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This work analyses problems of dynamics of a given two-wheeled mobile
robot. Motion of such a non-holonomic system is described by Lagrange’s
and Maggie’s equations. The received dynamical equations of motion
allow for solving the direct and converse of problem dynamics. Maggie’s
equations give a simpler form of the dynamical equations of motion.
While solving the converse problem with the use of these equations, it
is possible to determine the driving torque acting on the robot wheel.
Values of the torque allow one to create a follow-up movement control
algorithm of the robot.
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1. Analytical modelling

The analysis of the problems of dynamics of a two-wheeled mobile robot
is mainly made in order to properly solve the problem of control of motion of
such systems. Simple models, which do not take into account mass of many
mobile elements, are very often assumed for the system description. Authors
describing dynamics of such systems use classical equations taken from general
mechanics. Most often their studies describe motion of those systems using
Lagrange’s equation of the second kind.
Two-wheeled mobile robots are an interesting structural solution. The mo-

del presented schematically in Fig.1 –Fig. 4 has been accepted for the descrip-
tion of such a robot. The model consists of frame 4, two road driving wheels
1 and 2 and a free rolling castor wheel 3. For dynamical description, a virtual
model with virtual driving wheel 1z with its centre in point A and radius r,
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with nodal line described as α, substituting driving wheels 1, 2 and free rol-
ling wheel 3, was assumed. For the model accepted in such a form, assuming
that there is one plane of motion, unambiguous formulation requires setting
of the coordinates of the point A, angle of instantaneous rotation β, and
angle α, that is the following coordinates: xA, yA, β, α. The analysed system
is non-holonomic, so these coordinates are linked by equations of constraints
imposed on the velocity

ẋA − rα̇ cos β = 0 ẏA − rα̇ sinβ = 0 (1.1)

Fig. 1. The mobile robot model

Dependences (1) arise from projections of the point of contact of wheel 1z
contact with the road onto XY axes. These are equations of classical non-
holonomic constraints, which can be written in a matrix form

J(q)q̇ = 0 (1.2)

where the Jacobian matrix is defined as

J(q) =

[

1 0 0 −r cos β
0 1 0 −r sinβ

]

(1.3)

whereas q̇ = [ẋA, ẏA, β̇, α̇]>.
To describe motion of the model, Lagrange’s equations of the second kind

are used. For a non-holonomic system they are written in the following vector
form

d

dt

(∂E

∂q̇

)>

−
(∂E

∂q

)>

= Q+ J>(q)λ (1.4)
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where
q – vector of generalized coordinates, q = [xA, yA, β, α]>

E – kinetic energy of the system, E = E(q, q̇)
Q – generalized forces vector involving rolling resistance of the

wheels and the driving torque of wheels 1 and 2
J(q) – Jacobian matrix resulting from equations of constraints (1.1)
λ – vector of Lagrange’s multipliers.

In the analysed model there are dry friction forces lying in the plane of contact
of wheel 1z with the road, applied in the point of contact with the road. Dyna-
mical equations of motion of the analysed model are defined by the following
system of differential equations (Giergiel et al., 2002; Żylski, 1997, 1999)

(m1 +m2 +m4)ẍA + [(m1 −m2)l1 cos β +m4l2 sinβ]β̈ ·

·[(−m1 +m2)l1 sinβ +m4l2 cos β](β̇)2 = λ1

(m1 +m2 +m4)ÿA + [(m1 −m2)l1 sinβ −m4l2 cos β]β̈ ·

·[(m1 −m2)l1 cos β +m4l2 sinβ](β̇)2 = λ2
(1.5)

[(m1 −m2)l1 cos β +m4l2 sinβ]ẍA + [(m1 −m2)l1 sinβ −m4l2 cos β]ÿA +

+[(m1 +m2)l21 +m4l
2
2 + Iz4 + Ix1 + Ix2 + (Iz1 + Iz2)h

2
1]β̈ +

+(Iz1 − Iz2)h1α̈ = (M1 −M2 −N1f1 +N2f2)h1

(Iz1 + Iz2)α̈+ (Iz1 − Iz2)h1β̈ =

=M1 +M2 −N1f1 −N2f2 − λ1r cos β − λ2r sinβ

where
m1 = m2,m4 – virtual masses of wheels 1 and 2 and frame, respecti-

vely
Ix1 = Ix2 – mass moments of inertia of wheels 1 and 2 with respect

to x1 and x2 axis
Iz1 = Iz2 – mass moments of inertia of these wheels with respect

to the nodal line
Iz4 – mass moment of inertia of the frame with respect to

the z4 axis connected to the frame.

