
JOURNAL OF THEORETICAL

AND APPLIED MECHANICS

42, 1, pp. 163-193, Warsaw 2004

VIBRATION AND STABILITY OF A COLUMN SUBJECTED
TO THE GENERALISED LOAD BY A FORCE DIRECTED

TOWARDS THE POLE

Lech Tomski
Janusz Szmidla

Institute of Mechanics and Machine Design Foundations, Technical University of Częstochowa

e-mail: szmidla@imipkm.pcz.czest.pl

A new loading of slender systems, which is a generalised load by a force
directed towards the positive or negative pole, is presented in the pa-
per. A new constructional scheme of the loading and receiving heads is
introduced. Theoretical considerations connected with the formulation
of boundary conditions are shown in this paper. Values of the critical
force and the course of natural frequency in relation to the external load
for given geometry and physical constants of the column are determined
dependending on the constructional solution of the loading and receiving
heads. The results of theoretical and experimental research are compared
one with another.
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1. Introduction

1.1. Generalised load

Let us take into account the slender system shown in Fig. 1. The flexural
rigidity of the prismatic column is denoted as EJ , mass density as ρ1A (where
E is the longitudinal modulus of elasticity, J – moment of inertia related to
the neutral axis in the bending plane, ρ1 – material density, A – cross-section
area) ϕ – angle between the direction of the force P and tangent to the
column in the point x = l, W (x, t) – transverse displacement of the column,
m – concentrated mass at the free end of the column.
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Fig. 1. Scheme of a cantilever column subjected to a generalised load

The column is rigidly fixed x = 0. It is loaded by a concentrated force P
and bending moment M = Pe. The boundary conditions for this structure at
the free end of the column are as follows

EJ
∂2W (x, t)
∂x2

∣

∣

∣

x=l
+ Pe = 0

(1.1)

EJ
∂3W (x, t)
∂x3

∣

∣

∣

x=l
+ Pϕ−m

∂2W (x, t)
∂t2

∣

∣

∣

x=l
= 0

The conditions of the column fixing are

W (0, t) = 0
∂W (x, t)
∂x

∣

∣

∣

x=0
= 0 (1.2)

The load of the cantilever column (without giving a constructional solution to
the forcing and leading heads), which recalls the following dependence between
the transverse force and bending moment at the end of the column x = l and
the displacement and deflection angle of this end

e = ρ
∂W (x, t)
∂x

∣

∣

∣

x=l
+ νW (l, t) ϕ = µ

∂W (x, t)
∂x

∣

∣

∣

x=l
+ γW (l, t) (1.3)

where ρ, ν, µ, γ are determined coefficients.
Such a load is so-called the generalised load (compare Gajewski and Życz-

kowski, 1970, 1988; Kordas, 1963).
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It should be stated that all known loads of slender systems have determined
values of the ρ, ν, µ, γ coefficients. It applies both to conservative and non-
conservative loads. Only the load by a follower force directed towards a pole
makes an exception, which will be presented in a further part of this paper.
The load is conservative if the gradient rotation of its vector field is equal

to zero, which leads to the relation (compare Gajewski and Życzkowski, 1970,
1988; Kordas, 1963)

ν + µ− 1 = 0 (1.4)

The load is non-conservative if the above relation is not fulfilled.
The extended conservative condition, resulted from the self-adjointness

condition of differential operators for the generalised load, was obtained in the
paper by Tomski et al. (1996) in the form

(µ+ ν − 1)
(

Wn(l, t)
∂Wm(x, t)
∂x

∣

∣

∣

x=l
−Wm(l, t)

∂Wn(x, t)
∂x

∣

∣

∣

x=l

)

= 0 (1.5)

where the indices n, m denote the nth and mth form of vibrations.
If W (l, t) and (∂W (x, t)/∂x)

∣

∣

∣

x=l
are linearly dependent, the second factor

in relationship (1.5) is set at zero.

1.2. Hirtherto existing nomenclature related to loads of slender systems

The following definitions related to loads of slender systems, which will be
used in the nomenclature of a characteristic load, are be given in this part of
the paper.

(01) Generalised load – transverse force and bending moment at the free end
of the column depending on the displacement and deflection angle of this
end (compare Gajewski and Życzkowski, 1969, 1988; Kordas, 1963).

(02) Follower force load – angle of the direction of this force action is equal to
the deflection angle at the free end of the column (compare Beck, 1953;
Bogacz and Janiszewski, 1986; Bolotin, 1963).

(03) Load developed by a force directed towards the positive pole – fixed
point, through which the direction of the force action passes, is placed
below the free end of the column (compare Gajewski and Życzkowski,
1969; Timoshenko and Gere, 1961).

