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The paper presents a mathematical formulation of the Lagrangian me-
thod suitable for numerical simulation of 3D viscous incompressible
flows. The vorticity field is approximated by a large ensemble of vor-
tex particles which move with the fluid (advection) and perform random
walks (diffusion). The charges of the particles change with time due to
the stretching term in the governing equation. The construction of the
vortex particles ensures that the approximated vorticity field is stric-
tly divergence-free at any time instant. The boundary condition at the
surface of an immersed body is satisfied by the creation of new vortex
particles near the surface. Various properties of induced velocity and
vorticity fields are also discussed.
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1. Introduction: motivation of the paper

The problem of determination of the fluid motion past an immersed body
belongs to the most important and challenging problems in fluid mechanics.
From the mathematical point of view, the fundamental difficulty lies in the lack
of rigorous results concerning the existence and regularity of solutions to the
Navier-Stokes and continuity equations in the 3D case with ”sensibly” small
viscosity or, which is essentially equivalent, a sufficiently large Reynolds num-
ber Re. It is commonly known that the flow in the wake behind the immersed
body becomes oscillatory with relatively small Reynolds numbers, although
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the incoming free stream is perfectly steady. Further increase of the Reynolds
number Re leads to even more complicated spatio-temporal structure of the
fluid motion and, at sufficiently large Reynolds numbers, the flow attains the
fully turbulent form.

Investigations of initial stages of the laminar-turbulent transition are of
fundamental importance as it is believed that there lies the key to control
its development. In geometrically simple cases, remarkable progress has be-
en achieved using linear and/or weakly nonlinear methods of the theory of
hydrodynamic stability (see Ref. Schmid and Henningson (2001)). In more
complicated (and technically interesting) cases, direct numerical simulations
(DNS) are inevitable. During the last twenty years, the DNS methods achie-
ved a high level of sophistication (see, for instance, Peyret, 2000; Deville et
al., 2002; Cottet and Koumoutsakos, 2000). In general, the methods can be
divided into two classes: the Eulerian (or field) methods and Lagrangian (or
particle) methods. Typical methods from the first class are finite difference
methods (FDM) or finite element methods (FEM). The Lagrangian methods
in fluid mechanics are mostly represented by vortex methods, where the spatio-
temporal evolution of the vorticity field is simulated by a large set of discrete
vorticity carriers moving as individual, mutually interacting objects. The me-
thod described in this work belongs to this class. It should be remarked that
the differentiation between Eulerian and Lagrangian is not as strict as it might
seem. There is a number of approaches which are in a sense ”hybrid” to name
only the Large Eddy Simulation (LES) (Sagaut, 2002), methods with moving
and/or deforming grids [15] or the arbitrary Lagrangian-Eulerian formulation
applied to flows with moving and/or free boundaries (Deville et al., 2002).

While the central idea in the Eulerian approach is a grid (or mesh), the
Lagrangian approach is based rather on the usage of moving, spatially locali-
zed individuals called particles. The particles are fictitious creatures – they are
carriers of the vorticity or magnetization (see Buttke and Chorin, 1993; Sty-
czek and Szumbarski, 2002). The method using vortex particles proved to be
especially effective in 2D simulations – in this context it is usually referred to
as the method of vortex blobs (see, for instance, Błażewicz and Styczek, 1993;
Szumbarski and Styczek, 1997; Styczek and Wald, 1995; Protas and Styczek,
2002). In such a case, the vorticity has only one nonzero component subject
only to advection and diffusion (there is no stretching). The generalization for
axisymmetric flows was formulated in Hedar and Styczek (1999). Since the
governing equation can be cast into the form which formally resembles the
2D case, the axisymmetric vortex method does not differ much from the two
dimensional one. For general 3D flows, the situation is much more complex –
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there is an additional coupling between the vorticity and local variations of
the velocity field. The effect of this coupling is, generically, the stretching of
the vorticity due to local velocity gradients.
In the region of the wake behind the immersed body, the velocity field

