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A new approach to the modelling of various nature phenomena such as predator
and prey ecological system, heat transport, spreading of oil slick and traffic flow
is introduced. Cellular automata (CA) are discrete dynamical systems whose
behaviour is completely specified in terms of simple local relations. They are
mathematical models of spatially distributed processes; however they can lead
to an appropriate simulation of complex dynamic processes. Applications to
heat transfer and problems of environmental simulations are done. A discrete
automaton model with fuzzy rules to simulate one-way traffic flow is also descri-
bed. Results of simulations are consistent with phenomena observed in reality. It
gives a base to propose the cellular automata tool as an option in modelling and
solving problems of complex (and some times, not completely known) nature.

Key words: cellular automata, traffic flow, fuzzy rules

1. Introduction

Differential equations form a mathematical basis for most current models of
natural systems. Cellular automata (CA) may be considered as an alternative
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approach, and in some respect, they can play a role of complementary models
of nature. Whereas ordinary differential equations are suitable for systems
with a small number of degrees of freedom, evolving in a continuous manner,
cellular automata describe the behaviour of systems with large numbers of
discrete degrees of freedom (Wolfram, 1984b).

Modelling complex physical phenomena through computer simulation has
become a common tool for understanding the natural world. Realistic models
based on physical laws generally result in large systems of non-linear integral
or partial-differential equations (PDEs). Such a modelling approach has many
advantages, e.g. an ability to reproduce in quantitative details results of expe-
riments. However, there are some disadvantages: it is difficult to extrapolate
the behaviour of ”realistic” models to different experimental and natural con-
ditions. Those models sometimes obscure basic physical principles underlying
the modelled phenomena. Complex models lead often to formidable numerical
problems. One technique for simplifying these often numerically intractable
systems is to mimic the physical laws by a series of simple rules that are easy
to compute (Ermentrout and Edelstein-Keshet, 1993). This kind approach is
called Cellular Automata. The fundamental observation which forms the ba-
sis of the CA approach is: do not describe complex systems with the help
of complex equations, but let the complexity emerge by interaction of simple
individuals following simple rules.

In the paper, this new approach to the modelling of various nature pheno-
mena such as predator and prey ecological system, heat transport, spreading
of oil slick is applied. A discrete automaton model with fuzzy rules to simula-
te one-way traffic flow is also described. Results of simulations are consistent
with phenomena observed in reality. It gives a base to propose the cellular au-
tomata tool as an option in modelling and solving problems of complex (and
some times, not completely known) nature. All presented applications of CA
have been developed by the present authors.

1.1. History of cellular automata

The first cellular automata was due to John von Neumann (1903-1957)
and Stanisław Ulam (1909-1984) during their common works in Los Alamos.
The 80’s was a decade of these models that based upon parallel computation
methods. Stephen Wolfram exhaustively explored one-dimensional cellular au-
tomata and introduced for the first time a classification of CA depending on
the system behaviour, known as Wolfram Classes (Wolfram, 1984b). In 1970
American mathematician John Conway developed the Game of Life which po-
pularized CA among the scientists. Life is a cellular automaton operating on
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a two-dimensional grid of cells, each of which can have only two states: dead
or alive (coded as value 0 or 1). The rules of Life are also very simple:

• If a cell has exactly two living neighbours, it stays as it is. Live cells stay
alive and dead cells stay dead.

• If a cell has exactly three living neighbors a dead cell becomes alive and
a live cells stay alive.

• If a cell has any other number of living neighbours a dead cell stays dead
and a live cell becomes a dead cell.

These very simple rules can lead to extremely complex behaviour giving the
right arrangement of live cells. Life can be considered as a model of bacteria
population dynamics.

2. Definitions

There are many non formal cellular automata definitions introduced by
authors. We mention two slightly different definitions that reflect the origin of
CA and which mimic the same features of cellular automata.

Definition 1. Cellular automata are dynamical systems in which space and
time are discrete. A cellular automaton consists of a regular grid of cells,
each of which can be in a finite number of k possible states, updated
synchronously in discrete time steps according to local, identical inte-
raction rules. The state of a cell is determined by the previous states of
surrounding neighborhood of the cell.