(04) Load developed by a force directed towards the negative pole – fixed
point, through which the direction of the force action passes, is placed
above the free end of the column (compare Gajewski and Życzkowski,
1969).
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1.3. Shapes of natural frequency curves versus applied load in stender
systems

Slender elastic systems (columns, frames) can loose their stability due to
buckling (compare Gajewski and Życzkowski, 1969; Leipholz, 1974; Timoshen-
ko and Gere, 1961; Ziegler, 1968). These systems are called divergence systems.
Systems, which loose the stability due to growing amplitudes of oscillatory vi-
brations, are called flutter systems (compare Beck, 1953; Bogacz and Janiszew-
ski, 1986; Bolotin, 1963). Hybrid systems also exist. They loose the stability
in a flutter or divergence way due to a combination of certain geometrical
and physical parameters (compare Argyris and Symeonidis, 1981; Dzhaneli-
dze, 1958; Sundararajan, 1973, 1976; Tomski et al., 1985, 1990).
The mentioned above systems are characterised by a specific course of

curves in the plane: load P – natural frequency ω (Fig. 2) (where Pc is the
critical load).
It was proved in the work by Leipholz (1974) that for Euler’s load (load

with a fixed point of its application and fixed point of action the curve of
natural frequency in the plane: load-natural frequency always has a negative
slope (Fig. 2a).

Fig. 2. (a) Divergence system, (b) flutter system, (c) hybrid system

1.4. Scope of the paper

The following topics are to be addressed throughout the paper:

• Names of characteristics loads within the range of nomenclature related
to loads of slender system known in the literature are determined. The
characteristic load is the load which was found at the Institute of Me-
chanics and Machine Design Foundations at the Technical University of
Częstochowa.
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• Realisation of the specific load in two alternative constructions of the
loading and receiving heads, namely heads built from linear and circular
elements (constant curvature) is presented.

• The geometric boundary parameters and resulting of natural frequencies
are presented in the case of heads built from the circular elements.

• It is impossible to determine the boundary conditions on the basis of
differential relationships between external and internal forces in systems
with specific loads. It is the reason for a detailed diagram presentation of
how to reveal the potential energy to determine the standard equation of
vibrations and boundary conditions according to Hamilton’s principle.

• Theoretical and simulation examinations, concerning the natural frequ-
ency and column stability with the generalised load by the force directed
towards the negative and positive pole in the case of heads built from
the circular elements, are the main part of the paper. The results of
the theoretical and simulation studies of a column subjected to the ge-
neralised load by a force directed towards the positive pole are verified
experimentally.

2. Specific load

2.1. Nomenclature

With respect to the properties of loads acting on the slender system (com-
pare Section 1.2), the authors considered in their investigations the loads who-
se nomenclature originated from the scheme shown in the following diagram
(Fig. 3).
Denotations (·)∗ and (·)∗∗ in the above diagram are connected with dif-

ferent constructions of the characteristic load heads. This type of load could
be realised by the linear elements (·)∗ or circular elements (·)∗∗. Appropriate
schematic diagrams concerning the way of application will be presented in the
further part of this paper.

2.2. Realisation of load – schematic diagrams

Schematic diagrams of the heads realising the characteristic load are pre-
sented in Fig. 4 and Fig. 5. The loading heads of the column, shown in Fig. 4,
are made of the linear elements with lc and ld in length. The heads, shown in
Fig. 5, are built of component elements with the radii R and r.
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Fig. 3. Diagram specifying the origin of names of the characteristic load

Fig. 4. Schemes of heads realising characteristic loads ((0103)∗, (0104)∗, (0203)∗,
(0204)∗)
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The basic features of the structures loading the columns are:

• The head built of the linear elements (0103)∗, (0104)∗ – Fig. 4):

– part of the length lc has infinite flexural rigidity,
– part of the length ld is loaded by the external force P which is
directed along the axis of the underformed column (point ”0”),
– point ”0” is placed at distance lb from the place of the column
mounting (lb < l – positive pole, lb > l – negative pole),
– in a particular case ld = 0 ((0203)∗, (0204)∗) – Fig. 4.

• The head built of the linear elements (constant curvature) (0103)∗∗,
(0104)∗∗ – Fig. 5:

– segments of the heads with the radius R (loading head) and r
(receiving head) are infinitely rigid,
– the centre of the element with the radius R is in the undeformed
axis of the column,
– direction of the loading force passes through point ”0” which lies in
the undeformed axis of the column at the distance lb from the place
of the column mounting (lb < l – positive pole, lb > l – negative
pole).

In a particular case, the elements of the head can have the same radii
R = r, (0203)∗∗, (0204)∗∗ – Fig. 5) which is equivalent to ld = 0.
The element with infinite flexural rigidity, which length is denoted as l0, is

built in the structure of the forcing heads with the elements of radii R and r
due to constructional reasons. It should be mentioned that the element with
infinite flexural rigidity exists also in the heads built of the linear elements
(Fig. 4), but the length l0 of this element is included in the element of the
length lc.
Schematic diagrams of slender systems, subjected to a specific load, corre-

spond with the diagram describing the possibility of load manifestation with
respect to construction of the heads realising the load. Schematic diagrams
are shown in Fig. 6a (heads built of the linear elements – (·)∗) or in Fig. 6b
(heads built of the circular elements – (·)∗∗).
Three-component parts X, Y , Z, which fulfil the given tasks, can be di-

stinguished:

• in the X, system load 1 and internal forces 3a (externalised) are ba-
lanced by head 2, which takes place in rolling guides. The force action
and placement of internal forces 3 depend on the shape of head 2 in
section I-I,
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Fig. 5. Schemes of heads realising characteristic loads ((0103)∗∗, (0104)∗∗, (0203)∗∗,
(0204)∗∗)
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Fig. 6. Diagram of systems realising the characteristic load in the case of: (a) heads
built of the linear elements – (·)∗; (b) heads built from circular elements – (·)∗∗

• in the Y and Z system, manifestation of the load in section I-I makes it
possible to specify the boundary conditions on the basis of mechanical
or potential energy balance,

• in the Y system, forces 3b and 5a are in balance owing to head 4,

• manifestation of the load in the Z system in section II-II makes it po-
ssible to specify the boundary conditions on the basis of mechanical or
potential energy balance and also on the differential dependence of in-
ternal load 5b on the internal forces in column 6.