It has been assumed that the axe of the reference system connected to the
i-part are main central axes of inertia, while
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N1, N2 – loads applied to corresponding wheels
f1, f2 – coefficients of rolling friction of corresponding wheels
M1,M2 – driving torques
l, l1, l2, h1 – corresponding distances resulting from the system geo-

metry, h1 = r1l−11
r1 = r2 = r – radii of corresponding wheels.

The above equations do not take into account the small mass of wheel 3
and rolling friction of this wheel.
While analysing converse the dynamical problem, if the kinematic para-

meters of motion are known, it is possible to determine the driving torque
and the multipliers out of the derived equations of motion. On account of
the found form of the right-hand sides of these equations, it is advantageous
to introduce a transformation for decoupling the multipliers from the torques
(Żylski, 1996). Aiming at this, equations (1.5) should be expressed in a matrix
form

M(q)q̈ + C(q, q̇)q = B(q)τ + J>(q)λ (1.6)

The matrices M, C and B present in the above equations result from dynami-
cal equations of motion (1.5). The vector of coordinates q can be decomposed
as

q = [q1, q2]
> q ∈ Rn, q1 ∈ R

m, q2 ∈ R
n−m (1.7)

In this case, equation of constraints (1.1) is given in the form

[J1(q), J2(q)]

[

q̇1
q̇2

]

= 0 det J1(q) 6= 0 (1.8)

The vector q2 should be selected in such a way so that its size would corre-
spond to the number of degrees of freedom and so that det J1(q) 6= 0. In such
a case

q̇ =

[

J12(q)
In−m

]

q̇2 = T (q)q̇2 q̈ = Ṫ (q)q̇2 + T (q)q̈2 (1.9)

where J12 = −J−11 (q)J2(q), and In−m stands for the identity matrix. In this
case, dynamical equations of motion (1.6) can be put down in the form

M12(q)q̈2 + C12(q, q̇)q̇2 = B1(q)τ + J
>

1 (q)λ
(1.10)

M22(q2)q̈2 + C22(q2q̇2)q̇2 = B2(q2)τ

The structure of matrices present in equations (1.10) is described in the
work by Żylski (1996). Obtained equations (1.10) show the so-called reduced



Description of motion of a mobile robot... 515

form of description of the system with non-holonomic constraint imposed on
motion. If we assume that q2 = [β, α]

>, system of equations (1.10) can be
written in the form

m4l2[β̈ sinβ + (β̇)2 cosβ] + (2m1 +m4)r[α̈ cos β − α̇β̇ sinβ] = λ1

m4l2[−β̈ cos β + (β̇)2 sinβ] + (2m1 +m4)r[α̈ sinβ + α̇β̇ cos β] = λ2
(1.11)

(2m1l21 +m4l
2
2 + Iz4 + 2Ix1 + 2Iz1h

2
1)β̈ −m4l2rα̈β̇ =

= (M1 −M2 −N1f1 +N2f2)h1[(2m1 +m4)r2 + 2Iz1]α̈+m4l2r(β̇)2 =

=M1 +M2 −N1f1 −N2f2

In equations (1.11), the right-hand sides are decoupled – such form of equations
facilitates their solution. In the case of analysis of dynamical converse problem
(1.11), they allow for determination of driving torques a well as Lagrange’s
multipliers. In the case of analysis of the direct problem, the solution to these
equations will allow for determination of kinematic parameters of the analysed
model.

2. Maggie’s dynamical equations of motion

Motion of non-holonomic systems can be described with the use of ano-
ther mathematical formalism, e.g. Maggie’s equations (Gutowski, 1971). These
equations, describing motion of systems in terms of generalized coordinates,
are determined in the form

n
∑

j=1

Cij
[ d

dt

(∂E

∂q̇j

)

−
∂E

∂qj

]

= Θi i = 1, . . . , s (2.1)

where s stands for the number of independent parameters of the system
expressed in generalized coordinates qj (j = 1, . . . , n), the number of which
corresponds to the number of the system degrees of freedom. All generalized
velocities are in this case given by

q̇j =
s
∑

i=1

Cij ėi +Gj (2.2)

The variables ėi are called the characteristics or kinetic parameters of the sys-
tem defined in the generalized coordinates. The right-hand sides of equations
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(2.1) are coefficients for variations δei. From the principle of virtual work,
these coefficients can be defined by the relation (Giergiel et al., 2004)

s
∑

i=1

Θiδei =
s
∑

i=1

δei

n
∑

j=1

CijQj (2.3)