is characterized by immense fine-scale non-uniformity. The velocity-vorticity
coupling gives rise to specific synergism, which efficiently breaks up flow struc-
tures into even smaller scales. Thus, there is a need for subtle discretization
of the wake region, where the spatial scale of the velocity variations is small
and time-dependent. The method of the vortex particles meets this demand
in an apparently natural way: the vortex particles are born in vicinity of the
body, shed from it and gathered in the wake area. This way, higher resolution
in the regions with reach kinematics is attained. The other advantage of the
vortex method is the elimination of the pressure. It should be remarked that
other ways of the pressure elimination (not based on using the curl operator)
lead to a complicated integro-differential problem.
The paper is constructed as follows. In Section 2, we formulate the initial

boundary problem and transform it to the velocity-vorticity formulation. We
derive also some important results concerning the properties of the vorticity
in the flow domain. In Section 3, we explain the construction of the 3D vortex
particles. In Section 4, the velocity field is constructed and its properties are
discussed in some details. In Section5, the splitting of the governing equation
into advection/diffusion and the stretching parts are introduced. Next, we
explain how the partial problems are solved during each time step of the
method. In Section 6, the realization of the no-slip boundary conditions and
creation of the vorticity at the material boundary in the form of new particles
is considered.

2. The velocity-vorticity formulation of the flow problem

Consider a nonstationary flow of a viscous fluid in the exterior of a motion-
less body with the smooth surface Γ . The unknowns are the velocity field v
and the pressure p. The specific mass is constant and equals to the unity. The
fluid motion is governed by the Navier-Stokes equation

∂tv + (v · ∇)v = −∇p+ ν∆v (2.1)

The velocity field is divergent-free

∇ · v = 0 (2.2)
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and satisfies the following boundary conditions

v
∣

∣

∣

r∈Γ
= 0 v

∣

∣

∣

r→∞
= U∞ (2.3)

At the initial time, the velocity is given as

v
∣

∣

∣

t=0
= v0(r) (2.4)

The vector field v0 satisfies conditions (2.2) and (2.3)1, and asymptotic condi-
tion (2.3)2 at t = t0. We also assume that at infinity the pressure is spatially
homogeneous.
As it was already mentioned, the proof of existence and uniqueness of a

regular (smooth) solution to the above problem is not yet available, unless
some additional restrictions (symmetry, sufficiently small Reynolds number)
are assumed.
We will show that the pressure p is a nonlocal quantity. Indeed, applying

the divergence operator to equation (2.1) one gets

−∆p = ∂vi
∂xj

∂vj
∂xi

(2.5)

In the above, the summation convention has been applied.
The following Neumann condition can be formulated at the surface Γ

n · ∇p
∣

∣

∣

Γ
= νn∆v ≡ −νn(∇× ω)

∣

∣

∣

Γ
(2.6)

The vorticity ω is defined as the curl of the velocity

ω = ∇× v (2.7)

By definition, the vorticity has zero divergence. Poisson equation (2.5) with
boundary condition (2.6) can be formally inverted with the use of the generali-
zed Green function. Then, inserting the pressure gradient into equation (2.1),
one obtains the previously mentioned nonlocal, integro-differential form of the
governing equation. The other method of the pressure elimination consists in
using the equation of vorticity transport (the Helmholtz equation)

∂tω + (v · ∇)ω = ν∆ω + (ω · ∇)v (2.8)

The velocity field v can be then expressed as follows

v = ∇(rU∞(t) + ϕ) +
1

4π

∫

suppω

ω(t, ξ)× r − ξ|r − ξ|3 dξ (2.9)
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where the potential ϕ is a harmonic function vanishing at infinity and the
symbol suppω denotes the vorticity support (the closure of the subset in R

3,
where ω 6= 0).
The initial condition for the vorticity field is implied by condition (2.4)

ω
∣

∣

∣

t=0
= ω0(r) ≡ ∇× v0(r) (2.10)

We also formulate the Neumann boundary condition

−∂ϕ
∂n

∣

∣

∣

Γ
= nU∞ +

n

4π

∫

suppω

ω(t, ξ)× r − ξ|r − ξ|3 dξ (2.11)

which – formally – allows for determination of the harmonic potential ϕ.
Next, taking the component of the velocity v tangent to the surface Γ ,

we get

n×(n×U∞(t)+n×∇ϕ)
∣

∣

∣

Γ
+n×

{ n

4π
×
∫

suppω

ω(t, ξ)× r − ξ|r − ξ|3 dξ
}
∣

∣

∣

Γ
= 0 (2.12)

