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Plane contact problems with the partial slip in the contact area are consi-
dered in the paper. To make the problems more realistic, the deformation
of roughness of the contacting boundary is involved. The Shtayerman
model of roughness is generalized on the case of tangential problems.
The problems are treated by the boundary integral method. Examples
of the contact of a flat rigid punch and a rigid cylinder with an elastic
half-space involving boundary imperfections are studied. The effects of
roughness parameters on the distribution of normal and shearing trac-
tions as well as on the stick-slip transition are investigated.
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1. Introduction

When two elastic bodies are normally pressed against each other and,
subsequently, shifted by a monotonically increasing shearing force in the tan-
gential direction, slip zones develop in the mutual contact area. This kind of
a contact problem is referred to as the Cattaneo-Mindlin problem, see Catta-
neo (1938), Mindlin (1949). The practical importance of this problem is very
great, its results are applied to the investigation of the fretting in the contact
zone. The bibliography on the Cattaneo-Mindlin problem is wide. It can be
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found in well-known monographs on contact mechanics, Johnson (1985), Hills
et al. (1993). Some generalizations of this problem were done by Jäger (1997),
Ciavarella (1998).

Known solutions to partial slip tangential contact problems were obtained
on the assumption that the contacting surfaces are ideally smooth. But real
boundaries of real bodies are not perfectly smooth, they include roughness
which has an influence on the contact.

There are many approaches to the modelling of boundary roughness. Our
approach, which is presented in Section 2, is based on the Shtayerman (1949)
assumption, that the boundary roughness causes additional deformation under
the punch. We extend this assumption on that relevant to tangential contact
problems. On the base of the model proposed, the normal and tangential
contact problems are considered in the next Sections. We will study uncoupled
problems postulating that the normal traction has no effect on the tangential
displacements and the shearing traction on the normal displacements. The
problems are assumed to be plane and steady-state. One contacting body is
considered as a rigid punch while for the second body the Hertz assumptions
are applied, and it is considered as an elastic half-space. Two main contact
geometries are studied: the flat punch and the cylinder approximated by a
parabola. To solve the partial slip contact problem, Cattaneo’s superposition
for the shearing traction is used and integral equations for a corrective traction
are derived. Contrary to the case of ideal contact boundaries, the solution to
these integral equations can not be obtained analytically, and a numerical
technique has to be applied.

2. Model of boundary roughness

The boundary roughness acts like a thin compliant layer on the surface of
a body, Johnson (1985). As a result, additional deformation takes place under
the contact of rough bodies. This assumption was first used by Shtayerman
(1949), who proposed a model of boundary imperfections postulating that the
normal displacement of the rough boundary subjected to the normal load p(x)
consists of two parts

v(x) = ve(x) + vr(x) (2.1)

where ve(x) is the displacement due to the elastic deformation of the body
and vr(x) are additional local displacements due to the roughness deformation.
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The first part of the displacements can be found as a solution to the elasti-
city equations. To describe the additional displacement, Shtayerman used the
relation

vr(x) = αp(x) (2.2)

where the constant α is called the roughness parameter. The Shtayerman
model of the boundary roughness states an analogy with the well-known Win-
kler (1867) assumption, and can be successfully applied to the solution to
normal contact problems for rough bodies. But this model is not useable in
the tangential contact problems because it neglects the shearing traction and
displacements.

In the solution to the tangential contact problems, we will use a similar
idea, presenting the normal displacements in form (2.1) and tangential ones
as

u(x) = ue(x) + ur(x) (2.3)

where ue(x) is a displacement due to elastic deformation of the body and

ur(x) = βq(x) (2.4)

states the tangential displacement due to the deformation of the boundary ro-
ughness subjected to the action of the shearing traction q(x). The constant β
will be called the roughness parameter. Thus the proposed model is characte-
rized by two roughness parameters α and β. Equations (2.2), (2.4) present the
simplest model of the boundary roughness. Another model of the roughness
known as the Greenwood-Williamson model (see Greenwood and Williamson,
1966) has a broader application range, and is widely used for the investigation
of the normal contact of rough bodies. However, it is not easy to generalize
the Greenwood-Williamson model, i.e. extend it onto the case of tangential
problems.

