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This work deals with the problem of steady two-dimensional magnetohydrodynamic (MHD)
stagnation point flow towards a permeable stretching sheet with chemical reaction. The
fundamental equations of the boundary layer are transformed into ordinary differential equ-
ations, which are then solved analytically using the Optimal Homotopy Asymptotic Method
(OHAM). Comparisons are made between the results of the proposed method and the nume-
rical method (fourth-order Runge-Kutta) in solving this problem, and excellent agreement
has been observed. Subsequently, effects of different involved parameters on the tempe-
rature profiles, concentration profiles, local Nusselt number, local Sherwood number and
skin-friction coefficient are presented and discussed in detail.
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1. Introduction

The study of boundary layer flow over a stretching sheet has long been studied, as it is a
representative model problem for numerous engineering applications such as in the polymer
processing of a chemical engineering plant, metallurgy for the metal processing of glass fiber,
paper production, liquid films in the condensation process and filament extrusion from a dye.
Due to high applicability of this problem in such industrial phenomena, it has attracted attention
of many researchers. Perhaps, Sakiadis (1971) were pioneers in formulating this problem to study
a steady two-dimensional boundary layer flow due to a stretching sheet. Many investigators have
extended the work of Sakiadis (1971) in order to study heat and mass transfer under various
physical situations (e.g. Gupta and Gupta, 1997; Datta, et al., 1985; McLeod and Rajagopal,
1987; Chiam, 1996).
Nevertheless, all the above-mentioned researches do not consider situations, where hydro-

-magnetic effects arise. The study of hydrodynamic flow and heat transfer over a stretching sheet
may find its application to sheet extrusion in order to make flat plastic sheets. In doing so, it
is important to investigate cooling and heat transfer for the improvement of the final products.
The conventional fluids such as water and air are amongst the most widely used fluids as the
cooling medium. However, the rate of heat exchange achievable by the above fluids is realized
to be unsuitable for certain sheet materials. Thus, in recent years, it has been proposed to alter
flow kinematics that it leads to a slower rate of solidification, as compared with water. Among
the techniques to control flow kinematics, the idea of using magnetic fields appears to be the
most attractive one both because of its ease of implementation and also because of its non-
intrusive nature. In view of this, the study of MHD flow of Newtonian/non-Newtonian flow over
a stretching sheet was carried out by many researchers (Yazdi et al., 2011; Hayat and Sajid, 2007;
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Takhar et al., 2000; Afify, 2004; Babaelahi et al., 2010; Alizadeh-Pahlavan, et al., 2009; Cortell,
2005; Nandeppanavar et al., 2011; Robert et al., 2011; Farzaneh-Gord et al., 2010; Mamun et
al., 2008).

Analytical solutions have been done for boundary layer flow over a stretching sheet. Yazdi et
al. (2008) investigated friction and heat transfer in the slip flow boundary layer at constant heat
flux boundary conditions. It has been found that suction makes a significant effect on the velocity
adjacent to the wall in the presence of slip. Rana and Bhargava (2012) studied the problem of
steady laminar boundary fluid flow, which results from non-linear stretching of a flat surface in a
nanofluid. Javed et al. (2010) studied heat transfer of a viscous fluid over a non-linear shrinking
sheet in the presence of a magnetic field, where they have obtained dual solutions for the exact
and numerical solutions in the shrinking sheet problem. Hydrodynamic nano-boundary layer
flow over a permeable stretching surface by employing Homotopy Analysis Method (HAM)
and Boundary Value Problem solver (BVP) was studied by Van Gorder et al. (2010). Kechil
and Hashim (2008) studied the boundary-layer equation of flow over a nonlinearly stretching
sheet in a magnetic field with chemical reaction. Fang et al. (2009) investigated analytically
the hydrodynamic boundary layer of slip MHD viscous flow over a stretching sheet. They have
concluded that the wall drag force increases with the magnetic parameter. Recently, Ishak et
al. (2009) studied numerically steady two-dimensional MHD stagnation point flow towards a
stretching sheet with variable surface temperature. They found that the heat transfer rate at
the surface increases with the magnetic parameter, when the free stream velocity exceeds the
stretching velocity. More recently, Nadeem et al. (2010) presented HAM solution for unsteady
boundary layer flow in the region of the stagnation point towards a stretching sheet.