2.3. Investigation of slender systems subjected to the specific load

Taking into account the nomenclature of the characteristic load (which
was not fully known during publication of previous papers), the results of
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experimental, theoretical and simulation studies, concerning natural frequen-
cies of the slender system, can be summarised in the following way:

• generalised load directed towards the positive pole (Tomski et al., 1984,
1985, 1996, 1999) in alternative designs of heads built of the linear ele-
ments and heads built of the linear and circular (constant curvature)
elements (Tomski et al., 1999),

• load forced by the follower force directed towards the positive or negative
pole:

– Tomski et al. (1998) – in an alternative design of the heads built of
the linear elements,
– Tomski et al. (2000) – in an alternative design of the heads built of
the circular element (constant curvature).

In the above publications, the specified constructions of tested systems
fulfil three basic features:

• connection of elements, making the forcing heads, are infinitely rigid,

• sliding friction does not occur in the rotational nodes of the forcing
heads,

• rolling friction is present in the rotational nodes.

The potential of the generalised load with the force directed towards the
pole is determined by the first factor, while the load with the follower force
towards the pole is determined by the second factor of condition (1.5).

2.4. Divergence-pseudo-flutter systems

An uncommon phenomenon is that some of the specific loads of the slender
systems give a new course of the natural frequency in the plane: load (P )-
natural frequency (ω). Such a system was recognised by Tomski et al. (1994),
for which the course of the curve in the plane P -ω is shown in Fig. 7.
The P (ω) function for this system has the following course:

• for loads P ∈< 0, Pc) (Pc is the critical load) the angle of the tangent
to the P (ω) curve can take a positive, zero or negative value,

• for load P ≈ Pc, the slope of the curve in the P -ω plane is always
negative,

• change of the natural vibration form (from the first to the second and
inversely) takes place along the curve, which determines the P (ω) func-
tion for the basic frequency (M1,M2 – denote the first and second forms
of vibrations, respectively).
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Fig. 7. Divergence-pseudo-flutter system

Such a course of the curve in the P -ω plane with the generalised load
with the force directed towards the positive pole was proved by Tomski et al.
(1996).
A physical interpretation of the conservative condition of the load accor-

ding to the field theory was also reported by Tomski et al. (1996). The course
of the curve of the natural frequency can refer to the systems subjected to the
generalised load by the force directed towards the positive pole and load by
the follower force directed towards the positive pole, and also can refer to a
slender system subjected to the force directed towards the positive pole.
The system, which is characterised by the course of the curve in the P -ω

plane, shown in Fig. 7, can be called a divergence-pseudo-flutter type system.
Results of experimental research on the natural frequency of the column,

which agree to certain extent with the course of the curve of the natural
frequency shown in Fig. 7, are presented by Bogacz and Mahrenholtz (1983),
Danielski and Mahrenholtz (1991). Neither the boundary conditions for the
tested column nor solution to the boundary problem was given there. An
attempt to optimise a column subjected to the generalised load by the force
directed towards the positive pole was made by Bogacz et al. (1998).
The results of experimental investigations, connected with changes of the

free vibration form along the curve in the plane: load-natural frequency, are
presented by Bogacz et al. (1998).

3. Constructional schemes of the heads loading the columns

Constructional schemes of the loading and receiving heads in systems sub-
jected to the generalised load by the force directed towards the negative pole
(0104)∗∗ or positive pole (0103)∗∗ (whose schematic diagrams are presented in
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Figs 5a,b are shown in Figs 8a,b. These systems are composed of enclosure (2),
which ends with rolling guides (1). Enclosure (2) is characterised at its end
by the radius of curvature R > 0 (Fig. 8b) or rolling element (3) with radius
R < 0 (Fig. 8a) mounted on the enclosure dependending on the constructional
solution.

Fig. 8. Constructional schemes of heads realising the column load: (a) for R < 0,
l0 > 0 – column (0104)∗∗, (b) for R > 0, l0 > 0 – column (0103)∗∗
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Element (4) is made in an analogous way. It is connected to cube (5)
in which two column rods are mounted. It is assumed that the elements of
the length l0 (element (4) and cube (5)) are infinitely rigid. This relates to
constructional considerations. Element (2) makes up the forcing head, while
(4,5) – the loading head.
Rolling element (3) is numbered among the loading head (Fig. 8a) or rece-

iving head (Fig. 8b) dependending on the method of the system loading.
The column consists of two rods (6.1), (6.2) with the bending rigidity

(EJ)1 and (EJ)2, respectively, and mass per unit length (ρ1A)1 and (ρ1A)2
(and (EJ)1 = (EJ)2, (ρ1A)1 = (ρ1A)2, (EJ)1 + (EJ)2 = EJ , (ρ1A)1 +
(ρ1A)2 = ρ1A). The rods have the same cross-sections and are made of the
same material. The rods and their physical and geometrical parameters are
distinguished by ”1,2” indices, which are only needed to calculate symmetric
natural frequencies and to determine the corresponding forms of vibration.
Thus we can assume the global bending rigidity EJ and elementary mass

of the column ρ1A in all following considerations thoughout this paper.

