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The dynamical linear theory of a material surface placed in vacuum and
subjected to an external strong magnetostatic field is considered. Motion
of the surface is described by a position function. The material of the
surface is assumed to be an isotropic elastic non-magnetizable electric
conductor. The residual stress is taken into account. Displacement-based
field equations are obtained in a coordinate-free notation.
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1. Introduction

A three-dimensional thin body may be represented by a two-dimensional
continuum as a result of reduction of the thickness dimension or by a direct
approach. A deformable surface with usual kinematics (one deformation func-
tion) serves as a direct model underlying the membrane theory. In this paper,
we develop the theory of Gurtin and Murdoch (1975) providing an exten-
sion necessary for magnetoelastic interactions. The mechanical part is directly
obtained as two-dimensional, however, the electromagnetic part is subsequ-
ent to three-dimensional considerations. Displacement of the surface, normal
magnetic induction at the surface and scalar potentials of outward magne-
tic induction are unknowns involved in the final field equations. The MKSA
system of units is used.
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2. Initial state

2.1. Surface

Let s denote a surface in the three-dimensional Euclidean point space Σ
endowed with an appropriate structure (see Gurtin and Murdoch, 1975), espe-
cially the tangent space Tp and the unimodular vector field a3 : s→ V , where
V is the translation space, such that a3(p) ∈ T

⊥
p at each point p ∈ s. We use

the following notation: I(p) for the inclusion map from Tp into V , P(p) for
the perpendicular projection from V onto Tp. If c : s → R, where R stands
for the reals, u : s → V , S : s → V ⊗ V , where S(p) ∈ V ⊗ Tp, then
grad sc(p) ∈ Tp, grad su(p) ∈ V ⊗ Tp, grad sS(p) ∈ V ⊗ V ⊗ Tp. Moreover, we
have

u = Pu+ ua3 S = PS+ a3 ⊗ S (2.1)

where u(p) ∈ R and S(p) ∈ Tp are defined by

u = u · a3 S = S>a3 (2.2)

with S> being the transpose of the tensor S. Given surface gradients and
making use of the following notations

skw(a⊗ b) =
1

2
(a⊗ b− b⊗ a) Λ(a⊗ b− b⊗ a) = a× b

tr (a⊗ b) = a · b tr (1,3)(a⊗ b⊗ c) = (a · c)b

δ(2,1,3)(a⊗ b⊗ c) = b⊗ a⊗ c

(2.3)

where × and · mean the cross product and the inner product, respectively, we
define surface divergence and curl operations as

div su = tr (P grad su)

curlsu = −Λ[2skw(P grad su)] (2.4)

div sS = tr (1,3)Pδ(2,1,3) grad sS

Thus, div su(p) ∈ R, curlsu(p) ∈ T
⊥
p , and div sS(p) ∈ V .

2.2. Static bias magnetic field

The bias magnetic induction B is governed in a certain neighbourhood of
the surface s by equations

curlB = 0 divB = 0 (2.5)
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Introduce surface vector fields: L,G : s→ V by

L = B
∣

∣

∣

s
G =

∂

∂x3
B
∣

∣

∣

s
(2.6)

where x3 is the metric coordinate in the normal direction. Then, when calcu-
lating on the surface s, Eqs (2.5), take the form

P grad sL−K(PL)− PG = 0
(2.7)

curlsL = 0 div sL+G = 0

where K denotes the Weingarten map.

3. Present state

3.1. Kinematics

Deformation of the surface s during the time interval T is a mapping
χ : s×T → Σ. The displacement corresponding to χ is the field u : s×T → V

defined by

u(p, t) = χ(p, t)− p (3.1)

where t is time. Thus

grad sχ = I+ grad su (3.2)

where grad sχ(p, t) ∈ V ⊗ Tp. The rotation field corresponding to u is a
mapping r : s× T → V defined by

Pr = ( grad su)
>a3 r =

1

2
a3 · curlsu (3.3)

The infinitesimal strain reads

E = sym(P grad su) = sym[P grad s(Pu)] + uK (3.4)

where ”sym” means the symmetrical part of a tensor.
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3.2. Magnetic field outside the surface

Let Ω+ and Ω− denote certain outward material-free regions touching the
surface s from the upper and lower side, respectively, and b represents induced
magnetic induction governed in the regions Ω+ and Ω− by the equations

curlb = 0 divb = 0 (3.5)

accompanied by the continuity condition at the surface s in the form

[b] = 0 (3.6)

where [·] denotes the jump across the surface. Introducing scalar potentials
ψ+ : Ω+ × T → R and ψ− : Ω− × T → R with the use of the space gradient

b = gradψ (3.7)

Eqs (3.5) lead to the Laplace equations in the regions Ω+ and Ω−

∆ψ+ = 0 ∆ψ− = 0 (3.8)

with the Neumann boundary conditions on the surface s

∂

∂x3
ψ+ = b

∂

∂x3
ψ− = b (3.9)

3.3. Electromagnetic field within the surface

The surface current density on the surface s is determined by the relation

jsur =
1

µ
a3 × [b] (3.10)

where µmeans the magnetic permeability of vacuum. Moreover, the quantities
b and Pe, where e denotes the electric field, are identical at both sides of the
surface s. The corresponding differential equation reads

curls(Pe)−
∂

∂t
b = 0 (3.11)

Making use of the inverted Ohm law

Pe =
1

λ
Pjsur + P(L× v) =

1

µλ
P(a3 × I grad s[ψ]) + P(L× v) (3.12)
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where v denotes the velocity vector and λ is the electric surface conductivity,
Eq (3.11) becomes