Analysing formulae (2.2) and (2.4) it is easy to observe an analogy between
the proposed model of the boundary roughness and the simplified model of the
elastic foundation used by Kalker (1973) for the investigation of rolling contact.
The proposed model treats the boundary roughness as a set of independent
springs or as a ”wire brush”. The problem of determination of the roughness
parameters is discussed in Appendix.

Considering the body as an elastic half-space and taking the solutions
ue(x) and ve(x) in the well-known forms, Johnson (1985), the total displace-



110 V.Pauk, B.W.Zastrau

ments of the rough boundary of the half- space can be presented as

v(x) = αp(x) +
2(1 − ν2)
πE

a∫

−a

p(ξ) ln |ξ − x| dξ +

+
(1− 2ν)(1 + ν)

2E

a∫

−a

q(ξ) sgn (x− ξ) dξ

(2.5)

u(x) = βq(x) +
2(1− ν2)
πE

a∫

−a

q(ξ) ln |ξ − x| dξ −

− (1− 2ν)(1 + ν)
2E

a∫

−a

p(ξ) sgn (x− ξ) dξ

where ν, E are Poisson’s ratio and Young’s modulus of the half-space, respec-
tively, a is the half-width of the contact area.
As was stated in Introduction, in the further analysis we will consider an

uncoupled problem in which the tangential traction has no effect on the nor-
mal displacements and the normal pressure on the tangential displacements.
This situation takes place if ν = 0.5 (assumed here) or when the mechanical
properties of contacting bodies are identical. It is important to notice that the
effect of the coupling between the tangential and normal problems is not great
also in the general case of material properties, see Johnson (1985), and thus
can be neglected.

3. Normal contact problems

Let us assume that the rigid punch is pressed symmetrically by the normal
load P against the rough boundary of the elastic half-space. The punch geo-
metry is described by the function h(x). Satisfying the boundary condition by
making use of expression (2.5)1

v(x) = δy − h(x) x ∈ (−a, a) (3.1)

where δy = const describes the normal approach of the contacting bodies, we
arrive at the following integral equation

αp(x) +
2(1− ν2)
πE

a∫

−a

p(ξ) ln |ξ − x| dξ = δy − h(x) x ∈ (−a, a) (3.2)
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This equation with the equilibrium condition

a∫

−a

p(x) dx = P (3.3)

determines a system of integral equations of the normal contact problem. We
will consider two types of the punch geometry.

3.1. Flat punch

In this case. the function h(x) = 0 and after introducing dimensionless
variables, i.e. contact pressure and parameters

s =
x

a
η =
ξ

a
p∗(s) =

ap(x)

P

α∗ =
αE

a(1− ν2) δ∗y =
δyE

1− ν2
(3.4)

the system of integral equations (3.2), (3.3) can be transformed to the form

α∗p∗(s) +
2

π

1∫

−1

p∗(η) ln |η − s| dη = δ∗y s ∈ (−1, 1)

(3.5)
1∫

−1

p∗(s) ds = 1

Equations (3.5) are then solved numerically for different values of the di-
mensionless roughness parameter α∗. The effects of boundary roughness on
the contact pressure distribution is presented in Fig. 1a by dotted curves. For
α∗ = 0, we obtain the well-known solution for the smooth half-space, Johnson
(1985)

p∗(s) =
1

π
√
1− s2

(3.6)

which is unbounded for s→ ±1. But if α∗ > 0, the contact pressure no longer
tends to the infinity at the punch edges. This result is due to the boundary
roughness and was first obtained by Shtayerman (1949).
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Fig. 1.