4. Physical model of the system (0103)∗∗

The physical model of the considered column, in the constructional variant
of loading and receiving heads shown in Fig. 8b – column (0103)∗∗ , is presented
in Fig. 9. The manifestation of the load in sections I-I and II-II is in accordance
with the diagram shown in Fig. 6b.
The column could be mounted in an elastic, hinged or rigid way (c1 – is a

coefficient of the mounting elasticity). At the free end, the column is connected
with the loading head, which transmits the load through the stiff element of
the length l0. The concentrated mass m takes into account the total reduced
mass of (3), (4), (5) elements – Fig. 8b.
The total potential energy of the system V jk (where k = 1, 2, 3, 4, 5;

j = ∗, ∗∗, ∗ ∗ ∗) depicted in Fig. 9 is examined depending on the place of
its manifestation (Table 1).
The kinetic energy of the considered system is as follows

T = T1 + T2 =
1
2
ρ1A

l
∫

0

(∂W (x, t)
∂t

)2

dx+
m

2

(∂W (x, t)
∂t

∣

∣

∣

x=l

)2

(4.2)
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Table 1. Potential energy of the system

Manifestation of the load in section

I-I II-II I-I and II-II

Energy of elastic strain

V ∗1 =
1
2
EJ

l
∫

0

A
2
2 dx V ∗∗1 =

1
2
EJ

l
∫

0

A
2
2 dx V ∗∗∗1 = 0

Potential energy of the vertical force P component

V ∗2 = P∆1 + P∆2 + P∆3 V ∗∗2 = P∆1 V ∗∗∗2 = P∆2 + P∆3

Potential energy of the horizontal force P component

V ∗3 =
1
2
Pβ(W ∗ + rβ) V ∗∗3 =

1
2
PβW (l, t) V ∗∗∗3

Potential energy of bending moment

V ∗4 = 0 V ∗∗4 = −V
∗∗∗

4 V ∗∗∗4

Potential energy of mounting elasticity

V ∗5 =
1
2
c1A

2
1

∣

∣

x=0
V ∗∗5 =

1
2
c1A

2
1

∣

∣

x=0
V ∗∗∗5 = 0

where

V ∗∗∗3 =
1
2
Pβ[W ∗ + rβ −W (l, t)]

V ∗∗∗4 = −
1
2
P (A1

∣

∣

x=l
− β)(r − l0)A1

∣

∣

x=l

A1 =
∂W (x, t)
∂x

A2 =
∂2W (x, t)
∂x2

∆1 = −
1
2

l
∫

0

A
2
1 dx ∆2 = −

l0
2
A
2
1

∣

∣

∣

x=l

(4.1)

∆3 =
r

2

(

A
2
1

∣

∣

∣

x=l
− β2
)

ϕ =
1
R− r

[

(R − l0)A1
∣

∣

∣

x=l
−W (l, t)

]

β =
1
R− r

[

W (l, t)− (r − l0)A1
∣

∣

∣

x=l

]

W ∗ =W (l, t)− (r − l0)A1
∣

∣

∣

x=l
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Fig. 9. Physical model of the system

In this paper, the formulation of the problem takes place with the use of
Hamilton’s principle (Goldstein, 1950)

δ

t2
∫

t1

(

T −
5
∑

k=1

Vk
)

dt = 0 (4.3)

Boundary conditions for the considered system are obtained by determining
the potential energy variations with the load manifestation in section I-I (V ∗k )
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or in section II-II (V ∗∗k ). The commutation of integration (with respect to x
and t) and the calculation itself is used within Hamilton’s principle.
The equation of motion, after taking into account the commutation of

variation and differentiation operators and after integrating the kinetic and
potential energies of the system, is obtained in the form

EJ
∂4W (x, t)
∂x4

+ P
∂2W (x, t)
∂x2

+ ρ1A
∂2W (x, t)
∂t2

= 0 (4.4)

Additionally, giving consideration to the conditions of system mounting in
the form

W (0, t) = 0 EJ
∂2W (x, t)
∂x2

∣

∣

∣

x=0
− c1
∂W (x, t)
∂x

∣

∣

∣

x=0
= 0 (4.5)

the missing boundary conditions at the free end of the system are imposed

EJ
∂2W (x, t)
∂x2

∣

∣

∣

x=l
+ P
[

ρ
∂W (x, t)
∂x

∣

∣

∣

x=l
+ νW (x, t)

∣

∣

∣

x=l

]

= 0
(4.6)