Definition 2. A cellular automaton is an array (linear array) of cells that
interact with their neighbours. The array can take on any number of
dimension, starting from one dimensional string of cells. Each cell has its
set of states. By receiving the input from connected cells (or generally, a
message from its neighbours) a cell uses its own sets of rules to determine
what its reaction should be. This reaction is manifested as a change
of own state and can also be a trigger to send out a message to the
neighbours. The message is passed to other selected cells which makes
them act likewise.

From the definitions above, Wolfram (1984b) has specified five fundamental
characteristics of cellular automata:
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1. They consist of a discrete lattice of sites.

2. They evolve in discrete time steps.

3. Each site attains a finite set of possible values.

4. The value of each site evolves according to the same rules.

5. The rules for the evolution of a site depend only on a local neighbourhood
of sites around it.

Hence we can write main cellular automata features:

• Parallelism means that individual cell updates are performed indepen-
dently of each other; it means that of all of the updates are being done
at once.

• Locality means that when a cell is updated, its state is based solely on
the previous state of the cell and of its nearest neighbours.

• Homogeneity means that each cell is updated according to the same
rules. Typically, states of the cell and its nearest neighbours are related
by some algebraic (or logic) formulas.

These characteristics determine the structure and behaviour of particular au-
tomata, and are discussed in a further part of the paper.

2.1. Cell space

First, we define the cell space for 2D cellular automata

L = {(i, j)|i, j ∈ N : 0 ¬ i < n, 0 ¬ j < m} (2.1)

where i, j are the number of the column/row of the lattice with the maxi-
mum extent of n columns and m rows. Equation (2.1) can be extended to
n dimensions.

2.2. Local neighbourhood

The neighborhood is a local space in which cells can interact. The nearest
neighbourhood is described by a set of cells that neighbour the given cell in
position (i, j). Equation (2.2)1 defines the so-called von Neumann neighbour-
hood of radius r. The Moore neighbourhood of radius r is described by (2.2)2.
Other neighbourhoods can be defined as long as they are uniform and finite

Ni,j = {(k, l) ∈ L : |k − i|+ |l − j| ¬ r}
(2.2)

Ni,j = {(k, l) ∈ L : |k − i| ¬ r and |l − j| ¬ r}
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One should point out that the extension of the neighbourhood leads so-
metimes to some improvement of the isotropy property, and therefore is often
used when natural phenomena are to be modelled. However, a large neighbo-
urhood is usually very inefficient to simulate.

2.3. Lattice geometry

The definition of cellular automata requires the lattice to be regular. We
consider different possibilities for 1D, 2D or 3D models. For 1D automata
there is only one possibility: a linear array of cells. In 2D there are three
regular lattices, namely triangular, square, and hexagonal ones:

Triangular lattice – small numbers of nearest neighbours

Square lattice – the most popular lattice, easy to implement

Hexagonal lattice – the lowest anisotropy which makes simulations more
natural (in some cases it is absolutely necessary to use this lattice to
model the phenomena correctly (Wolfram, 1984a; Frisch et al., 1985).

In three dimensions there are many possible regular lattices but the cubic
lattice is mostly used.

2.4. Boundary conditions

In the formal definition of cellular automata, it is usually required that
the lattice is infinite. For computability and complexity points of view, this
is reasonably and necessary, but it is impossible to implement and simulate
an infinite lattice on a computer. Therefore, we have to introduce some boun-
dary conditions. Moreover, the problem we would like to simulate has some
boundaries itself. Mostly, we deal with three types of boundary conditions:
periodic, reflective and fixed valued.
In the periodic boundary condition one sticks together opposite sides of the

lattice. It causes a loop for a 1D lattice and leads to the topology of a torus
for a two-dimensional lattice. Periodic boundary conditions are the closest to
simulate an infinite lattice, and for this reason they are very often used.
The reflective boundary condition is obtained by reflecting the lattice at

the boundary. It is a suitable approach where the system to be simulated has
a boundary but the values of physical variables are not fixed (i.e. diffusive
system).
Fixed-value boundary conditions are obtained by simple prescribing a fixed

value for the cell on the boundary. This boundary condition corresponds to
Dirichlet’s boundary condition for PDEs. Note, that all three types of boun-
dary conditions can be combined, except for the case when one side of the
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lattice has a periodic boundary condition. Then the opposite side must also
have periodic boundary condition as well.

It is possible to introduce one more class when a modification of transition
rules for some group of cells is allowed. Then an absorbing boundary condition
can be defined for which cells at the borders have no neighbours beyond the
limits of the lattice.