The nonlocality of formula (2.11) and (2.12) is evident. In a sense, it has been
”shifted” from the equation of motion. However, we will show later that con-
ditions (2.11) and (2.12) are relatively easy and straightforward to implement
in the method of vortex particles.
The vorticity ω subjects to an additional restriction. Let us integrate Helm-

holtz equation (2.8) in the fixed region D bounded by the material surface Γ
and the sphere S∞ of the very large radius R.

d

dt

∫

D

ω dr +

∫

Γ∪S∞

(nv)ω dS = −ν
∫

Γ∪S∞

n× (∇×ω) dS +
∫

Γ∪S∞

(nω)v dS

Since v|Γ = 0 and the vorticity vanishes at S∞ faster than r−2, one obtains
for R→∞

d

dt

∫

ω dr = −ν
∫

Γ

n× (∇× ω) dS

Using equation of motion (2.1) written for r → rΓ ∈ Γ , we get

∇p
∣

∣

∣

Γ
= −ν∇×ω

∣

∣

∣

Γ

Thus, the equality can be inferred

−ν
∫

Γ

n× (∇× ω) dS =
∫

∇× (∇p) dr ≡ 0
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which immediately leads to the following conclusion

d

dt

∫

suppω

ω(t, r) dr = 0 (2.13)

One can see that the total charge of the vorticity is conserved in the presence
of a motionless material boundary (the surface Γ ) of the flow domain.

3. The particles of vorticity

The vorticity field with a bounded support induces the velocity field with
the asymptotic behavior

v = C × r
r3
+O(r−3)

Such behavior can be concluded from the form of the Biot-Savart integral
appearing in formula (2.9). The vector constant C is proportional to the
charge of vorticity. We will generalize the above expression by postulating the
velocity field induced by a single vortex particle placed at the origin in the
following form

v =
Ω× r
r3
F (r) = Ω×∇Φ = −∇× (ΩΦ) (3.1)

The time-dependent vector Ω(t) is an individual characteristic of a particle.
and the potential Φ is spherically symmetric and defined as

Φ(r) =

r
∫

0

F (ξ)

ξ2
dξ (3.2)

The corresponding vorticity field is given as

ω = Ω∆Φ−∇(Ω · ∇Φ) (3.3)

The internal structure of the vortex particle is implied by the determination
of the Laplacian of Φ

∆Φ ≡ 1
r2
d

dr

(

r2
dΦ

dr

)

= f(r) (3.4)
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If the following function is introduced

F (r) =

r
∫

0

ξ2f(ξ) dξ (3.5)

the vorticity field of the particle can be expressed in the following manner

ω = Ω
[

f(r)− 1
r3
F (r)
]

− (Ωr)r
r2

[

f(r)− 3
r3
F (r)
]

(3.6)

The total charge of vorticity in the particle can be calculated as

Qω =

∫

ω dξ =

∞
∫

0

∫

S(ξ)

ω(ξ) dS(ξ)dξ

The iterated integration is carried out over the sphere S(ξ) with the radius
equal to ξ, and next along the variable ξ. The internal integration can be
performed as follows

∫

S(ξ)

(Ωξ)ξ

ξ2
dS(ξ) =

∫

S(1)

(Ωζ)ζ dS(1) = eβ

∫

S(1)

Ωαζαζβ dS(1) =

=
4π

3
eβδβαΩα =

4π

3
Ω

In the above, the integrals for α 6= β vanish identically, and the remaining
three integrals are equal. Since their sum is simply the surface of the unitary
sphere, each integral is equal to 4π/3. Using this fact, the calculation of the
integral with respect to ζ finally gives

Qω =
8π

3
Ω

∞
∫

0

ξ2f(ξ) dξ =
8π

3
ΩF (∞) (3.7)

Note that if F (r) vanishes for r > r0, the vortex particle carries zero total
vorticity charge, and there is no induction in this area. We will postulate that
the function f(r) vanishes for r > σ. The quantity σ will be referred to
(conventionally) as the particle radius. The function f(r) can be unbounded
for r → 0. However, to avoid singularity in the velocity field at the particle
center, the function f(r) should satisfy the inequality |f(r)| < const ·r−α with
α < 1. In such a case v(0) = 0, and, additionally, the value of the potential
Φ(r) exists in the particle center. If the function f vanishes for r > σ, then