3.2. Cylindrical punch

Assuming the punch geometry in the form

h(x) =
x2

2R
(3.7)

and introducing dimensionless parameters

s =
x

aH
η =

ξ

aH
p∗(s) =

aHp(x)

P

a∗ =
a

aH
α∗ =

αE

aH(1− ν2)
δ∗y =

δyE

1− ν2
(3.8)

we obtain the dimensionless form of integral equations (3.2), (3.3)

α∗p∗(s) +
2

π

a∗∫

−a∗

p∗(η) ln |η − s| dη = δ∗y −
2

π

PH
P
s2 s ∈ (−a∗, a∗)

(3.9)
a∗∫

−a∗

p∗(s) ds = 1

Here, aH and PH are the contact size and normal load in the Hertz problem,
respectively, see Johnson (1985)

a2H =
4(1 − ν2)RPH

πE
(3.10)
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In the numerical analysis, the normal load is equal to that in the Hertz
problem, i.e. PH/P = 1, and the unknown contact size a

∗ is determined
iteratively from the physical condition

p(±a∗) = 0 (3.11)

The distribution of the contact pressure in the present case is shown in
Fig. 1b by dotted curves for three values of the roughness parameter α∗. For
α∗ = 0 the classical solution, Johnson (1985)

p∗(s) =
2

π

√
1− s2 (3.12)

is obtained. We observe that the contact area is bigger, and the maximum value
of the contact pressure is lower in the presence of boundary imperfections.

4. Complete stick contact problems

Let us now assume that the bodies are in contact as was stated in Section 3
and, subsequently, the tangential load Q is applied. First, we will consider fully
adhesive contact described by the condition

u(x) = δx x ∈ (−a, a) (4.1)

where δx = const is the tangential component of the rigid motion of contac-
ting bodies.
Satisfying this condition, using formula (2.5)2, we obtain an integral equ-

ation for the shearing traction

βq(x) +
2(1 − ν2)
πE

a∫

−a

q(ξ) ln |ξ − x| dξ = δx x ∈ (−a, a) (4.2)

which has to be considered together with the equilibrium condition

a∫

−a

q(x) dx = Q (4.3)

Integral equations (4.2), (4.3) have been solved numerically. The effect of
the dimensionless roughness parameter β∗ = βE/[aH(1−ν2)] on the distribu-
tion of the dimensionless tangential traction q∗(s) = aHq(x)/P is presented in
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Fig. 1 by solid curves in the cases of the flat punch and the parabolic cylinder,
respectively. These results were obtained for Q∗ = Q/P = 0.2, and the con-
tact area in the case of the cylindrical punch was equal to that in the normal
contact problem for α∗ = 0.5.
The presented results need more comments. Integral equations (4.2), (4.3)

have a structure like equations (3.2), (3.3) of the normal contact of the rigid
flat punch. Thus, the tangential traction q(x) is unbounded at the edge of the
contact area if β∗ = 0, and is limited when β∗ > 0. Note that this behaviour
is independent of the punch geometry.
Considering the ratio q∗(a∗)/p∗(a∗) in the case of the rigid cylinder

(Fig. 1b) we can state that this value is always equal to infinity. It means that
in order to satisfy the complete stick condition over the whole contact area,
we must apply the infinite friction force at the contact zone edges, which is
physically impossible. So, some slip under the punch near the points s = ±a∗
is inevitable in the case of the parabolic geometry, and the partial slip contact
problem has to be solved. Identical behaviour takes place for this geometry in
the complete stick contact problem for the ideally smooth boundary, Johnson
(1985).
A significantly different situation is observed in the case of the flat punch.

In the classical case, when the boundary is ideal (α = β = 0), the shearing
traction is

q∗(s) = Q∗p∗(s) s ∈ (−1, 1) (4.4)

where the normal pressure has the form of (3.7). It means that the stick occurs
everywhere when Q∗ ¬ f (f is the friction coefficient), and if Q∗ > f , the
punch slides over the half-space. Thus, no partial slip solution exists on the
classical assumptions. Let us note here, that Ciavarella et al. (1998) obtained
the partial slip solution for the flat punch assuming that the punch edges were
slightly rounded.
To study possible slip near the flat punch edges, let us examine the ratio

q∗(1)/p∗(1) for different values of the roughness parameters. Figure 2 presents
this ratio versus the dimensionless load Q∗ for some values of the parameter α∗

