neural network structures, the propo-
sed structure learns the behavior of the SMA spring faster (in less iteration). Moreover, it
provides a more general model, i.e. this NN model effectively estimates the output force for
almost all possible loadings.
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1. Introduction

Shape Memory Alloys have the unique capability of memorizing their shapes in such a way that
at low temperatures they can be easily deformed with even small forces. When the temperature
is increased above a limit, they recover their memorized shape. If their shape recovering is
hindered by an external object, they will apply comparatively large forces on the object which
indicates that shape memory alloys can be used as actuators. Possessing advantages like the
possibility of being used in small dimensions (a few microns in wire form), a comparatively high
force to volume ratio, and smooth and silent operation have made SMAs suitable candidates for
actuators especially in tiny systems. Although different types of these actuators are available,
they are commonly used in the form of wires and springs. Wire actuators are most suitable for
systems in which large forces and small displacements are needed such as microgrippers (Lan et
al., 2011). Spring actuators are preferred when large forces and large deflections are required at
the same time as in micro-robots (Kim et al., 2006).
Lots of works have been done by researchers to describe the behavior of shape memory alloys.

It is known that the shape memory property of SMAs mainly results from a reversible phase
transformation from the martensite phase, in low temperatures, to the austenite phase, in high
temperatures. Tanaka (1986) derived a constitutive relation for SMAs using thermodynamical
principles. He also defined the phase transformation kinetics by introducing an internal variable
which describes the portion of each phase in the current crystal structure of the SMA. Fur-
ther studies revealed that the martensite phase may exist in two separate configurations. When
the alloy cools down freely from the austenite phase, the produced martensite phase will have
multiple variants and twins will be present in the structure. All the variants are crystallogra-
phically equivalent but their orientation is different. This configuration of martensite phase is
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commonly called “twinned martensite”. If a load is applied to the specimen and increased over
the critical stress, the different variants will begin to reorient in the direction of the applied load.
This process is called detwinning and the produced configuration is commonly called “detwin-
ned martensite”. Brinson (1993) and Gao et al. (2007) changed Tanaka’s constitutive relation
in order to capture the behavior of SMAs when the phase changes from austenite or twinned
martensite to detwinned martensite and vice versa. In their model, they also considered the fact
that the material properties are different for each phase. There are also many other works done
to model the nonlinear behavior of SMAs as in Sun and Hwang (1993) and Zhang et al. (1997).

Most of the proposed models for SMAs are one dimensional and describe the relation between
axial load and longitudinal displacement which makes them well-suited for SMA wires. From
the basic mechanical principals it is known that the prominent stresses and strains in springs are
the shear ones. Therefore, one-dimensional models are not directly applicable to SMA springs.
By introducing equivalent stresses and strains, Liang and Rogers (1997) developed a multi-
dimensional constitutive relation for SMAs and proposed a simple SMA spring model. Aguiar
et al. (2010) employed Fremond’s one-dimensional model to derive a model to describe the
behavior of SMA springs while Hadi et al. (2010) used the Brinson model and followed the
Liang procedure.

The aforementioned models use some mathematical relations to describe the behavior of
SMA springs. Due to intense hysteresis and nonlinearities in SMA response, it is so difficult
to find a mathematical model which can exactly predict the SMA behavior in general. On the
other hand, these models often need some parameters which are very hard to be determined
practically (Lee and Lee, 2000). These roadblocks have motivated researchers to seek for new
modeling methods such as artificial neural networks.

The NN’s great ability to learn nonlinear relations has made it one of the first choices in
modeling complicated systems where analytical expressions cannot be found or could take a
long time to be simulated. NN modeling can be classified under black box modeling methods
since regardless of the system type it only needs the inputs to the system and the corresponding
outputs to provide a model of the system. When responses of a system are presented to an
appropriately adjusted neural network, the NN extracts the relation between the data and stores
it as the network weights. However, the training data need to be chosen suitably, i.e. contain
sufficient information about the system for the NN model to be as close to the true system as
possible.

The input-output set of the NN should be chosen carefully according to the type of the
system. In a simple system like a single-input function, the suitable input and output for the
network can be easily recognized. However, for more complicated systems like an SMA-actuated
system, finding an appropriate set is not a trivial task and different neural networks with diverse
input-output sets and various structures are to be designed.

Lee and Lee (2000) used neural networks to evaluate the characteristics of an SMA spring
actuator for an active catheter. They employed a multilayer perceptron with an error back-
-propagation algorithm consisting of two input neurons, two hidden layers with four neurons in
each layer, and one output neuron. The proposed network takes the initial deflection of the spring
and its current temperature as the inputs and predicts the shape recovery force in the output.
Using some experimental data, they evaluated the network in fixed-length thermal loadings and
showed that the NN works very well in prediction of the constrained shape recovery force, even
better than Liang’s model. Regarding the input-output set of this NN, it seems obvious that the
application of this model is limited to fixed-length tests because it takes in the initial deflection
and not the current length of the spring. Moreover, measuring the temperature of the spring (as
an input to the network) is not easy in practice.