The given Maggie’s equations can be used to describe motion of a two-
wheeled mobile robot. Assuming that the mobile robot, whose model is shown
in Fig. 1, moves in one plane, the unique formulatiion of the model requires
giving the position of the point A, i.e. coordinates of this point xA and yA
and the frame orientation, i.e. the instantaneous angle of rotation β as well
as positions describing nodal lines of driving wheels denoted respectively by
αi and α2. In this case, vectors of generalized coordinates and generalized
velocities have the form

q = [xA, yA, β, α1, α2]>
(2.4)

q̇ = [ẋA, ẏA, β̇, α̇1, α̇2]>

while determining the external forces effecting the analysed system, one should
take into account also the unknown dry friction forces existing in the plane
of contact of the driving wheels with the road. Figure 2 shows distribution of
these forces, where T 10 and T 20 stand for circumferential dry friction forces,
and T 1P and T 2P for transverse dry friction forces.

Fig. 2. Friction forces actong on driving wheels

The described system has two degrees of freedom. Assuming that positions
of nodal lines of the driving wheels α1 and α2 are independent coordinates,
the decomposition of velocity vectors of the points A, B and C results in the
following relationship to velocities

β̇ =
r

2l1
(α̇1 − α̇2) ẋA =

r

2
(α̇1 + α̇2) cos β

(2.5)

ẏA =
r

2
(α̇1 + α̇2) sin β
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All generalized velocities can be noted on the basis of equation (2.2) as

q̇1 = ẋA =
r

2
(α̇1 + α̇2) cos β =

r

2
(ė1 + ė2) cos β = C11ė1 +C21ė2 +G1

q̇2 = ẏA =
r

2
(α̇1 + α̇2) sinβ =

r

2
(ė1 + ė2) sinβ = C12ė1 + C22ė2 +G2

q̇3 = β̇ =
r

2l1
(α̇1 − α̇2) =

r

2l1
(ė1 − ė2) = C13ė1 + C23ė2 +G3 (2.6)

q̇4 = α̇1 = ė1 = C14ė1 + C24ė2 +G4

q̇5 = α̇2 = ė2 = C15ė1 + C25ė2 +G5

That means that the coefficients Cij and Gj assume the following values

C11 =
r

2
cos β C21 =

r

2
cos β G1 = 0

C12 =
r

2
sinβ C22 =

r

2
sinβ G2 = 0

C13 =
r

2l1
C23 = −

r

2l1
G3 = 0

C14 = 1 C24 = 0 G4 = 0

C15 = 0 C25 = 1 G5 = 0

(2.7)

The generalized forces, defined out of equation (2.3) and the coefficients
Cij defined by formula (2.7),finally yield

Θ1 = C11Q1 + C12Q2 +C13Q3 + C14Q4 + C15Q5 =M1 −N1f1
(2.8)

Θ2 = C21Q1 + C22Q2 +C23Q3 + C24Q4 + C25Q5 =M2 −N2f2

In the analysed case, Maggie’s equations have the following form

(2m1 +m4)
(r

2

)2

(α̈1 + α̈2) + 2m4
( r

2l1

)2

rl2(α̇2 − α̇1)α̇2 + Iz1α̈1 +

+(2m1l21 +m4l
2
2 + 2Ix1 + Iz4)

r

2l1
(α̈1 − α̈2) =M1 −N1f1

(2.9)

(2m1 +m4)
(r

2

)2

(α̈1 + α̈2) + 2m4
( r

2l1

)2

rl2(α̇1 − α̇2)α̇1 + Iz2α̈2 +

−(2m1l21 +m4l
2
2 + 2Ix1 + Iz4)

r

2l1
(α̈1 − α̈2) =M2 −N2f2

It should be mentioned that if relationships (2.5) are introduced into equ-
ations (1.5), and α̇ = (α̇1+α̇2)/2 is taken into account, then elimination of the
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multipliers out of these equations will result in Maggie’s equations, i.e. system
(2.9). Thus, the Maggie’s method allows one to avoid the elimination of the
multipliers existing in Lagrange’ equations, which in the case of complex sys-
tems proves to be really laborious. Maggie’s equations give an advantageous
form of the equations of motion for solving both direct and converse dynamical
problems.