EJ
∂3W (x, t)
∂x3

∣

∣

∣

x=l
+ P
[

µ
∂W (x, t)
∂x

∣

∣

∣

x=l
+ γW (x, t)

∣

∣

∣

x=l

]

−m
∂2W (l, t)
∂t2

= 0

Relations (4.6) determine the boundary conditions at the free end of the
system of columns loaded by the generalised load with the force directed to-
wards the negative pole (R < 0, r < 0) – (0104)∗∗ as well as loaded by the
generalised load with the force directed towards the positive pole (R > 0,
r > 0) – (0103)∗∗.
Values of the ρ, ν, µ, γ parameters for the considered columns and systems,

whose heads realise boundary conditions with respect to radii R and r of the
loading and receiving heads, are given in Table 2.
Schematic diagrams of the systems whose heads realise boundary condi-

tions related to the radii R and r are shown in Fig. 10. The results of si-
mulations for the considered systems, together with the systems whose heads
realise boundary parameters related to the critical load and changes of the
natural frequency in relation to the external load, are presented in the further
part of the paper on the basis of the solution to the boundary problem.

5. Solution to the boundary problem

The equations of motion for the considered column, after separating the
time and space variables of the Wi(x, t) function in the form

Wi(x, t) = yi(x)ejωt i = 1, 2 (5.1)
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Table 2. Values of ρ, ν, µ, γ parameters in considered systems

ρ ν µ γ
C
ol
um
n
su
b
je
ct
ed
to
lo
ad

generalised
load with
force directed
towards the
negative pole

(0104)∗∗

Fig. 5b

R
<
0,
r
<
0

B1 −
r − l0
R− r

R− l0
R− r

−1
R− r

Fig. 10e
1
r
= 0 l0 −R 1 0 0

Fig. 10f R = 0
(r − l0)l0
r

r − l0
r

l0
r

1
r

follower
force directed
towards the
negative pole

(0204)∗∗

Fig. 5d
R = r W (l, t) = (R − l0)A1

∣

∣

∣

x=l

; Eq A

generalised
load with
force directed
towards the
positive pole

(0103)∗∗

Fig. 5a

R
>
0,
r
>
0

B1 −
r − l0
R− r

R− l0
R− r

−1
R− r

Fig. 10a
1
R
= 0 r − l0 0 1 0

Fig. 10b r = 0
−l0(R− l0)
R

l0
R

R− l0
R

−1
R

force directed
towards the
positive pole

Fig. 10c r = l0 0 0 1
−1
R− r

Fig. 10d r = R = l0 0 0 1 ∞

follower
force directed
towards the
positive pole

(0203)∗∗

Fig. 5c
R = r W (l, t) = (R − l0)A1

∣

∣

∣

x=l

; Eq A

where

B1 =
(r − l0)(R − l0)
R− r

Eq A:
∂3W (x, t)
∂x3

∣

∣

∣

x=l
−
1
R− l0

A2

∣

∣

∣

x=l
−
m

EJ

∂2W (l, t)
∂t2

= 0
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Fig. 10. Schematic diagrams of heads realising boundary parameters
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are as follows

(EJ)iyIVi (x) + Siy
II
i (x)− (ρ1A)iω

2yi(x) = 0
(5.2)

2
∑

i=1

Si = P

taking into account the symmetrical distribution of the bending rigidity and
mass per unit length.
The boundary conditions at the fixed point and at the free end of the

column with consideration of relationships (4.5), (4.6) take the following form

y1(0) = y2(0) = 0 yI1(0) = y
I
2(0)

y1(l) = y2(l) yI1(l) = y
I
2(l)

yII1 (0) + y
II
2 (0)− c

∗

1y
I
1(0) = 0 (5.3)

yII1 (l) + y
II
2 (l) + β

2[ρyI1(l) + νy1(l)] = 0

yIII1 (l) + y
III
2 (l) + β

2[µyI1(l) + γy1(l)] +
mω2

(EJ)1
y1(l) = 0

where

c∗1 =
c1
(EJ)1

β2 =
P

(EJ)1
(5.4)

The general solution to Eqs (5.2) is

yi(x) = C1i cosh(αix) + C2i sinh(αix) + C3i cos(βix) + C4i sin(βix) (5.5)

where Cni are integration constants (n = 1, 2, 3, 4) and

α2i = −
1
2
k2i +

√

1
4
k4i +Ω

∗2
i β2i =

1
2
k2i +

√

1
4
k4i +Ω

∗2
i (5.6)

while

Ω∗2i =
(ρ1A)iω2

(EJ)i
ki =

√

Si
(EJ)i

Substituting solutions (5.5) into boundary conditions (5.3), yields a transcen-
dental equation to eigenvalues of the considered system.
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6. Experimental stand

The experimental stand designed for the research of the considered systems
(compare Tomski et al., 1998, 1999; Tomski and Gołębiowska-Rozanow, 1998;
Tomski and Szmidla, 2003) is shown in Fig. 11. It consists of two loading heads
1(1) and 1(2). Head 1(1) can be transversely shifted along guides 2(1). Head
1(2) can be horizontally shifted along guides 2(2) and 2(3) in the transverse
and longitudinal directions, adequately.
The load is applied to the tested column by means of screw systems belon-

ging to the heads. The loading force is measured by dynamometers 3(1) and
3(2). The supports of systems can be mounted on a plate. They realise requ-
ested boundary conditions. The tested column together with the head exerting
a load is clamped to supports 4(1) and 4(3). Support 4(1) enables mounting
of the loading head.
A hinged or rigid mounting of the system is realised in support 4(3) de-

pendending on the considered case. Invesigations of natural frequencies are
performed with the use of a two-channel vibration analyser made by Brüel
and Kjaer (Denmark).