(straight solid lines; β∗ = 0.5 is fixed) and for some values of β∗ (straight
dotted lines; α∗ = 0.5 is fixed). Drawing a horizontal line f = const (for
example f = 0.4), we can conclude that no partial slip solution exists if
α∗ < β∗ = 0.5. If α∗ > β∗ = 0.5 there are regions in which the stick conditions

q∗(1) < fp∗(1) 0 < Q∗ < f (4.5)

are not satisfied, see Fig. 2. Thus, some slip must occur for these values of
input parameters. For example, the bold line on the horizontal axis in Fig. 2
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indicates the range of the load Q∗ in which the slip at the punch edges is
inevitable. This range is Q∗ ∈ (Q0, f = 0.4), where the value of Q0 can be
read from Fig. 2 as Q0 ≈ 0.32 for fixed α∗ = 1.0, β∗ = 0.5. For another
roughness α∗ = 1.0, β∗ = 0.0 the value is smaller Q0 ≈ 0.08.

Fig. 2.

The calculation performed for other sets α∗ and β∗ confirms the general
property of the contact of the flat punch: if α∗ < β∗ there is no partial slip
solution, and this kind of solution is possible when α∗ > β∗. This property can
also be proved using an analogy between the normal and tangential problem for
identical elastic half-spaces discovered by Jäger (1997) and Ciavarella (1998).

Thus, if the tangential load Q∗ is monotonically increasing from zero to
the value Q0, the contact is fully adhesive; if Q0 < Q

∗ < f , some slip takes
place near the punch edges, and the partial slip contact problem has to be
considered; and, finally, if Q∗ > f , the punch slides over the half-space.

5. Partial slip contact problems

The previous section shows that, even if Q < fP , the regions of slip near
the contact area edges exist for all values of input parameters in the case of
parabolic geometry and for some values of the roughness parameters in the
case of the flat punch. From the symmetry of the problem, the stick zone can
be defined as (−c, c), where the size c < a must be found.
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The boundary conditions in the stick zone are, Johnson (1985)

u(x) = δx |x| ¬ c
|q(x)| < f |p(x)| |x| ¬ c

(5.1)

In the slip zones, the normal and shearing tractions are connected by the
relationship

|q(x)| = f |p(x)| c < |x| ¬ a (5.2)

In addition, the direction of q(x) in the slip zones must be opposite to the
direction of micro- sliding, i.e.

sgn q(x) = − sgn sx(x) c < |x| ¬ a (5.3)

where

sx(x) = u(x)− δx (5.4)

stands for the value of relative tangential displacements.

As was stated above, the problems are considered to be uncoupled. Thus,
the normal pressure p(x) is already known from Section 3. To seek the she-
aring traction in the partial slip contact problems, we will use the idea of
superposition presented by Cattaneo (1938)

q(x) =

{
fp(x) for c < |x| ¬ a
fp(x) + q0(x) for |x| ¬ c

(5.5)

where q0(x) is an unknown corrective shearing traction defined in the stick
zone.

Substituting this presentation into (2.5)2 and taking into account integral
equation (3.2), after some transformations, we can satisfy boundary condition
(5.1)1, which leads to the integral equation written in the stick zone for the
unknown q0(x) (|x| ¬ c)

βq0(x)+
2(1 − ν2)
πE

c∫

−c

q0(ξ) ln |ξ−x| dξ = δx−f [δy−h(x)+(β−α)p(x)] (5.6)

Equilibrium condition (4.3) with the help of expression (5.5) reads

c∫

−c

q0(x) dx = Q− fP (5.7)
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The size c of the stick zone has to be found from the condition

q0(±c) = 0 (5.8)

which provides continuous distribution of the shearing tractions under the
punch.