∆s(ψ
+ − ψ−)− µλ

∂

∂t
b+ µλ

∂

∂t
[Ldiv su+G · u− (PL) · (Pr)] = 0 (3.13)

where ∆s stands for the surface Lagrangian. In the case of perfect conduction,
Eq (3.13) simplifies to the relation

b = Ldiv su+G · u− (PL) · (Pr) (3.14)

3.4. Electromagnetic momentum and energy

The following linearized identity is derivable from three-dimensional Ma-
xwell equations when simplified by neglecting the displacement current

fL = divTM (3.15)

where fL and TM are the electromagnetic force and magnetic stress, respec-
tively, defined by (see Costen and Adamson, 1965)

fL = j ×B T
M =

1

µ
(b⊗B +B ⊗ b)− wM1 (3.16)

where, in turn, j is the conduction current density, 1 denotes the identity
on V , and wM means the electromagnetic energy density in the form

wM =
1

µ
B · b (3.17)

Similarly, the power per unit volume lost by the fields equals

PM = −divSM −
∂

∂t
wM = 0 (3.18)

where

SM =
1

µ
e×B (3.19)

denotes the Poynting vector. In an integral form, the electromagnetic momen-
tum and energy laws are

∫

V

fL =

∫

∂V

T
Mn

∫

∂V

SMn+

∫

V

∂

∂t
wM = 0 (3.20)
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where n represents the outward unit vector normal to the surface ∂V . In the
limit for the surface s, setting n = a3, the electromagnetic momentum law
reduces to

fsur = [TM ]a3 (3.21)

Using Eqs (3.16), (3.10) and (3.17), we find

[TM ] = (jsur × a3)⊗B +B ⊗ (j
sur × a3)− [(j

sur × a3) ·B]1 (3.22)

Hence

[TM ]a3 = (j
sur × a3)(B · a3)− [(j

sur × a3) ·B]a3 = j
sur ×B (3.23)

Similarly,

[SM ] =
1

µ
[e]×B =

1

µ
[e]a3 ×B (3.24)

Thus, the electromagnetic energy law for the surface s takes the form

[SM ] · a3 = 0 (3.25)

3.5. Stress-based equations of motion

The stress equation of motion of a material surface has the local form

div sS+ f
mech + fsur = ρ

∂2

∂t2
u (3.26)

where S denotes the surface stress tensor, ρ is the mass density per unit area,
and fmech stands for the mechanical force. Using Eqs (2.1), (2.6), (3.10) and
(3.7), Eq (3.26) may be put in a more detailed form

Pdiv s(PS) +KS + Pf
mech +

1

µ
L grad s[ψ] = ρ

∂2

∂t2
(Pu)

(3.27)

div sS−K · (PS) + f
mech −

1

µ
(PL) grad s[ψ] = ρ

∂2

∂t2
u

where ”·” denotes the inner product of two tensors.

3.6. Stress-strain relation

The constitutive relation for the stress S reads

S = ( grad sχ){S
res + C[E]} (3.28)
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where Sres is the residual stress and C denotes the elasticity tensor. If the
material is isotropic relative to the reference configuration, then

S
res = σ1s C[E] = λL( trE)1s + 2µLE (3.29)

where λL and µL are Lame constants, and 1s(p) is the identity on Tp. Making
use of Eqs (2.1) and (3.2), we arrive at

PS = σ1s + σP grad su+ λL( trE)1s + 2µLE S = σPr (3.30)

3.7. Displacement-based equations of motion

Now assume that σ, λL and µL are constant on the surface s. Then, making
use of Eqs (3.30) and (3.4), Eqs (3.27) are transformed to the displacement-
based form

(σ + 2µL)P div s[P grad s(Pu)] + λL grad s div s(Pu)−

−2µLa3 × [I grad s(a3curlsu)]− σK[K(Pu)] +

+2(σ + µL)K grad su+ 2HλL grad su+ 2(σ + 2µL + λL)( grad sH)u+

+Pfmech +
1

µ
L grad s(ψ

+ − ψ−) = ρ
∂2

∂t2
(Pu)

(3.31)

σ∆su− (σ + 2µL)(K ·K)u− λL(2H)
2u− 2Hσ − 2σ( grad sH) · (Pu)−

−2λLH div s(Pu)− 2(σ + µL)K · [P grad s(Pu)] +

+fmech −
1

µ
(PL) · grad s(ψ

+ − ψ−) = ρ
∂2

∂t2
u

where H is the mean curvature.

4. Conclusions

• In order to incorporate magnetoelastic effects in the theory of a material
surface, the concept of surface electric current is required, even in the
case of real conduction.

• The obtained model is not entirely two-dimensional because Eqs (3.8)
are needed for completeness.
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• The lack of a term including normal bias magnetic induction in the
second equation of motion seems to be the most significant difference
occurring within the electromagnetic part between the presented model
and shell-like models based on the electromagnetic thickness hypotheses
(cf. Rudnicki, 1995).
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Elektroprzewodząca powierzchnia sprężysta w polu magnetostatycznym

Streszczenie

Przedmiotem rozważań jest teoria liniowa powierzchni materialnej umieszczonej
w próżni i poddanej działaniu silnego zewnętrznego pola magnetostatycznego. Ruch
powierzchni opisuje funkcja położenia. Założono, że materiał powierzchni jest izotro-
powy, sprężysty, niemagnetyzowalny i przewodzący prąd elektryczny. Uwzględniono
naprężenia rezydualne. Otrzymano równania rozwiązujące z użyciem przemieszczeń.
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