7. Numerical and experimental results

For the considered system, numerical computations were accomplished on
the basis of the solution to the boundary value problem. Then, the course
of natural frequencies in relation to the external loads (for systems whose
physical and geometrical parameters are given in Table 3) are experimentally
verified on the stand (Fig. 11).

Table 3. Geometrical and physical parameters of the considered columns

Column EJ [Nm2] ρ1A [kg/m] l [m] R [m] r [m] l0 [m] m [kg]

D1 152.68 0.631 0.605 0.040 0.02 0.13 0.41
D2 152.68 0.631 0.735 0.040 0.0275 0 0.39
D3 152.68 0.631 0.605 0.085 0.02 0.13 0.41
D4 152.68 0.631 0.625 0.085 0.02 0.13 0.41
D5 152.68 0.631 0.710 0.085 0.02 0.04 0.33
D6 152.68 0.631 0.730 0.085 0.02 0.04 0.33
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Fig. 11. Test stand for experimental investigations of the column system

Parameters of the loading and receiving heads are also given in the above
table. The constructional scheme of the loading head (column (0103)∗∗) is
presented in Fig. 8b.

The results, obtained from experimental investigations (point) and nume-
rical computations (lines), are presented in Fig. 12 for columns D4, D6 with
hinged mounting c∗1 = 0 at x = 0. The rigid mounting 1/c

∗

1 = 0 was applied
in the remaining cases. The results are limited to the first two basic natural
frequencies M1, M2 and additional frequency M e2 characterised by symmetry
of vibrations (compare Tomski et al., 1998).

Both numerical and experimental results are in good agreement.
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Fig. 12. Frequency curve in the plane: load-natural frequency for (0103)∗∗ column –
D1, D2 (a); D3, D5 (b); D4, D6 (c)
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For the system, considered in this work, additional numerical computations
were carried out for the following columns:

• loading by the generalised force directed towards the negative pole
(0104)∗∗,

• loading by the generalised force directed towards the positive pole
(0103)∗∗,

related to changes of the critical load and natural frequencies taking into
account the rigid mounting of the system (1/c∗1 = 0).
The changes of the critical load Pc, in the full range of the radius R of

the loading head for three chosen lengths of the rigid element l0 and values of
the radius r of the receiving head, are determined in Fig. 13.
The value of the critical load and R, r, l0 parameters are related to the

overall length of the system l1

λc =
Pcl
2
1

EJ
R∗ =

R

l1
l∗0 =
l0
l1

r∗ =
r

l1
∆r =

R− r

l1

(7.1)

while
l1 = l0 + l = idem

The curves Bq, Cq (q = 1, 2, 3) from the (Bq∞ , Cq∞) point to (B
′

q, C
′

q)
represent the value of the critical load parameter for the column loaded by the
generalised force directed towards the negative pole (0104)∗∗.
In the remaining range, it means from the point (B′′q , C

′′

q ) to (Bq∞ , Cq∞),
the system is loaded by the generalised force directed towards the positive pole
(0103)∗∗.
In the particular case, when R∗ = r∗ (∆r = 0), the course of critical load

changes stays in accordance with the curves Aq.
Such a character of the critical load changes corresponds with the

column loaded by the follower force directed towards the negative pole
((0204)∗∗ – Fig. 5d) for R∗ < 0 or the positive pole ((0203)∗∗ – Fig. 5c) for
R∗ > 0, independently of the length l0 of the rigid element of the loading
head.
The course of each of the curves (broken line) from the point (B′q, C

′

q) to
(B′′q , C

′′

q ) was not determined. The relationship, resulting from the construc-
tion of the loading heads ∆r > 0, is not fulfilled for R∗, r∗ from the above
range.
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Fig. 13. Change of the critical load parameter λc in relation to the radius R of the
loading head for l∗0 = 0 (a); l

∗

0 = 0.125 (b); l
∗

0 = 0.25 (c)
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For the considered values of the radius R∗, every curve of critical load
changes is characterised by occurrence of the maximum value of the critical
load. The extreme value is determined for R∗, r∗, l∗0 fulfilling the dependence

1
2
(R∗ + r∗)− l∗0
1− l∗0

=
1
2

(7.2)

Fig. 14. Frequency curves in the plane: load parameter λ – natural frequency Ω for
column (0104)∗∗ when R∗ = −0.3 (a); r∗ = −0.3 (b)
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The value of the critical load parameter corresponding with R∗ → ±∞
is specified by lines (1,2,3). Additionally, points A′q describe the value of the
critical force characterised by the hinged mounting at the free end of the
system. The scheme of this system is shown in Fig. 10d. The critical load
parameter corresponds with the system subjected to the force directed to the
positive pole when r∗ = l∗0, see points B

∗

q , C
∗

q in Fig. 13b,c. The scheme of the
system is shown in Fig. 10c.