Song et al. (2003) trained a neural network with a representative inverse hysteresis loop and
obtained an inverse model of an SMA wire. Then they used the network in combination with a
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sliding-mode based robust compensator for precision tracking control of the length of an SMA
wire. In addition to the deflection of the SMA wire, a tag input is also provided for the network
to determine which branch of the hysteresis loop the training data belongs to. The adopted
network has two hidden layers with four neurons in the first layer and five neurons in the second
one.

Asua et al. (2008) employed NN to learn an inverse model of the hysteresis in an SMA
wire. Then they controlled the length of the wire combining the NN compensator with a PI
controller. The hysteresis in an SMA wire depends on the amplitude, speed and frequency of
the deflection. So the length of the wire at the current time and the two previous signal samples
yi, yi−1 and yi−2 are taken as the inputs to the network, while the electrical current through
the wire is the output. The proposed input-output set obviates the requirement for a tag input
since the hysteresis branch can be recognized by comparing the successive inputs. In addition
to the input and the output layer, the network includes one hidden layer with 80 neurons and
uses Levenberg-Marquardt algorithm to learn offline the dynamics of the SMA wire. As they
have stated, this network yields good results in obtaining an inverse model of the hysteresis in
some constant weight tests. Nevertheless, as previously mentioned, the general behavior of the
SMAs cannot be predicted by measuring a single quantity. Thus, it seems this network will not
be able to perform well under various circumstances.

In this paper, a new neural network is presented for the modeling of an SMA spring. The
input-output set is chosen in such a way that the obtained global model is capable of appropria-
tely predicting the behavior of the SMA spring in almost all conditions. The results of several
experiments in the case of constant length as well as constant voltage are utilized to train the
network. Then the network capability is evaluated in some unlearned fixed-stress tests.

Section 2 describes the structure of the proposed neural network. The setup which is utilized
to carry out the experimental tests is described in Section 3. The results of training and eva-
luation of the neural network are provided in Section 4. Finally, Section 5 concludes the paper
and lists up future works.

2. Neural network model

In this paper, a new neural network model of SMA springs will be introduced. The model should
be able to predict the force exerted by the SMA spring. Since the responses of a SMA spring
largely depend on the loading history, to obtain a global NN model, it is necessary to provide
the network with some information about the loading path. Therefore, the applied voltage and
the force exerted by the SMA spring at a previous time step are included in the input set as
well as the current voltage and deflection. It is noteworthy that here the voltage is taken as
a representative of the temperature in order to get rid of the difficulties related to practical
measurement of the temperature.

The SMA behavior is also rate dependent, so the deflection of the spring at the previous time
step is added to the input set. Comparing the two successive inputs, the network will be able to
recognize the rate of change of the applied voltage and the spring length. When two successive
signals of a quantity, say Si−1 and Si, received by the NN, the signal speed can be approximated
by (Si−Si−1)/∆t, where ∆t is the sampling time. As Asua et al. (2008) mentioned, the sampling
time should be suitably chosen so that the NN receives accurate information. If the sampling
time is too short the signal will be noisy, while a slow sampling rate may lead to information
loss.

Considering the input-output set, it can be seen that a feedback of the SMA force is included
in the NN input which leads to a recursive structure for the network. An illustration of the NN
model is provided in Fig. 1.
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Fig. 1. Structure of the proposed neural network model

3. Experimental setup

As illustrated in Figs. 2 and 3, an experimental test bed is prepared to obtain the required
data for training and evaluating the NN model. The setup is designed in a way that can afford
different fixed-stress, fixed-strain, fixed-voltage and some arbitrary tests.
A NiTi spring with 6mm inside diameter, 0.65mm wire diameter, and 20mm undeformed

length is used to perform tests. A low rpm DC motor is employed to pull the SMA spring at
different speeds. The deflection of the spring is measured by a rotational potentiometer and a
load cell is used to measure the force exerted by the spring. The measured data are transferred
to a PC via a data acquisition board. The voltage is applied to the spring through the DAQ
board and a current amplifier.
In fixed-voltage tests, in order to unify the initial condition of the SMA spring, after each

test the spring is freely heated to return to its original shape and then cooled down. Therefore,
at the beginning of all the fixed-voltage tests, the spring is at its original length. After applying
a constant voltage Vc to the spring, it is stretched up to a definite length with a constant speed
while the load cell measures the spring force. Finally, by reversing the motor rotation, the length
of the SMA spring is decreased with a constant speed until no force is exerted on the load cell.