There have been many theoretical models developed to describe MHD flow towards a stret-
ching sheet. However, to the best of our knowledge, no investigation has been made yet to analyze
the MHD stagnation point flow over a permeable stretching surface in the presence of chemical
reaction. In industrial processes involving heat and mass transfer over a stretching surface, the
diffusing species can be generated or absorbed due to some kind of chemical reaction with the
ambient fluid. This generation or absorption of species can affect the flow and, accordingly, the
properties and quality of the final product. This fact motivates the present study to provide an
investigation taking into consideration the diffusion equation with a chemical reaction source or
a sink term. The flow is not caused only by the stretching sheet, as previously considered by
many authors, but also due to the external stream. The highly non-linear momentum equation,
to gather with the heat and mass transfer equations, are solved analytically using the Optimal
Homotopy Asymptotic Method (OHAM) proposed by Marinca and Herisanu (2008) and suc-
cessfully examined by some authors (Joneidi et al., 2009; Dinarvand and Hosseini, 2011; Marinca
et al., 2009).

2. Governing equations

Let us consider the steady, two-dimensional flow of an incompressible electrically conducting
fluid near the stagnation point on a permeable stretching sheet as shown in Fig. 1. The stret-
ching velocity and the free stream velocity are assumed to vary proportional to the distance x
from the stagnation point, i.e. Uw(x) = ax and U∞(x) = bx. It is also assumed that a uniform
magnetic field of strength B0 is applied in the positive y-direction normal to the sheet. The in-
duced magnetic field due to motion of the electrically conducting fluid and the pressure gradient
are neglected. The temperature and the species concentration are maintained at the prescribed
constant values Tw, Cw, respectively at the sheet. This model can be utilized for simulating
spray drying of milk, fluidized bed catalysis and many more industrial and engineering applica-
tions of transport processes over a stretching sheet to study the mass and momentum transfer
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Fig. 1. Geometry of problem under investigation

of chemically reactive species. The two-dimensional equations, governing the flow of a steady,
laminar and incompressible viscous fluid are
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where κ0 is the reaction rate constant, u, v – velocity components in the x and y direction,
respectively and m is the order of chemical reaction. The boundary conditions for this problem
are

y = 0 T = Tw u = Uw(x) v = vw C = Cw

y →∞ T = T∞ u = U∞(x) C = C∞
(2.2)

Equation of continuity (2.1)1 is satisfied by introducing a stream function ψ such that

u =
∂ψ

∂y
v = −

∂ψ

∂x

Introducing the similarity transformation

η =

√

a

ν
y f(η) =

ψ
√
αν x
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Tw − T∞

ϕ =
C − C∞
Cw − C∞

(2.3)

where α denotes thermal diffusivity, ν – kinematic viscosity and η similarity variable. The
subscripts w and ∞ mean: at the wall and in infinity, respectively.

After transformation, we have

f ′′′ + ff ′′ − f ′
2
+ ε2 +M(ε− f ′) = 0

1

Pr
θ′′ + fθ′ − f ′θ = 0

ϕ′′ + Scfϕ′ − Scγϕm = 0
(2.4)

where f is the similarity function, ε – velocity ratio, φ – dimensionless concentration,
θ – dimensionless temperature.
The associated boundary conditions are,

f(0) = fw f ′(0) = 1 θ(0) = 1 ϕ(0) = 1

f ′(∞) = ε θ(∞) = 0 ϕ(∞) = 0
(2.5)

where ε = b/a is the velocity ratio parameter, M = σB20/(ρa)is the magnetic parameter, in
which denotes conductivity and ρ is density, Pr = ν/α is the Prandtl number, Sc = ν/α is the
Schmidt number, fw = −vw/

√

Uwν∞/x is the suction/injection parameter, γ = (κ0/a)C
m−1
w is
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the non-dimensional chemical reaction parameter. The skin friction coefficient Cf , the local
Nusselt number Nux and the local Sherwood number Shx can be writen as
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µ
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ρU2w/2
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x
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Using non-dimensional variables (2.3), we obtain

1

2
Cf
√

Rex = f
′′(0)

Nux
√
Rex
= −θ′(0)