Fig. 15. Frequency curves in the plane: load parameter λ – natural frequency Ω for
column (0103)∗∗ when r∗ = 0.3 (a); R∗ = 0.3 (b)
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The course of free vibration frequencies in relation to the external load was
determined for columns subjected to the generalised force directed towards the
negative pole (0104)∗∗ and subjected to the generalised force directed towards
the positive pole (0103)∗∗. The presentation was limited (Fig. 14, Fig. 15) to
the determination of character of the two first basic natural frequencies in a
dimensionless form Ωs2 in relation to the dimensionless loading parameter λ
for chosen head parameters.
The following parameters describe operation of the heads: the forcing R∗

and loading, r∗, l∗0 taking into account the rigid mounting of the system
1/c∗1 = 0 and the constant mass m concentrated at the free end of the system.
It is assumed

λ =
Pl21
EJ

Ω =
ρ1Aω

2l41
EJ

m∗ =
m

ρ1Al1
(7.3)

The influence of the parameter r∗ on the course of the natural frequency for
a constant value of the R∗ parameter is illustrated in Fig. 14a and Fig. 15b.
Changes of geometry of the loading head R∗ at a constant value of the radius
of the receiving head r∗ are represented by curves of free vibration frequencies
in Fig. 14b and Fig. 15a. For the presented diagrams, the course of natural fre-
quencies is limited by curves (1) and (6), plotted for the boundary parameters
R∗ and r∗.

Fig. 16. Frequency curves in the plane: load parameter λ – free vibration frequency
Ω for column (0103)∗∗ for various l∗0
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Adequate schematic diagrams of the columns and heads realising boundary
parameters R∗ and r∗ are presented in diagrams and Fig. 10 and Fig. 5c,d.
The numbering of the considered columns for one of the two types of sys-

tems, namely divergence or divergence-pseudo-flutter, can be done according
to the presented courses of natural frequencies. The influence of changes in
the length of the rigid element l∗0 on the course of free vibration frequencies
in relation to the external load for a constant value of the parameters m∗, R∗

and r∗ (∆r = R∗ − r∗) is shown in Fig. 16.
The value of the critical load for all presented curves of free vibration

frequencies (Fig.14-Fig. 16) is determined for Ω = 0.

8. Summary

• The nomenclature of the characteristic load, which is the generalised load
by a force directed towards a pole or load by a follower force directed
towards a pole, is determined with taking into account the properties of
load acting on a slender system.

• The generalised load by a force directed towards a pole and load by a
follower force directed towards a pole can be realised in two kinds of
constructions of the loading and receiving heads, namely heads built of
linear and circular elements (constant curvature).

• Different cases of the column loading can be obtained for various geome-
trical parameters of the head: loading and receiving, built of the circular
elements.

• It was stated, on the basis of carried out numerical simulations dealing
with the load by the generalised force directed towards the negative or
positive pole, that there were such values of geometrical parameters of
the forcing and loading heads for which the maximum of the critical load
was obtained.

• There are such values of the geometrical parameters of the heads realising
the load for which the tested systems appear to be of the divergence-
pseudo-flutter type.

• The numerical and experimental results, describing the free vibration
frequencies in relation to the external load, are in good agreement.



Vibration and stability of a column... 191

Acknowledgment

The authors would like to express their gratitude to dr Maria Gołębiowska-
Rozanow for carried out experimental research, the results of which have been placed
in this paper.
The paper was supported by the State Committee for Scientific Research (KBN)

under grant No. 7T07C03218.

References

1. Argyris J.H., Symeonidis S.P., 1981, Nonlinear finite analysis of elastic sys-
tems under noncon-servative loading – natural formulation. Part I. Quasistatic
problems, Computer Methods in Applied Mechanics and Enginee, 26, 75-123

2. Beck M., 1953, Die kniclast des einseitig eingespannten tangential gedruckten
Stabes, ZAMP, 4, 225-228, 476-477 (errata)

3. Bogacz R, Imiełowski SZ., Tomski L., 1998, Optymalization and stability
of columns on example of conservative and nonconservative systems, Machine
Dynamics Problems, 20, 35-47

4. Bogacz R., Janiszewski R., 1986, Zagadnienia analizy i syntezy kolumn
obciążonych siłami śledzącymi ze względu na stateczność, Prace IPPT PAN, 6,
Warszawa

5. Bogacz R., Mahrenholtz O., 1983, Modal analysis in application to design
of inelastic structures subjected to circulatory loading, Proc. of the Euromech
Colloquium 174, on Inelastic Structures under Variable Loads, Palermo, 377-
388

6. Bolotin V.V., 1961, Nonconservative Problems of the Theory of Elastic Sta-
bility, Moscow (English translation published by Pergamon Press Inc., 1963)

7. Danielski J., Mahrenholtz O., 1991, Vergleich theoretischer und experi-
mentaller Ergebnisse eines gestutzten Beck-Reut-Stabes, ZAMM, 71, T186-
T189