2.5. Initial condition

In most cases initial conditions determine the evolution of a considered mo-
del. Initial conditions are arbitrarily constructed on the base of the problem
considered or are generated randomly. Many cellular automata rules conserve
some quantities, for example the total number of particles, the total momen-
tum, energy. This must be taken into account hence while generating initial
conditions.

2.6. Transition rules

The most important aspect of cellular automata is the problem of transi-
tion rules. The rules determine the evolution of a model. They depend some-
how on the lattice geometry, the neighborhood, and the state set. There are
two approaches towards defining the transition rules. One is based on intuiti-
ve knowledge of an expert and leads to a set of if-then rules the outcome of
which is the final transition rule for the considered cell and its neighbourhood.
For example, they can be written as follows: IF conditions N1, . . . , Nn hold
THEN state of cell is Sm. This can be modified by introducing the proba-
bility into transition rules: IF conditions N1, . . . , Nn hold AND probability of
P = l THEN state of cell is Sm. The probabilistic rules have their importance
because natural systems are noisy.

The second approach is based on an implicit(functional type) specification
in which the detailed transition rule has to be evaluated from some mathema-
tical formulas (Toffoli, 1984; Abelson et al. [1]; Chopard and Droz, 1993). This
approach is common when modelling physical phenomena (Vichniac, 1984).
In the further part it will be shown how to develop the transition rules from
differential equations.

2.7. Time evolution

The need for a proper time evolution of the modelled system is obvious.
However, sometimes there is a lack of knowledge about the system, e.g. we
do not know which parts of the system perform first, which perform later. In
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result, one has to make a compromise and introduce such a time evolution
approach which does not favour any part of the system nor a process. Then
we say about synchronous time evolution which is original and comes from the
definition of cellular automata. The change of cell states is due to the previous
state and previous state of its neighbour

an,t=m+1 = f(an,t=m, a ∈ Nt=m) (2.3)

where an,t is the state of the cell in time t, N is the neighbourhood of the
considered cell. Note that there is a question that needs to be addressed, name-
ly the cellular automata’s synchronicity. Hogeweg (1988) and others claimed
that the simultaneous updating of all cells is at odds with the localness of
interaction that is one of the strength of cellular automata. It was shown by
Packard and Wolfram (1985) that some synchronous automaton results are
artifact patterns which do not reflect real phenomena. By changing the defini-
tion of a CA we allow for asynchronous updating of cells. From the numerical
point of view it is very similar to the Monte Carlo simulation. The asynchro-
nous time evolution can dramatically alter the behaviour of CA (Hogeweg,
1988). In some situations the conclusion is that the interesting structures seen
in the evolution of cellular automata are, in fact, artifacts of the synchronous
updating. On the other hand some 1D asynchronous automata can produ-
ce patterns independently of the update approach (Kanada, 1994). During
implementation of synchronous cellular automata one should also take into
consideration the so-called collision problem. It means that when we apply a
rule that causes an immediate movement of objects in the automaton, there
is always a possibility that two or more objects could occupy the same cell
in the same time. Then we have to implement special complicated procedures
that split the automaton rule into several sub-steps to avoid such a situation.

Note that if one needs to introduce the time domain into asynchronous
cellular automata, one iteration is done when some number of drawings is
done. Mostly, the number of drawings is equal to the number of cells. We
assume that in one iteration approximately all cells are drawn, which is similar
to the synchronous approach.

3. Application of cellular automata

In the forthcoming sections, some applications of cellular automata to bio-
logical systems, heat transfer and environmental simulation problems will be
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made. A discrete automaton model with fuzzy rules to simulate one-way traffic
flow will also be described.

3.1. Cellular automata model of predator and prey system

Many of the most interesting dynamics in the biological world have to
do with interactions between species. Mathematical models which incorporate
such interactions are required if we want to simulate their dynamics. One of
the first models which incorporated the interactions between the predator and
prey was proposed in 1925 by American biophysicist Alfred Lotka (Lotka,
1925), and independently by Italian mathematician Vito Volterra (Volterra,
1926). The Lotka-Volterra model is based on differential equations

dx

dt
= a1x+ a2xy

(3.1)

dy

dt
= −b1y + b2xy

where x and y denote the space averaged number of prey and predator popu-
lation, respectively; a1 is the natural growth rate of the prey in the absence
of the predator; a2 is the death per encounter of the prey due to predator;
b1 is the natural death of the predator in the absence of food (prey); b2 is the
efficiency of turning the predated prey into a predator.