The system of equations (5.6)-(5.8) can be transformed to a dimensionless
form

β∗q∗0(s) +
2

π

c∗∫

−c∗

q∗0(η) ln |η − s| dη = δ∗x − f [δ∗y − h∗(s) + (β∗ − α∗)p∗(s)]

|s| ¬ c∗
c∗∫

−c∗

q∗0(s) ds = Q
∗ − f (5.9)

q∗0(±c∗) = 0

where q∗0(s) = aHq0(x)/P , c
∗ = c/aH (aH is defined by (3.10) in the case

of the parabolic cylinder or aH = a =half-width of the flat punch). Other
dimensionless quantities have been defined above.

Equations (5.9) have been solved numerically. The input parameters were:
f – friction coefficient, Q∗ – dimensionless tangential load, and α∗, β∗ –
dimensionless roughness parameters.

Let us first discuss the results for the contact of a rigid cylinder with the
half-space. Figure 3a presents the effects of the parameter α∗ on the total
shearing traction q∗(s) (solid curves) and on the corrective traction q∗0(s)
(dotted curves) for β∗ = 0.0, f = 0.2 and Q∗ = 0.1. Typical distributions of
the shearing traction are shown in Fig. 3b,c for some values of the roughness
parameter β∗ (α∗ = 0.2, f = 0.2 and Q∗ = 0.1) and the tangential load Q∗

(α∗ = 0.2, β∗ = 0.2 and f = 0.2 and Q∗ = 0.1). Generally speaking, the
boundary imperfections cause a decrease in the shear traction. The effect of
the roughness on the stick zone size is also important.

It is easy to check that the distributions of shearing traction presented
in Fig. 3 satisfy boundary condition (5.1)2, (5.2). To make sure that we have
obtained the correct solution to the partial slip contact problem, condition
(5.3) has to be checked. Substituting expresions (2.5)2, (5.5) into formula (5.4),



118 V.Pauk, B.W.Zastrau

Fig. 3.

after some transformations, we arrive at the dimensionless form of the relative
tangential displacements in the slip zones

s∗x(s) =
Esx(x)

(1− ν2)P = −δ
∗

x + f [δ
∗

y − h∗(s) + (β∗ − α∗)p∗(s)] +
(5.10)

+
2

π

c∗∫

−c∗

q∗0(η) ln |η − s| dη c∗ ¬ |s| ¬ a∗

where q∗0(s) is the solution to equations (5.9).

The distribution of relative tangential displacements in the slip zone is
presented in Fig. 4 for some values of the parameter β∗ (α∗ = 0.2, f = 0.2
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and Q∗ = 0.1) and the load Q∗ (α∗ = 0.2, β∗ = 0.2 and f = 0.2 and
Q∗ = 0.1). Since, these displacements are negative, boundary condition (5.3)
is satisfied.

Fig. 4.

Fig. 5.

The effects of the roughness parameter β∗ on the relative half-width of
the stick zone c0 = c/a = c

∗/a∗ as a function of the ratio Q∗/f is presented
in Fig. 5a for α∗ = 0.5 and f = 0.2. For comparison, the classical result,
Cattaneo (1938)

c0 =

√
1−Q∗
f

(5.11)
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is presented by the dotted line. Figure 5b shows the value of c0 as a function
of the parameter α∗ (solid curve, β∗ = 0.2) and of the parameter β∗ (dotted
curve, α∗ = 0.2) for Q∗. A general tendency is that the stick zone size increases
with the parameter β∗ growth, and decreases with the growth of α∗.

Fig. 6.

Fig. 7.
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This tendency is also observed in the case of the rigid flat punch. The effects
of the roughness parameters α∗, β∗ on the total shearing traction under the
flat punch and on the relative tangential displacements in the slip zones for
f = 0.4 and Q∗ = 0.35 are shown in Fig. 6a (β∗ = 0.1 is fixed) and in Fig. 6b
(α∗ = 1.0 is fixed).