F (∞) =
σ
∫

0

ξ2f(ξ) dξ = F (σ) (3.8)
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We will normalize the function f so that F (∞) = 1. For r > σ, the poten-
tial Φ can be expressed as follows

Φ(r) =

σ
∫

0

F (ξ)

ξ2
dξ +

r
∫

σ

1

ξ2
dξ = Φ(σ) +

1

σ
− 1
r
= Φ(∞)− 1

r
(3.9)

Note also that the induced vorticity field outside the particle ”core” (the inte-
rior of the sphere with the radius σ) is the potential vector field. Indeed, one
can write

ω = ∇×
(Ω× r
r3

)

= −∇Ωr
r3
= ∇
(

Ω · ∇1
r

)

(3.10)

For a particularly simple function f(r), namely

f(r) =











3

σ3
for r < σ

0 for r > σ

(3.11)

we get

v = Ω×











r

σ3
for r ¬ σ

r

r3
for r > σ

(3.12)

and

ω =















2Ω

σ3
≡ ∇
(

2
Ωr

σ3

)

for r < σ

−Ω
r3
+ 3
(Ωr)r

r5
≡ −∇

(Ωr

r3

)

for r > σ

(3.13)

The induced velocity field is continuous in space. The vorticity field is constant
inside the particle core and discontinuous across the core boundary r = σ. The
jump across the discontinuity [ω] is tangent to the core boundary (the normal
component is continuous) and can be evaluated as follows

[ω] = ω
∣

∣

∣

+
− ω
∣

∣

∣

−
=
3

σ3

[(Ωr)r

σ2
−Ω
]

(3.14)

If the function f(r) is continuous then the tangent component of the vorticity
is continuous as well. If we ”mollify” the jump attained by step function (3.11)
at r = σ, we obtain the vorticity field with a rapid variation in vicinity of
r = σ. Note that zero-divergence constraint imposed on the field ω implies
that any vortex particle which induces in the whole space must have an unbo-
unded vorticity support. In such a case, the total charge of the particle Qω
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defined by (3.7) is always different from zero. If the total charge of an ensemble
of the vortex particles is zero then, for a sufficiently large radius r (reaching
beyond all particle cores in the ensemble), the induced velocity and vorticity
fields will decay at a rate proportional to r−3 and r−4, respectively.

4. Properties of the velocity field

The velocity field defined by expression (2.9) is divergence-free. Similarly,
the divergence of the vorticity induced component determined by the Biot-
Savart integral is zero. In can be concluded that the following equality holds
for any closed surface immersed in the flow domain

∫

n · ∇ϕ dS ≡
∫

∂ϕ

∂n
dS = 0 (4.1)

which ensures correctness of Neumann boundary problem (2.11). Using the
Green formula, the harmonic function ϕ can be expressed as follows

4πϕ(r) =

∫

Γ

(

ϕ(ξ)
∂

∂nξ

1

|r − ξ| −
∂ϕ

∂nξ

1

|r − ξ|
)

dSΓ (4.2)

The expansion of the integral kernels and use of equality (4.1) yield the follo-
wing asymptotic behavior with r →∞

ϕ(r) =
const

r2
+O(r−3) (4.3)

The velocity field, which is the sum of the uniform stream, potential component
∇ϕ and the component induced by the set of vortex particles, can be written
in the form

v = U∞ +∇ϕ+
N
∑

k=1

Ωk × (r − rk)
|r − rk|3

F (|r − rk|) (4.4)

In the above, rk denotes the location of the center of the kth particle
(k = 1, .., N).
The asymptotic form of the velocity field for r → ∞ can be obtained by

expanding the denominator |r − rk|−3 and using (4.3). The resulting form is

v = U∞ +
r

r4
const +

(
∑

Ωk)× r
r3

−
∑

(Ωk × rk)
r3

+

(4.5)