Fig. 2. SMA spring test bed

During fixed-length tests, the SMA spring is hold at some definite lengths Lc. The applied
voltage to the spring is increased up to a specific value (2V) and then decreased to zero with a
constant slope while the force of the spring is measured by the load cell.
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Fig. 3. Schematic overview of the setup; (a) top view with electronic circuit (fixed-voltage and
fixed-length tests), (b) side view (fixed-stress tests)

In fixed-stress tests, the DC motor is excluded from the test bed and some specific weights,
Wc, are hung from the spring. The applied voltage to the SMA spring is increased up to a
definite value (2V) and then decreased to zero while the deflection of the spring is measured by
the potentiometer. It is noteworthy that despite the term “fixed-stress”, during these tests the
spring does not apply a constant force because of accelerated motion of the hanging weight.

4. Results and discussion

Some samples of experimental fixed-voltage and fixed-length tests are depicted in Fig. 4 and
Fig. 5a, respectively. These results are used in the training of the neural network model. Figure 5b
illustrates some instances of fixed-stress tests which are utilized to evaluate the performance of
the NN model.

Fig. 4. Some samples of fixed-voltage tests results; (a) Vc = 0.3V, (b) Vc = 0.9V, (c) Vc = 1.2V
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Fig. 5. Some samples of fixed-length and fixed-stress tests results; (a) fixed-length, (b) fixed-stress

As previously mentioned, the SMA response is a function of the loading path. So, in order to
preserve the loading information, the training points belonging to each individual test curve are
presented to the NN in the order they are obtained. On the other hand, the tests are arranged
randomly to decrease the sensitivity of the NN to the order of the tests.
All the designing, training, and evaluating processes of the NN are done in Matlab software

using the Neural Network Toolbox. After some trial and error, a network with two hidden layers is
adopted to learn the SMA spring behavior. Similar to the input layer, each hidden layer contains
5 neurons with tansig activation functions. The output layer consists of a single neuron which
predicts the force exerted by the SMA spring using a linear activation function.
The proposed network uses Levenberg-Marquardt back-propagation algorithm for off-line le-

arning of the SMA spring model. This algorithm is designed to approach second-order training
speed and implemented in Matlab as function trainlm.
Based on the descriptions provided in Demuth and Beale (2002), the Levenberg-Marquardt

algorithm approximates the Hessian matrix as

H = JT(xk)J(xk) (4.1)

computes the gradient vector as

gk = J
Te (4.2)

and updates the network weights in the following way

xk+1 = xk − [J
TJ+ µI]−1JTe (4.3)

In these relations J(xk) is the Jacobian matrix that contains first-order partial derivatives of the
network errors e with respect to the network weights xk. The value of the scalar parameter µ is
decreased after each successful iteration to shift toward Newton’s method because of its better
speed and accuracy near the error minimum (Demuth and Beale, 2002).
Presenting the training data to the designed network, after 45 iterations the error becomes

small enough and the training process is stopped. To demonstrate how well the network has
learned the training data, the actual force of the spring is compared to the network output for
some training tests. As shown in Figs. 6a and 6b, the network output is in a good agreement
with the test results indicating that the network has successfully stored the information of the
training data.
As the next step, the generalization ability of the NN model should be evaluated. Therefore,

some new input sets are built upon fixed-stress tests. The new unlearned input sets are presented
to the NN and the experimental results are compared to the NN model output as shown in
Fig. 6c. It can be seen that the NN model has successfully predicted the spring force which in
turn indicates that the NN has stored an almost exact and general model of the SMA spring.
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Fig. 6. Some samples of evaluating the NN model performance: (a), (b) remembering the learned data
for some samples of fixed-length and fixed-voltage tests respectively, (c) generalization ability of the NN

model for some samples of unlearned fixed-stress test results

It is noteworthy that for the sake of comparison some previously proposed neural networks
are trained using the same training data sets. Besides the much more number of the iterations
required by these models to learn the training data (comparing to our newly proposed model), it
was observed that when the loading path is different from those in the training data, the NN will
largely fail in predicting the SMA spring output force. Because of large differences between the
output of these networks and the experimental data, these results are not shown here. Although
it should be also noted that when the presented unlearned data have a loading path similar
to the training data, the networks perform almost well. This observation could be explained
regarding the aforementioned fact that the loading path is not considered by the previous NN
models.

5. Conclusion

In this paper, a recursive neural network structure is proposed for the modeling of the behavior
of shape memory alloy springs. The NN model takes in the current voltage and deflection of the
spring in addition to the deflection, the applied voltage, and the spring force at the previous
time step. The current force of the spring is predicted as the output of the network. The input
set is chosen in a way that provides the network with sufficient information about the loading
path. Comparing the successive inputs, the network is able to recognize the rate of changes in
input signals as well.

The results indicate that the presented NN model can effectively extract the relation between
the experimental training data and store a comprehensive model of the SMA spring. The network
suitably works with almost all the possible tests even if the loading path is not included in the
training set. In addition to more comprehensiveness, the proposed NN model learns the SMA
spring behavior faster compared to its predecessors.

Even though the input set to the network is chosen such that the proposed NN model can
deal with the rate dependency effect, this capability is not considered in this paper and all the
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tests are conducted at a constant speed. The assessment of this capability of the model will be
in focus of our future works.
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