The dependence between the stick zone size c0 and the shearing load Q
∗ is

presented in Fig. 7 for two cases of the roughness: α∗ = 0.5, β∗ = 0.0 (dotted
curve) and α∗ = 1.0, β∗ = 0.5 (solid curve) and for fixed f = 0.4. The stick
zone size is equal to the punch width for Q∗ < Q0, and quickly decreases to
zero if Q∗ approaches f .

6. Conclusions

A new formulation of the tangential partial slip contact problem was pre-
sented in the paper. Additional displacements in the contact zone due to bo-
undary roughness deformation were taken into account. Two geometries of
the punch profiles were considered: a parabolic cylinder and a flat punch. The
problems were reduced to boundary integral equations which were solved nu-
merically. The obtained result allowed one to draw the following conclusions.

• Boundary imperfections have great effect on solutions to partial slip
contact problems.

• In the case of a parabolic geometry, these effects are quantitative: the
contact zone and the stick zone are bigger, and the shearing traction is
lower in the presence of roughness. However, the general behaviour is
similar to the classical one.

• In the case of the flat punch, new behaviour is observed. Contrary to
the classical formulation, which gives no partial slip solution for the flat
geometry, the proposed formulation provides partial slip for some values
of the roughness parameters and tangential load.

The main difficulty with the application of the obtained results is that the
known experimental tests of rough boundaries do not provide data for the
roughness parameters α and β. Some evaluation of the roughness parameters
is given in Appendix.



122 V.Pauk, B.W.Zastrau

A. Appendix

We propose an approach for the determination of the roughness parameters
from the comparison of the solution obtained here with the known one. For
example, the solution to the normal contact problem for a rough half-space
presented in Section 3 can be compared with the solution obtained using the
Greenwood-Williamson model of roughness, see Greenwood and Williamson
(1966). This solution, in the plane case, was presented by Lo (1969). Figure 8
shows (solid line) the distribution of the normalized normal pressure p∗(x)
(see (3.8)) obtained in the framework of the Greenwood-Williamson model for
two dimensionless parameters

δ =
8

3

√
γR ησ

π
√
π
=
1

2
P̃ =
2P (1 − ν2)
πσE

=
1

10
(A.1)

where γ is the radius of the tip of asperities distributed with the density η, σ is
the standard deviation of the Gaussian distribution of asperity heights. Note
that δ plays the role of the roughness parameter in the Greenwood-Williamson
model.

Fig. 8.

Solving now the normal contact problem for the rough half-space and the
parabolic punch as has been stated in Section 3, we can guess the rough-
ness parameter α∗ from one of the two conditions: the Greenwood-Williamson
and Shtayerman models produce the same maximum of the contact pressu-
re (Condition 1), or both models produce the same value of the contact size
(Condition 2). We have found, respectively, α∗ ≈ 0.18 and α∗ ≈ 0.37. The
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corresponding solutions are presented in Fig. 8 by dotted lines. We can conclu-
de that, for the parameters δ = 0.5, P̃ = 0.1 from the Greenwood-Williamson
model of roughness, the value α∗ ≈ 0.275 of the roughness parameter descri-
bing the Stayerman model corresponds with the good accuracy. In a similar
way, we can find the parameter α∗ for another sets of δ and P̃ , and state a
relation between both models of boundary roughness in the case of the normal
problem. It is impossible however, to perform a similar procedure for the tan-
gential problem and find a relation for another roughness parameter γ because
there is no model analogous to the Greenwood-Williamson one in the case of
the tangential problem.
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Płaskie zagadnienia kontaktowe dla półprzestrzeni chropowatej

z uwzględnieniem częściowego poślizgu

Streszczenie

Praca dotyczy zagadnień kontaktowych uwzględniających powstawanie poślizgów
pomiędzy powierzchniami styku. Dodatkowo zakłada się, że te powierzchnie są chropo-
wate. Rozważa się dwie podstawowe geometrie stempla: stempel o płaskiej podstawie
oraz stempel walcowy. Do rozwiązania zagadnień kontaktowych stosuje się metodę
równań całkowych. Ujawniono wpływ chropowatości na rozwiązania zagadnień kon-
taktowych.
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