+ 3

∑

[Ωk × rk(rrk)]
r5

+O(r−4)
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The velocity field, (4.5), has to be compatible with the constraint imposed on
the total vorticity charge, see (2.13). In view of (3.7), we conclude that the
following equality must hold

Ω0 =
N
∑

k=1

Ωk = const

If the velocity vanishes at the initial time instant, then obviously

Ω0 =
N
∑

k=1

Ωk = 0 (4.6)

The zero value of the total vorticity charge means that the total amount of the
angular momentum in the flow is finite. To show this, let us calculate the total
angular momentum of the fluid outside the ball containing all vortex particles.
In the course of the calculations we will obtain the following integrals

∫

|r|>R

r × [Ωk × (r − rk)]
|r − rk|3

dr =

∫

|ξ|>R

ξ × (Ωk × ξ)
ξ3

dξ + rk ×
∫

|ξ|>R

Ωk × ξ
ξ3

dξ

The second integral in the right-hand side is zero. The first one can be trans-
formed to the form

8π

3
Ωk

∫

|ξ|>R

ξ dξ

Summing up the contributions from all vortex particles one concludes that
the total amount of the angular momentum will remain finite only if condition
(4.6) is satisfied. Note that the potential component can be transformed to
the surface integral

∫

Γ n × rϕ dSΓ , which is also finite and therefore cannot
prevent infinity in the momentum when condition (4.6) is violated.

If the restriction was not imposed, an infinite amount of the angular vorti-
city would be produced in the flow within a finite time. This singularity cannot
be avoided in a way similar to how it is done in the case of the infinite mo-
mentum. The latter difficulty can be removed simply by choosing the reference
frame related to the motionless fluid at infinity – in such a case the immersed
body moves with respect to the ambient fluid.

It is reasonable to use the ”corrected” form of the velocity

v = U∞ +∇ϕ+
N
∑

k=1

Ωk × (r − rk)
|r − rk|3

F (|r − rk|)−
Ω0 × r
r3

(4.7)
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and the vorticity

ω =
N
∑

k=1

ωk(t, r − rk)− ω0(t, r) (4.8)

where

ωk(t, ξ) = Ωk(t)
[

f(ξ)− 1
ξ3
F (ξ)
]

− (Ωkξ)ξ
ξ2

[

f(ξ)− 3
ξ3
F (ξ)
]

In the above, the symbol ω0 denotes the vorticity field induced by the ad-
ditional vortex particle located inside the immersed body (outside the flow
domain).

If (4.6) holds exactly, both velocity and vorticity remain unchanged. Howe-
ver, in the course of numerical computation, inaccuracies are inevitable. Then,
the correction terms in (4.7) and (4.8) ensure that condition (4.6) is verified.

5. Evolution of the vorticity field

According to the Lie-Trotter Theorem (see Chorin and Marsden, 1997),
we split Helmholtz equation (2.8) into the equation of advection/diffusion

∂tω + (v · ∇)ω = ν∆ω (5.1)

and the ”stretching” equation

∂tω = (ω · ∇)v (5.2)

The evolution operator corresponding to the Helmholtz equation can be
expressed by a formal composition of the resolvents of equations (5.1) and
(5.2)

Ht = lim
n→∞
(St/n ◦ At/n)n (5.3)

The emergence of the vorticity at material boundaries of the flow domain
introduces an additional element in composition (5.3) – the operator of the
vorticity creation Ψt (Chorin and Marsden, 1997)

Ht = lim
n→∞
(St/n ◦ Ψt/n ◦At/n)n (5.4)
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We will determine the resolvent operators used in (5.4). Equation (5.1) for-
mally resembles the Fokker-Planck-Kolmogorov equation (see Gardiner, 1990),
governing the spatio-temporal evolution of the density of the conditional pro-
bability p(t, r|t0, r0) for the stochastic process determined by the Itô differen-
tial equations

dri = vi dt+
√
2ν dW i ri

∣

∣

∣

t=t0
= ri0 (5.5)

In the above, vi denotes an instantaneous velocity at the location of the
ith ”diffusive particle”, while dW i denotes the infinitesimal increment of the
vector Wiener process modeling the diffusion of the particles.