3. Numerical verification

On the basis of the obtained equations in during the analysis of the co-
nverse dynamical and kinematical problem of a two-wheeled mobile robot,
computer simulation of motion was carried out using the Matlab/Simulink
package. Various periods of motion were examined: the start-up running with
a constant velocity of the characteristic point A, stop, running along a straight
line and a circular arc of the radius R. The following data were used in these
simulations Coefficients occurring in the equations

m1 = m2 = 1.5 kg m4 = 5.67 kg r1 = r2 = 0.0825 m

l1 = 0.163 m l2 = 0.07 m l = 0.217 m

Iz1 = Iz2 = 0.007 kgm2 Ix1 = Ix2 = 0.003 kgm2 Iz4 = 0.154 kgm2

N1 = N2 = 31.25 N f1 = f2 = 0.01 m

The obtained results of computer simulation for R = 2 m and vA = 0.3 m/s
are presented in Fig. 3 and Fig, 4.
Figure 3a presents changes (taking place when the robot is running) of

the characteristic angular parameters of motion, i.e. angular velocities of the
driving wheels α̇1 and α̇2, angular velocity of the virtual wheel nodal line α̇
and angular acceleration α̈. Figure 3b presents changes (taking place when the
robot is running) of the characteristic angular parameters of the frame; i.e. the
angle of rotation β, angular velocity β̇ and angular acceleration β̈. The first
two periods of motion are: starting and running with a constant velocity vA
– in this case, the robot frame moves translationally. During these stages of
motion, the angular velocities of driving wheels are equal and the rotation sped
is zero. The third stage of motion corresponds to the running along a circular
arc. The robot frame moves in a plane, the angular velocities of nodal lines of
driving wheels 1 and 2 are changing, also the instantaneous angular velocity of
the frame is changing. The fourth and fifth stages of motion, presented in the
picture, correspond respectively to the running with a constant velocity vA
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Fig. 3. Parameters of motion

after going out of the circular turn and braking while the mobile robot frame
moved translationally. During these stages of motion the values of angular
velocity of driving wheels 1 and 2 are equal, and the instantaneous angular
velocity is zero. Figure 4 presents changing values of the driving torque of
wheel 1 and 2, corresponding to M1 and M2 in the above mentioned periods
of motion. The values of these torques are determined by equations (2.9), the
differences in the torques occur during the running along the angular turn,
in the remaining stages of motion these values are the same. During running
with a constant velocity vA, the driving torques are constant.

Fig. 4. Driving torques
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4. Comments and conclusions

In the problem of dynamics of mobile robots, we are interested in values of
driving torques propelling wheels, which means that we analyse the converse
problem of dynamics. When motion of the analysed model is described by
Lagrange’s formalism, dynamical equations of motion are the result; however,
because of a very complex form of these equations, their solution is very com-
plicated. It is necessary then to decouple Lagrange’s multipliers form torques,
in order to reduce the equations of motion to the so-called reduced form descri-
bing a system with non-holonomical constrains. The reduced form facilitates
the determination of the examined torques, and consistently, determination of
Lagrange’s multipliers, i.e. dry friction forces acting in the plane of contact
between wheel and the road. Knowledge of these values allows one to solve the
problem of controlling the follow-up movement of the wheeled mobile robot.
It is also possible to describe the dynamics of the wheeled mobile robot using
Maggie’s equations. In this case, the complicated process of elimination of the
multipliers, existing in Lagrange’s formalism, is avoided.
This analysis of dynamics of a model of a two-wheeled mobile robot, enables

description of dynamics of all other models of such vehicles. The obtained
solutions may be used both by designers and operators of such equipment
as well as design engineers of systems controlling the follow-up movement of
wheeled robots (Żylski, 1997, 1999, 2004).
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Opis ruchu mobilnego robota równaniami Maggiego

Streszczenie

W pracy analizuje się zagadnienia dynamiki wybranego dwukołowego mobilnego
robota. Ruch tego nieholonomicznego układu opisano równaniami Lagrange’a oraz
równaniami Maggiego. Otrzymane dynamiczne równania ruchu umożliwiają rozwią-
zywanie zadania prostego i odwrotnego dynamiki. Równania Maggiego dają prostszą
formę dynamicznych równań ruchu. Przy rozwiązywaniu zadania odwrotnego dyna-
miki z równań tych można bezpośrednio określić wartości momentów napędzających
koła mobilnego robota. Wartości tych momentów umożliwiają zaprojektowanie algo-
rytmu sterowania ruchem nadążnym robota.
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