Shx
√
Rex
= −ϕ′(0) (2.7)

3. Solution using Optimal Homotopy Asymptotic Method

In this section, we will apply OHAM to solve Eqs. (2.4), subjected to boundary conditions Eqs.
(2.5). According to OHAM, we can construct a Homotopy of Eqs. (2.4) as follows

(1 − p)(f ′′ + f ′)−H1(p)[f
′′′ + ff ′′ − f ′

2
+ ε2 +M(ε− f ′)] = 0

(1 − p)(θ′ + θ)−H2(p)
( 1

Pr
θ′′ + fθ′ − f ′θ

)

= 0

(1 − p)(ϕ′ + ϕ)−H3(p)(ϕ
′′ + Scfϕ′ − Scγϕm) = 0

(3.1)

where primes denote differentiation with respect to η. We consider f , θ, ϕ, H1(p), H2(p)
and H3(p) as follows

f = f0 + pf1 + p
2f2 θ = θ0 + pθ1 + p

2θ2 ϕ = ϕ0 + pϕ1 + p
2ϕ2

Hi(p) = pci1 + p
2ci2 i = 1, 2, 3

(3.2)

Substituting Eqs. (3.2) into Eqs. (3.1) and making some simplification and rearrangement based
on the powers of p-terms, we have

p0 : f ′0 + f
′′
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(3.3)

and
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(3.4)

Solving Eqs. (3.3) and (3.4) with the boundary conditions, we obtain

f0(η) = fw + 1− e
−η θ0(η) = e

−η φ0(η) = e
−η (3.5)
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and

f1(η) = c11ε
2η + c11Mεη + c11(M + fw)(ηe

−η + e−η) + (c11ε
2 + c11Mε)e−η

− c11(M + fw +Mε+ ε2)

θ1(η) = −c21(−η + Pr fwη +Pr η)e
−η

ϕ1(η) = c31(η − Scγη − Scfwη − Scη − Sce
−η + Sc)e−η

...

(3.6)

The other terms are too large to be mentioned. The final expression for f(η), θ(η) and ϕ(η)
would be

f(η) = f0(η) + f1(η) + f2(η) + . . . θ(η) = θ0(η) + θ1(η) + θ2(η) + . . .

ϕ(η) = ϕ0(η) + ϕ1(η) + ϕ2(η) + . . .
(3.7)

Now, we should construct the following expressions. Note that Ri, i = 1, 2, 3 are the residual of
Eqs. (2.4)

Ji(ci1, ci2) =

∞
∫

0

R2i (η, ci1, ci2) dη i = 1, 2, 3 (3.8)

We can find the constants c11, c12, c21, c22, c31, c32 by solving the following equations simulta-
neously

∂Ji(ci1, ci2)

∂ci1
=
∂Ji(ci1, ci2)

∂ci2
= 0 i = 1, 2, 3 (3.9)

In the specific case

M = ε = fw = γ = 0.1 Pr = Sc = 1

c11 = −0.7305331575 c12 = 2.949971023

c21 = −1.412920644 c22 = 7.105993798

c31 = 0.2434693959 c31 = 0.04693256846

(3.10)

4. Results and discussion

The system of Eqs. (2.4), along with boundary conditions of Eqs. (2.5), has been solved by
using the OHAM. To check the validity of our results, we have made a comparison between
the present analytical solution and a numerical solution through the fourth-order Runge-Kutta
method that is depicted in Table 1. It can be realized that our analytical approximations are in
good agreement with the numerical results.
The non-dimensional temperature distribution θ(η) for various parameters including the

velocity ratio parameter ε, the magnetic parameter M and the wall suction/injection parame-
ter fw are plotted in Figs. 2a-2c. As shown in Fig. 2a, an increase in the velocity ratio parameter
escalates temperature. In addition, the boundary layer thickness tends to increase when the ve-
locity parameter increases. The effect of the magnetic parameter M on the temperature profile
θ(η) is illustrated in Fig. 2b. It is clear that an increase in the magnetic parameter tends to in-
crease temperature. On the other hand, the thermal boundary layer thickens by increasing M .
Figure 2c shows the variation of temperature profiles θ(η) across the boundary layers for different
values of the suction/injection parameter fw. It is worth mentioning that suction corresponds
to fw > 0, injection to fw < 0, and fw = 0 to impermeable stretching. As seen, suction reduces
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Table 1. Comparison between the present analytical solution and numerical solution for θ(η)
when ε = 0.1, Pr = Sc = 1 and γ = 0.1