In view of this interpretation, the vorticity field at the time instant t > t0
can be calculated as a conditional expectation as follows

ω(t, r) =

∫

suppω0

p(t, r|t0, r0)ω0(r0) dr0 (5.6)

The vorticity field determined by (5.6) satisfies equation (5.1) and the initial
condition

ω
∣

∣

∣

t=t0
= ω0(r)

Equation (5.2) can be re-written using directional differentiation as follows

∂tω = (ω · ∇)v ≡
d

dλ
v(t, r + λω)

∣

∣

∣

λ=0
(5.7)

For a given velocity field, formula (5.7) defines a parameterized family of or-
dinary differential equations. The parameters of this family are spatial coor-
dinates (or, simply, the vector r).

The resolvent operator for equation (5.2) is defined by the transformation
ω(t, r) → ω(t + ∆t, r) (r plays the role of the parameter), which is simply
the process of numerical integration of the ordinary differential equations.

Finally, the operator of the vorticity creation for the time period ∆t de-
scribes production of such a boundary distribution of the vorticity so that the
boundary condition for the velocity field (no-slip condition) is satisfied. An
instantaneous vorticity distribution at the boundary is related via certain in-
tegral operation to the vorticity field in the whole flow domain. If the particle
representation of the vorticity field is used the integral relation is, as we will
show in the next Section, approximated by an algebraic one.
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Summarizing, the vorticity field at the time instant t+∆t is determined
due to:

• Modification of the vorticity field at the instant t caused by the vortex
particles displacement during the time interval (t, t + ∆t), accordingly
to Itô equations (5.5)

• Transformation of the vorticity field by integrating ordinary differential
equations (5.7) describing the effect of the ”stretching”

• Creation of the vorticity at the material boundary so that condition
(2.12) is verified.

6. Vortex particle approximation of the vorticity field

Assume that we have N vortex particles in the flow domain at the time
instant t. The vortex charges ΩOk and coordinate vectors r

O
k (k = 1, ..., N)

of all particles are known. During a short time interval ∆t the particles move
accordingly with the Itô equations

∆r0k = vk∆t+
√
2ν ∆W k (6.1)

and their vorticity charges change due to the stretching effect. Since at the
particle central point, i.e. for r = rOk , the vorticity carried by the particle is

ω
∣

∣

∣

0
=
2

3
f(0)Ω (6.2)

then the stretching equation takes the form

dΩ0k
dt
=
3

2f(0)

d

dλ
v
(

t, r + λω(t, rk)
)

∣

∣

∣

λ=0
(6.3)

and a new vorticity charge of the particle can be evaluated

Ω0k(t+∆t) = Ω
0
k(t) +∆Ω

0
k (6.4)

Since the vortex particles change both their positions and vorticity charges,
condition (2.3)1 imposed on the velocity field is violated at the time instant
t + ∆t. In order to ensure (2.3)1, it is necessary to modify the boundary (or
near-boundary) value of the vorticity field and calculate a new potential ϕ.
The former can be achieved by introducing new vortex particles in a closed



16 A.Styczek et al.

vicinity of the surface of the immersed body. The potential ϕ is sought in the
form of the sum

ϕ = ϕU + ϕO + ϕ
∗ (6.5)

Each term in (6.5) represents a harmonic function, specified by appropria-
te boundary conditions of the Neumann type. These conditions for two first
functions in (6.5) are

∂ϕU
∂n

∣

∣

∣

Γ
= −nU∞

(6.6)

∂ϕO
∂n

∣

∣

∣

Γ
= n
(

N
∑

k=1

Ω0k

)

× r
r3
F (r)− n

N
∑

k=1

Ω0k ×
r − rk
|r − rk|3

F (|r − rk|)

It can be verified that both (6.6) verify the solvability condition of the Neu-
mann boundary problem, and hence the functions ϕU and ϕO can be found
using standard methods.