The numerical solution (Runge Kutty 4th order) of equations (3.1) shows
three characteristics of the Lotka-Volterra system: periodic dynamics, ampli-
tudes interdependence and phase shifts.

Burzyński (2001), the first author of this paper, developed a cellular au-
tomata model of the predator-prey system. The model used a rectangular
two-dimensional lattice with the periodic boundary condition. Each site can
be: empty, prey or predator. The time evolution was synchronous and the
Moore neighbourhood of radius 1 was used. The rules mimic some experts
knowledge and apply the same set of state for each cell:

• Cell is empty:

– if Nl 6= 0 and Nr 6= 0 then St+1 is a predator or prey under
probability proportional to Nl and Nr

– if Nl = 0 and Nr 6= 0 then St+1 is a prey under probability pro-
portional to Nr

– if Nl = 0 and Nr = then St+1 remains en empty cell
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Fig. 1. Numerical solution of Lotka-Volterra model

• Cell is occupied by a predator, then St+1 becomes empty under constant
probability Pl

• Cell is occupied by a prey, then St+1 becomes empty under constant
probability Pr if‘ Nr > 0.

The following denote: Nl – number of predators in the neighbourhood; Nr –
number of preys in the neighbourhood; Pl – probability of predator’s death;
Pr – probability of hunting success (can depend on Nl); l – initial number of
predators; r – initial number of preys.

One can notice that the parameters Pl, Pr are indirectly equivalent to the
parameters b1, a2 from equations (3.1). These parameters define the behaviour
of the system, and one can obtain similar dynamics to that observed in the
Lotka-Volterra model.

The cellular automata model of the predator and prey system has some
advantages. We obtained an interesting spatial distribution of the populations
density (Fig. 3), which is unknown in the Lotka-Volterra differential equation
model. In Droz and Pekalski (2001) a cluster formation process was shown
which can be observed in the natural environment. The population dynamics
observed from simulations of cellular automata leads to a bigger diversity of the
system behaviour (Burzyński, 2001; Lipowski, 1999; Lipowski and Lipowska,
2000).
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Fig. 2. Population dynamics in cellular automata model of predator-prey system

Fig. 3. Spatial distribution of predator and prey population

3.2. Heat transfer problem

In dealing with heat equation (3.2), different methods are used to solve
it. We are referring here to the finite difference method in which the solution
is searched at a discrete number of points which are grid points or sites of a
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cellular automaton (i.e. cells). The governing equation of heat transfer in the
plane state is

∂T (x, y, t)

∂t
= a
(∂2T (x, y, t)

∂x2
+
∂2T (x, y, t)

∂y2
+
q̇V (x, y, t)

λ

)

(3.2)

for the temperature field T (x, y, t), where λ is the heat conduction coeffi-
cient, cp – heat capacity, ρ – mass density, a = λ/(cpρ), and q̇V denotes the
volumetric heat supply source.

Fig. 4. Domain and its discretization

Let a finite domain C bounded by a closed curve will be substituted by a
set of inner cells A and boundary cells B, see Fig. 4. In the finite difference
method, Eq. (3.2) is approximated by a system of recursive equations

T n+1S − T nS
∆t

=
a

h2
(T nA − 2T

n
S + T

n
C + T

n
B − 2T

n
S + T

n
D) + a

q̇V (x, y, t)

λ
(3.3)

where T nK with K = S,A,B,C,D denotes the temperature value at the time
step n at the grid node K. Here K = S denotes the current node, while
K = A, B, C, D are the neighbouring ones. We have assumed the finite diffe-
rence approximation of the second order derivative y ′′ of a typical function y
to be y′′ = (y−1 − 2y + y+1)/h

2, where h is the increment of independent
variable (grid size) and the elementary grid size ∆x = ∆y = h. If no heat
supply source is present, i.e. q̇V = 0, then after some transformations of (3.3)
we get

T n+1S = T nS (1− 4F0) + F0(T
n
A + T

n
B + T

n
C + T

n
D) (3.4)

where F0 = a∆t/(∆x)
2 is the Fourier coefficient which characterizes the rate

of heat transfer inside the body.
To solve Eq. (3.2), initial and boundary conditions are needed. In each

discretization method one needs to determine which cells (elements of the di-
scretized domain) are treated as inner elements, which are treated as boundary
elements, and how the boundary conditions are realized.
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Fig. 5. Numeration of cells in the grid