8. Dzhanelidze G.Y., 1958, On the stability of rods due to the action of follo-
wer forces, Trudy Leningradskogo Politekhnicheskogo Instituta, 192, 21-27 (in
Russian)

9. Gajewski A., Życzkowski M., 1969, Optymalne kształtowanie pręta ściska-
nego siłą skierowaną do bieguna, Rozprawy Inżynierskie, 17, 2, 299-329

10. Gajewski A., Życzkowski M., 1970, Optimal design of elastic columns sub-
ject to the general conservative behaviour of loading, ZAMP, 21, 806-818

11. Gajewski A., Życzkowski M., 1988, Optimal Structural Design Under Sta-
bility Constraints, Dordrecht: Kluwer Academic Publishers 103-107



192 L.Tomski, J. Szmidla

12. Goldstein M., 1950, Classical Mechanics, Cambridge: Addison-Wesley, USA,
England, 38-42

13. Kordas Z., 1963, Stability of the elastically clamped compressed bar in the
general case of behaviour of the loading, Bulletin de L’Academie Polonaise des
Sciences, XI, 419-427

14. Leipholz H.H.E., 1974, On conservative elastic systems of the first and second
kind, Ingenieur-Archiv, 43, 255-271

15. Sundararajan C., 1973, On the flutter and divergence of a two-degree-of-
freedom elastic systems subjected to follower forces, ZAMM, 53, 801-802

16. Sundararajan C., 1976, Influence of an elastic end support on the vibration
and stability of Beck’s column, Int. J. Mech. Sci., 18, 239-241

17. Timoshenko S.P., Gere J.M., 1961, Theory of Elastic Stability, New York:
Mc Graw-Hill

18. Tomski L., Gołębiowska-Rozanow M., 1998, Construction of stands for
testing of natural vibration of columns by various types of potential forces,
Vibrations in Physical Systems, XVIII Symposium Poznań-Błażejewko, 259-
260

19. Tomski L., Gołębiowska-Rozanow M., Przybylski J., Szmidla J., 1995,
Stability and vibration of a two-member frame under generalised load, in: Sta-
bility of Steel Structures, Edited by M. Ivanyi, Vol. 1, Akademiai Kiado, Publi-
shing House of Hungarian Academy of Science, Budapest, 493-500

20. Tomski L., Gołębiowska-Rozanow M., Szmidla J., 1994, Drgania swio-
bodne obciążone siłą i momentem (Free vibration of a column loaded by a
force and bending moment, XVI Symposium ”Vibrations in Physical Systems”,
Poznań-Błażejewko, 317-319

21. Tomski L., Kukla S., Posiadała B., Przybylski J., Sochacki W., 1990,
Divergence and Flutter Instability of the Column Supported by a Nonlinear

Spring and Loaded by a Partially Follower Force, Akademiai Kiado, Publishing
House of Hungarian Academy of Science, Budapest, 1227-1234

22. Tomski L., Przybylski J., 1985, Static instability of an elastically restrained
cantilever under a partial follower force, AIAA Journal, 23, 10, 1637-1639

23. Tomski L., Przybylski J., Gołębiowska-RozanowM., Szmidla J., 1996,
Vibration and stability of an elastic column subject to a generalized load, Ar-
chive of Applied Mechanics, 67, 105-116

24. Tomski L., Przybylski J., Gołębiowska-RozanowM., Szmidla J., 1998,
Vibration and stability of a cantilever column subject to a follower force passing
through a fixed point, Journal of Sound and Vibration, 214, 1, 67-81



Vibration and stability of a column... 193

25. Tomski L., Przybylski J., Gołębiowska-RozanowM., Szmidla J., 1999,
Vibration and Stability of columns subjected to a certain type of generalised
load, Journal of Theoretical and Applied Mechanics, 37, 2, 283-299

26. Tomski L., Szmidla J., 2003, Local and global instability and vibrattion of
overbraced Euler’s column, Journal of Theoretical and Applied Mechanics, 41,
1, 137-154

27. Tomski L., Szmidla J., Gołębiowska-Rozanow M., 2000, Drgania i sta-
teczność kolumny obciążonej poprzez wycinek łożyska tocznego, IX Sympozjum
Stateczności Konstrukcji, Zakopane, 293-298

28. Ziegler H., 1968, Principles of Structural Stability Waltham, Blaisdell Publi-
shing Company

Drgania i stateczność kolumny poddanej obciążeniu uogólnionemu z siłą
skierowaną do bieguna

Streszczenie

W pracy prezentuje się nowe obciążenie układów smukłych, które jest obciąże-
niem uogólnionym z siłą skierowaną do bieguna dodatniego lub ujemnego. Przed-
stawia się nowe rozwiązania konstrukcyjne głowic realizujących i przejmujących to
obciążenie. Prezentuje się rozważania teoretyczne dotyczące sformułowania warun-
ków brzegowych. W zależności od rozwiązania konstrukcyjnego głowicy obciążającej
i przejmującej obciążenie określa się wartość siły krytycznej oraz przebieg częstości
drgań własnych w funkcji obciążenia zewnętrznego dla zadanej geometrii i stałych
fizycznych kolumny. Wyniki badań teoretycznych porównuje się z wynikami badań
eksperymentalnych.
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