The third harmonic potential ϕ∗ is connected to newly created vortex
particles. We will assume that M such particles are born at the fixed positions
rnewk near the material surface at each time step. In general, each new particle
induces the velocity with nonzero tangent and normal components at the body
surface. The role of the potential ϕ∗ is to compensate the induction normal to
the surface incurred by the new vortex particles. To achieve this, the potential
is defined in the form of the sum

ϕ∗ =
M
∑

k=1

(Ωnewk1 ϕk1 +Ω
new
k2 ϕk2 +Ω

new
k3 ϕk3) (6.7)

where ϕkα, α = 1, 2, 3, are harmonic functions fulfilling the Neumann boun-
dary conditions as follows

∂ϕkα
∂n

∣

∣

∣

Γ
= n
eα × r
r3
F (r)− neα × (r − r

new
k )

|r − rnewk |3
F (|r − rnewk |)

∣

∣

∣

r∈Γ
(6.8)

Using the same standard procedure as in the case of ϕU and ϕO, we can cal-
culate 3M potentials related individually to all newly created vortex particles.
The velocity field induced by these particles is given as

vnew =
M
∑

k=1

3
∑

α=1

Ωnewkα

[

∇ϕkα −
eα × r
r3
F (r) +

eα × (r − rnewk )
|r − rnewk |3

F (|r − rnewk |)
]

(6.9)
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Note that if the places of creation of the new particles are fixed, all poten-
tials ϕkα, α = 1, 2, 3 can be calculated once and forever. For brevity, let us
write formula (6.9) as

vnew =
M
∑

k=1

K̂(r, rnewk )Ωk (6.10)

Note that the following equality holds

nK̂(r, rnewk )
∣

∣

∣

r∈Γ
= 0 (6.11)

In order to find the M vector quantities Ωnewk (or, which is equivalent, 3M sca-
lar values Ωnewkα ), we write the expression for the velocity as follows

v = U∞ +∇ϕU +∇ϕO +
N
∑

k=1

Ωoldk × (r − rk)
|r − rk|3

F (|r − rk|)−
(6.12)

−
N
∑

k=1

Ωoldk ×
r

r3
F (r) +

M
∑

k=1

K̂(r, rnewk )Ω
new
k

On the surface Γ the normal component of the velocity v is zero identically.
One has to eliminate also the tangent component. To this end, we multiple
equation (6.12), written for r ∈ Γ , by the orthogonal tangent versors ηβj,
β = 1, 2, and enforce the no-slip condition at the collocation points rΓj ∈ Γ ,
j = 1, ...,M . Moving all terms with the known quantities to the right-hand
sides, we obtain an algebraic linear system of 2M equations

M
∑

k=1

ηβjK̂(r
Γ
j , r
new
k )Ω

new
k = −ηβj

[

U∞ +∇ϕU +∇ϕO +
(6.13)

+
N
∑

k=1

Ωoldk × (rΓj − rk)
|rΓj − rk|3

F (|rΓj − rk|)−
N
∑

k=1

Ωoldk ×
rΓj

r3
F (rΓj )

]

In order to get a solvable system of equations, we postulate M additional
conditions in the form of

M
∑

k=1

nΩnewk

∣

∣

∣

r=rΓ
k

= 0 (6.14)

It can be shown that the matrix of the full system is not singular. Moreover, if
the vectors rnewk and rΓk , k = 1, ...,M , are fixed, than the coefficient matrix of
the obtained linear system can be evaluated and LU-factored once and forever.
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7. Final remarks

The three dimensional generalization of the Vortex Blobs Method, for-
mulated originally for 2D fluid motion, has been presented. The dynamics of
vorticity in three dimensions is essentially more complex than in the 2D case,
which makes the construction of the vortex method a nontrivial task. Three
dimensional vorticity fields must obey restriction (2.13). The governing equ-
ation contains the stretching term giving rise to additional variations of the
vorticity due to local nonuniformity of the velocity field, (5.2). Therefore, the
3D vortex particles (analogues of two dimensional vortex blobs) evolve indi-
vidually in time, while the total charge of the vorticity is constant in time. In
two dimensional motion, there is a restriction imposed on the pressure field
(corresponding to the conservation of the total vorticity), but the stretching
effect is not involved.

The proposed method of accounting for the stretching term is not the
only possible. Nevertheless, it is algorithmically simple and seems to be ap-
propriate for the vortex particles with small cores with highly concentrated
vorticity.