In the further part, we have assumed a rectangular (square) domain with
the boundary shown in Fig. 7a. The domain is divided into (16 × 16) smaller
squares. The boundary is represented by a single layer of cells for which a
constant state is assumeds. It means that the Dirichlet boundary condition
(for temperature) has been assumed. As the initial condition we assume a
constant (independent of the position) temperature equal to the reference
temperature. Since we are working with the increment of temperature above
the reference level (the latter measured as the absolute temperature), as an
independent variable, the initial condition means that initially the temperature
(increment) is equal to zero. On two neighbouring sides of the boundary the
temperature is constant and equal to 50 degrees, while on the remaining sides
it is a linear distribution which starts with the value 50 and ends with 16
degrees. To satisfy the numerical stability condition, the following inequality
must hold

1− 4F0  0 (3.5)

In further investigations, the value of F0 will be assumed arbitrary, satisfying
constraint (3.5). The numerical scheme represented by Eq. (3.4) can be regar-
ded as a convolution of the elements of the grid domain with a particular set,
called a filter. This analogy comes from processes known in 2D signal analysis.
Hence, we can write

T n+1i,j = T ni,jw0 + T
n
i−1,j−1w1 + T

n
i,j−1w2 + T

n
i+1,j−1w3 + T

n
i−1,jw8 +

(3.6)

+ T ni+1,jw4 + T
n
i−1,j+1w7 + T

n
i,j+1w6 + T

n
i+1,j+1w5

Solving Eq. (3.4) in an iterative way is the same as the realization of the
convolution of the grid domain with the filter presented on Fig. 6, as it is shown
in Eq. (3.6), where
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w0 = 1− 4F0 w1 = w3 = w5 = w7 = 0
(3.7)

w2 = w4 = w6 = w8 = F0

Fig. 6. General filter, filter in (3.7), boundary cell B

In the cells neighbouring the boundary the same filter is used in the convo-
lution operation, since the isothermal boundary condition has been assumed.
It is the place to write explicitly the solution algorithm:

1. determine the domain of the solution as a discrete set of cells

2. determine the boundary cells

3. determine the initial state of the cells

4. determine the evolution rules according to which the state will change,
cf. Eq. (3.6)

5. apply the evolution rules m times sufficient to fulfill the stop condition
(e.g. realize the iterative process by Eq. (3.6)).

In the iterative formula, we have proposed above, the Dirichlet boundary con-
dition is assumed and no heat source is included. If a uniform heat source q̇V
is present, then the central element in the filter will be modified to the form

w0 = (1− 4F0) +
q̇V
λ
(∆x)2 (3.8)

Moreover, in the case of the Neumann boundary condition q̇s = const , the
boundary cells in the filter (Fig. 6) will assume the value q̇s∆x/λ in the place
of F0. In Nagórski (2001) one can find different filters for a number of boundary
conditions. That approach, however, is no more a cellular automata one.
Let us consider stability condition (3.5) and the form of the filter value wi,

i = 1, ..., 8 from Eq. (3.7). Notice that the following equality is satisfied

∑

i

wi = 1 (3.9)
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Fig. 7. Grid and filter (3.7) for classical finite difference scheme (3.4)

Fig. 8. Simulation results with different filters

In the course of implementation of the filter, (3.7), satisfying the stability
condition with F0 = 1/4, the realization time was the shortest. The questions
are: whether it is possible to obtain reasonable results of numerical imple-
mentation if constraint (3.9) is only assumed? What is the relation of such
a solution scheme to stability condition (3.5)? Is it possible to find an ap-
parent value of F0 corresponding to this scheme? In Fig. 7 some simulation
results are presented corresponding to solutions to Eq. (3.6) where the iterati-
ve expression (3.6) has been applied. The boundary and initial conditions are
the same in all cases. For better comparisons and presentations, the tempe-
rature interval [15, 50], to which values of the temperature at the boundary
belong, has been divided into 7 subregions with different gray levels. Referring
to the temperature at the boundary, the regions inside of the domain with the
same temperature values are easy to recognize. Results in Fig. 7 and Fig. 8
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after 30 iterations and with the use of (3.7) are rather compatible with our
expectations.