θ(η)
M = 0.4 and fw = 0.2 M = 4 and fw = −0.2

OHAM Numerical Relative OHAM Numerical Relative
solution solution error solution solution error

0.00 1.000000 1.000000 0.000000 1.00000 1.00000 0.00000

0.50 0.584463 0.583593 0.000870 0.68391 0.68344 0.00047

1.00 0.343715 0.342955 0.000760 0.47312 0.47276 0.00036

1.50 0.202815 0.202195 0.000620 0.32521 0.32493 0.00028

2.00 0.119858 0.119338 0.000520 0.22072 0.22046 0.00026

2.50 0.070856 0.070396 0.000460 0.14773 0.14748 0.00025

3.00 0.041869 0.041539 0.000330 0.09758 0.09732 0.00026

3.50 0.024716 0.024456 0.000260 0.06369 0.06348 0.00021

4.00 0.014570 0.014300 0.000270 0.04113 0.04098 0.00015

4.50 0.008575 0.008335 0.000240 0.02631 0.02617 0.00014

5.00 0.005037 0.004857 0.000180 0.01670 0.01659 0.00011

5.50 0.002952 0.002812 0.000140 0.01051 0.01041 0.00010

6.00 0.001726 0.001616 0.000110 0.00658 0.00651 0.00007

6.50 0.001006 0.000936 0.000070 0.00409 0.00403 0.00006

7.00 0.000585 0.000555 0.000030 0.00253 0.00249 0.00004

Fig. 2. Temperature profiles as function of η for various values of (a) velocity ratio parameter ε,
(b) magnetic parameter M , (c) suction/injection parameter fw at M = 0.4, fw = 0.2, Pr = Sc = 1

and γ = 0.1
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the boundary layer thickness sharply. It is also found that increasing the value of fw results in
a decrease in temperature.

Figures 3a-3d illustrate the effects of important parameters on the concentration profiles
across the boundary layers. The influence of the reaction rate parameter on the concentration
is shown in Fig. 3a when M = ε = 0.1, fw = 0.2 and Pr = Sc = 1. Note that the reaction
rate parameter is positive for destructive (γ > 0) and negative due to generative (γ < 0)
chemical reactions. It is seen that increasing the reaction rate parameter tends to decrease
the concentration in the case of destructive chemical reaction especially for a higher value of γ.
Figure 3b indicates the variation of the velocity ratio parameter ε with the concentration profile.
It is realized that the concentration increases as the velocity ratio parameter goes up. The effect
of the magnetic parameter M on the concentration profiles is also demonstrated in Fig. 3c.
By increasing the magnetic parameters, the concentration intensifies. It is also interesting to
know the variation the suction/injection parameter fw with the concentration profile, so it has
been shown in Fig. 3d. It can be seen that the concentration is lower in the case of suction, in
particular for a higher absolute value of fw.

Fig. 3. Concentration profiles as function of η for various values of (a) chemical reaction parameter γ,
(b) velocity ratio parameter ε, (c) magnetic parameter M , (d) suction/injection parameter fw at

M = 0.4, fw = 0.2, Pr = Sc = 1 and ε = 0.1

Figures 4a-4c show the variation of the heat transfer rate at the wall versus the magnetic
parameter for various values of ε, fw and Pr. As shown in Fig. 4a, it is concluded that the
rate of heat flux increases with the velocity ratio parameter. Moreover, a deterioration of heat
transfer can be seen with an increase in the magnetic parameter for a lower value of the velocity
ratio parameter. By contrast, the effect of the magnetic parameter on the heat transfer rate, for
higher values of ε, is almost infinitesimal. The effect of the suction/injection parameter on the
heat transfer rate has been shown in Fig. 4b. It is indicated that increasing suction (fw > 0)
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at the wall results in a higher heat transfer rate, whereas injection (fw < 0) decreases the heat
transfer rate for all values of the magnetic parameter. Figure 4c represents the variation of the
heat transfer rate with the magnetic parameter for different values of the Prandtl number when
M = γ = ε = 0.1, fw = 0.2 and Sc = 1. The rate of heat transfer is predicted to experience
an increase with the Prandtl number. More importantly, the magnetic parameter due to the
applied Lorenz force on the fluid field causes the wall temperature gradient to decrease. As a
result, the Nusselt number decreases with the magnetic parameter. Generally, to reach a higher
heat transfer rate, a working fluid with higher Prandtl number, along with lower magnetic
parameter, is needed.