One of the main problems with the vortex methods is how to maintain
computational efficiency during long-time simulations. Note that the new vor-
tex particles are continually generated at the material boundaries of the flow
domain, and thus their number gets larger from one step to another. In effect,
the CPU time required to evaluate the velocity field at each time step grows
in the course of computations. Known algorithms for fast summation can re-
duce the numerical cost, however, not as spectacularly as in the 2D case. In
addition, they are too complex to implement. The other method of cost re-
duction is to put bounds on the number of particles in the flow domain, which
is achieved by selective removal and/or gluing. To this end various strategies
can be proposed, but their reasonable application is limited by the lack of ri-
gorous relation between the number of particles and the approximation order.
Since these issues are still open, the evaluation of the results consists mostly
in comparison with the experimental evidence (if available) and with other
methods.

The implementation details of the proposed vortex method and discussion
of the obtained results will be presented in Part II of the paper.

Acknowledgements

This work has been supported by the State Committee for Scientific Research

(KBN), grant No. 8TO7A025 20.



Random vortex method for 3D flows. Part I 19

References

1. Błażewicz J., Styczek A., 1993, The stochastic simulation of a viscous flow
past an airfoil, J. Theor. Appl. Mech., Part 1: 31, 1; Part 2: 31, 4

2. Buttke T.F., Chorin A.J., 1993, Turbulence calculations in magnetization
variables, Appl. Numer. Methods, 47, 12

3. Chorin A.J., Marsden J.E., 1997, A Mathematical Introduction to Fluid
Mechanics, 3rd Ed. Vol. 4 of Texts in Applied Mathematics, Springer Verlag,
New York

4. Cottet G.H., Koumoutsakos P., 2000, Vortex Methods: Theory and Prac-
tice, Cambridge University Press

5. Deville M.O., Fisher P.F., Mund E.H., High-Order Methods for Incom-
pressible Fluid Flow, Cambridge University Press

6. Gardiner C.W., 1990, Handbook of Stochastic Methods, 3rd Ed. Springer
Verlag

7. Hedar I.M., Styczek A., 1999, Random Vortex Method approach to axi-
symmetric jet in a large tank, J. Theor. Appl. Mech., 37, 4, 863-872

8. Peyret R. (Ed.), 2000, Handbook of the Computational Fluid Dynamics, Aca-
demic Press

9. Protas B., Styczek A., 2002, Optimal rotary control of the cylinder wake
in the laminar regime, Physics of Fluids, 14, 7, 2073-2087

10. Sagaut P., 2002, Large Eddy Simulation for Incompressible Flows, An Intro-
duction, Springer Verlag, 2nd Ed.

11. Schmid P.J., Henningson D.S., 2001, Stability and Transition in Shear
Flows, AMS, 142, Springer Verlag, New York

12. Styczek A., Szumbarski J., 2002, On the magnetization-based Lagrangian
methods for 2D and 3D viscous flows. Part I: Theoretical Background, J. Theor.
Appl. Mech., 40, 2, 339-356

13. Styczek A., Wald P., 1995, Fast and efficient Vortex-Blobs simulation of the
flow past a circular cylinder, Arch. Mech. Eng., XLII, 3-4

14. Szumbarski J., Styczek A., 1997, The stochastic vortex method for viscous
incompressible flow in a spatially periodic domain, Arch. Mech., 49, 1, 209-232

15. The WWW page of Guojun Liao at
www.uta.edu/math/faculty/liao/pages/index.htm



20 A.Styczek et al.

Stochastyczna metoda wirowa dla przepływów trójwymiarowych.

Część I: Podstawy matematyczne

Streszczenie

W pracy sformułowano lagranżowską metodę wirową dla trójwymiarowych prze-
pływów cieczy lepkiej. Pole wirowści jest w niej aproksymowane zbiorem cząstek po-
ruszających się wraz z płynem oraz wykonujących ruch losowy (dyfyzja). Ładunki
wirowości niesione przez cząstki zależą od czasu (efekt ”strechingu”). Konstrukcja
cząstek zapewnia, że pole wirowości pozostaje bezźródłowe w trakcie symulacji. Wa-
runek dla pola prędkości stawiany na powierzchni opływanego ciała jest realizowany
drogą generacji nowych cząstek w sąsiedztwie tej powierzchni. W pracy przedyskuto-
wano również własności indukowanego pola prędkości i wirowości.
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