Fig. 9. Simulation results with different filters

In Fig. 10, however, different iteration time has been obtained for diffe-
rent F0. What we can see is that the smaller value of F0 the shorter time step
is, and more iteration steps must be performed in order to reach the same
temperature level at a given point (cell). Figure 9 presents simulation results
for Eq. (3.6) but with a more general form of the filter than that in (3.7),
however with condition (3.9). Notice that the number of iteration steps to
reach the same temperature value as in Fig. 8 is 3 times smaller than in Fig. 7;
similar acceleration is obtained with the filter applied in calculations reported
in Fig. 9.

Fig. 10. Number of iteration for different values of F0

The well-posedness of the construction of the filters from Fig. 9a can be
explained with the help of the mean value theorem and two filters from Fig. 7
in which the latter is turned by π/4 with respect to the former. Moreover,
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for the central cell it corresponds to the apparent value F p0 = 3/8, which is
greater than 1/4, for which the shortest calculation time has been proved with
classical iterative scheme (3.4). It can be proved that all filters satisfying Eq.
(3.9) lead to the same final state. What is important for our analysis is that
the solutions to differential equations can yield some numerical schemes in
which more complex filters can be obtained, i.e. 5× 5. In the case of the heat
conduction problem independent of the shape of the boundary and the type of
boundary conditions, we can design evolution rules in the form of appropriate
filters satisfying condition (3.9), which lead to a better approximation of the
Laplace operator (cf. Collatz, 1960) in Eq. (3.2) than the scheme presented by
Eq. (3.3).

In our opinion the designing of filters, having in mind a phenomenon of
our interest, can lead to appropriate analysis of the phenomenon and then
to its reasonable description. It can be fruitful even in the case when the
phenomena cannot be described by means of known (one can say, classical,
with the use of PDEs) methods. What we should do is to use alternative
methods on the assumption that the phenomenon is similar to other known
and already described with the help of appropriate tools, phenomena. The
cellular automata approach can be of great help, in our opinion, especially
because of its simplicity and demonstrative character.

3.3. Movement of an oil slick

In this section, an ecological catastrophe will be discussed in which an
oil slick spreads over the ocean and moves toward seacoast. We assume that
the oil slick emerges in a vicinity of two islands. To describe this in a grid,
three domains are determined: the oil and two islands. Then initial and bo-
undary conditions are assumed for the diffusion equation, similar to the heat
conduction equation. The islands coasts are assumed in the form of a fixed
boundary condition for the temperature (or a fixed pollution concentration).
We assume, however, that the water around the islands moves and influen-
ces (together with the wind) movement of the oil slick. We assume that the
movement directions are different in different regions.

The relevance of obtained simulation results strongly depends on the as-
sumed hypothesis, which contains the initial value of the state, model of oil
spreading, assumed boundary conditions – the most interesting, in our opi-
nion. We assume that the evolution rules of the automaton is similar to that
applied in the heat equation, Eq. (3.6), in which absorption at a typical boun-
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dary cell B, neighbouring the cell TS , appears, and the evolution at a typical
grid cell TS , are governed by

Bi =
i
∑

j=1

αT jS

(3.10)

T i+1S =
1

4
[T iA + T

i
B + T

i
C + (1− α)T

i
S ]

Fig. 11. Movement of oil slick: (a) initial state, (b) state after 20 and more iterations

Results of the numerical implementation of the simulation are presented
in Fig. 11, where the subsequent figures present states after subsequent 20
iterations. In Fig. 11a the initial state is shown. It is important in cellular
automata models that we have a possibility to determine transition rules when
two (or more) states are known at the distance dt. Then, one can approximate
states in further instants without complete knowledge about the process that
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takes place and governs the system evolution. On the other hand, from the
knowledge of the filter one can try to determine a type of equations that govern
those changes.

3.4. Modelling of traffic flow

The modelling of the traffic transport problem is very interesting and im-
portant for its dynamics and serious dramatic consequences in real life. We
focus on the cellular automata approach instead of classical ones, e.g. the kine-
tic theory of vehicular traffic (Prigogine and Herman, 1971) or fluid-dynamics
approach (Lighthill and Whitman, 1995). We want to exploit one important
property of cellular automata, namely the lack of stability, which means that
very small changes in transition rules or states can have very dramatic conse-
quences (Kułakowski, 2000). In reality, a single driver can dramatically change
the flow dynamics as well.