Fig. 4. Temperature gradient at the wall as function of M for various values of (a) velocity ratio
parameter ε, (b) suction/injection parameter fw, (c) Prandtl number Pr at fw = 0.2, Pr = Sc = 1

and γ = 0.1

Variations of the concentration gradient magnitude at the wall versus the magnetic parameter
for other parameters, namely γ, ε, Sc and fw, have been depicted in Figs. 5a-5d. As shown in
Fig. 5a, the magnetic parameter tends to decrease the mass transfer slightly for both destructive
chemical reactions and generative chemical reactions when ε = 0.1, fw = 0.2 and Pr = Sc = 1.
Furthermore, increasing the reaction rate parameter in absolute sense results in a decrease in
the concentration gradient at the wall for generative chemical reaction. However, the opposite
effect is observed in the case of destructive chemical reaction. Figure 5b shows different trends,
where −ϕ′(0) increases as M increases for ε > 1, whereas it decreases with M for ε < 1. It
is also revealed that an increase in the velocity ratio parameter results in an increase in the
concentration gradient at the surface. Similarly, the mass transfer at the wall has considerably
increased with the Schmidt number (see Fig. 5c). Regarding the effect of the suction/injection
parameter on the concentration gradient at surface, it is realized that the mass transfer at the
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wall is intensified in the case of suction, which has been shown in Fig. 5d. It also can be concluded
that higher values of fw lead to an increase in the mass transfer at the wall.

Fig. 5. Concentration gradient at the wall as function of M for various values of (a) chemical reaction
parameter γ, (b) velocity ratio parameter ε, (c) Schmidt number Sc, (d) suction/injection

parameter fw at fw = 0.2, Pr = Sc = 1 and γ = 0.1

Figure 6 illustrates the variation of the wall shear stress versus the magnetic parameter for
various values of the suction/injection parameter when γ = ε = 0.1 and Pr = Sc = 1. It is
found that the wall shear stress increases with an increase in suction, whereas in absolute sense
the injection tends to decrease the wall shear stress. Additionally, for both cases of suction and
injection, it is realized that a rise in the magnetic parameter increases the skin friction coefficient.

Fig. 6. The effects of the magnetic parameter on f ′′(0) for different values of the suction/injection
parameter fw, when ε = 0.1, Pr = Sc = 1 and γ = 0.1
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5. Conclusions

The flow field and heat transfer as well as mass transfer due to first order chemical reaction
have been investigated for an MHD stagnation point flow towards a permeable stretching sheet
immersed in a viscous fluid at the CST boundary condition. The governing partial differential
equations were converted into ordinary differential equations by using a suitable similarity trans-
formation, which were analytically solved by employing the OHAM technique. Comparisons with
the numerical solution were performed and the results were found to be in good agreement. The
results suggest that:

• The rate of heat transfer at the sheet surface increases due to an increase in the velocity
ratio parameter, suction parameter and Prandtl number, while the local Nusselt number
decreases with the injection parameter and the magnetic parameter. Moreover, the effect
of the magnetic parameter on the heat transfer rate, for higher values of ε, is nearly
negligible.

• High concentration gradients are possible at high reaction rate parameters for destructive
chemical reaction, high Schmidt number, high suction/injection parameter in the case of
suction, low magnetic parameter, when ε > 1 and a high magnetic parameter when ε < 1.

• The skin friction coefficient increases with an increase in the magnetic parameter and fw in
the case of suction, whereas opposite trend has been observed in the case of injection.

The analytical solution presented here is potentially influential in controlling the wall shear
stress as well as the local Nusselt and Sherwood numbers. It is hoped that this work will se-
rve as a vehicle for understanding of more complex problems involving various physical effects
investigated in the present paper.
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