The used model is similar to that introduced by Nagel and Schreckenber-
ger (1992), Schadschneider and Schreckenberg (1993), however, some crucial
details are changed. We use rules based on a fuzzy controller instead of deter-
ministic and probabilistic rules, and some driver’s individual characteristics
are included in our model.

The computational model of the traffic flow is defined on a 1D Cartesian
lattice of the linear size L and with periodic boundary conditions. Each cell
can be empty or occupied by a single car. Each cell is described by the following
set of parameters: F = 0 or 1, which determine whether the cell is empty or
occupied by a car. V = 0 or 1 upto 7, is the speed of the car. Vmax = 0
or 1 upto 7 is the maximum speed the car can develop. N is the individual
number of a car (we need the car to be numbered to perform some statistic).
The neighbourhood is asymmetric: N = {ai+1, . . . , aa+7}, it reflects the space
ahead observed by the driver. Cells are updated synchronously by each car
translation based on the distance S proportional to the calculated velocity V ;
due to the unit time interval, in most cases S = V .

To mimic the process of making decision by a driver on the road, we decided
to use fuzzy rules based on fuzzy control instead of deterministic or probabili-
stic rules. Fuzzy approach gives us a possibility to describe local behaviour of
the system, mainly the driver’s behaviour. It can be introduced by the expert
knowledge, which includes fuzzy (non-crisp) variable values, i.e. high speed, low
speed, do brake immediately, and so on. We used Mamdani Controller (Piegat,
1999) to control the output variable A, which is the acceleration deceleration
(negative acceleration) of a car. There are two input variables: the distance D
to the nearest car and the speed V . All three variables are regarded as lingu-
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istic variables defined by fuzzy sets (Łachwa, 2001). Parameters of triangular
membership functions of the sets A, D, V (Łachwa, 2001) and the rule matrix
have been chosen arbitrarily to avoid a car crash (see Burzyński et al. (2003)
for details). In our previous research, we decided to apply the same fuzzy set
parameters to each car. We are going to distinguish characteristics of drivers
by using independent sets of fuzzy parameters for each driver in our future
works.

As it was said, our model based on an 1D automaton with periodic boun-
dary conditions subject to simulations was in a long closed loop and on a single
lane. The total number N of cars in the automaton cannot change during one
simulation, thus it is possible to define a constant system density. This is a
drastic simplification of the problem, because a constant number of cars is not
usually possible in the real traffic flow. Thus, to reflect real conditions, the
number of cars should be measured and averaged in a given site over period
of time.

Fig. 12. Traffic flow simulation – fundamental diagram

The main object of our study was to obtain the fundamental diagram (see
Fig. 12). The distribution of the maximum speed Vmax can change the funda-
mental diagram. As it is shown in Fig. 12, there are two maxima instead of one.
It is evident that there is no common idea for the same maximum speed among
the drivers. A number of drivers moving fast or idlers can change dramatically
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the traffic flow dynamics. Therefore, we noticed the need to examine relations
between the preferable maximum speed and the fundamental diagram.

The results of carried out simulations are consistent with Schreckenberger’s
model (Nagel and Schreckenberger, 1992) and real life measurements (Hall et
al., 1986).
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Automaty komórkowe: struktura i pewne zastosowania

Streszczenie

W pracy zaprezentowano metodę modelowania układów i zjawisk obserwowanych
w przyrodzie, takich jak dynamika systemu ekologicznego drapieżnik-ofiara, przewo-
dzenie ciepła, rozprzestrzenianie się plamy ropy naftowej po wycieku na wodzie czy
ruch strumienia pojazdów na drodze miejskiej. Metodę oparto na tzw. automatach
komórkowych, które są układami dyskretnymi o zachowaniach ściśle zdeterminowa-
nych prostymi relacjami o charakterze lokalnym. Automaty komórkowe to matema-
tyczne modele procesów przestrzennych, mogące z powodzeniem opisywać złożone
zjawiska dynamiczne. W pracy przedstawiono aplikację do zagadnienia przewodzenia
ciepła oraz kilku symulacji środowiskowych. Przedstawiono także model automatowy
z regułami rozmytymi opisujący jednokierunkowy ruch pojazdów na drodze. Wyni-
ki symulacji okazały się zgodne z obserwacjami rzeczywistych układów. Zachęcające
rezultaty badań skłaniają do postrzegania automatów komórkowych jako efektyw-
nej opcji w modelowaniu i rozwiązywaniu problemów o złożonej (czasem nie całkiem
rozpoznanej) naturze.
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