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The aim of the paper is twofold. First, governing equations for me-
dium thickness elastic plates which have a periodically non-homogeneous
structure in one direction (uniperiodic) and subjected to initial in-plane
stresses are derived. In order to obtain the aforementioned equations,
the tolerance averaging technique is applied. This technique leads to equ-
ations with constant coefficients. Second, the above equations are applied
to analysis of certain stability and dynamic problems. The stiffnesses of
plates were calculated by treating them as structurally anisotrpic. An
interesting result is that two values of the critical force can be obtained.
This result can have a physical meaning for the stability of plates under
compression in one direction and tension in the perpendicular direction.
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1. Introduction

The subject of analysis are medium thickness rectangular uniperiodic ela-
stic plates, i.e. plates with a periodic non-homogeneous structure in one direc-
tion. The above plates are composed of a large number of repeated elements
having an identical form, dimensions and material properties. The geometry
of a uniperiodic plate, apart from the global mid-plane length dimensions L1,
L2, is characterized by the length l which determines the period of structure
inhomogeneity. In general, in the direction perpendicular to the direction of
periodicity, the material parameters may be not constant. However, in most
cases ”existing in engineering practice” uniperiodic plates have constant pro-
perties in that direction. Fragments of the aforementioned plates are shown in
Fig. 1 and Fig. 2.
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Fig. 1. Example of the plate with a uniperiodic structure

A formulation of different approximate models for these plates is a rather
complicated problem. In most cases, homogeneous models of these plates are
taken as a basis for analysis of special problems. The homogenized equations
have constant coefficients and constitute a certain approximation of uniperio-
dic plate equations having highly oscillating and non-continuous coefficients,
cf. Lewiński (1991). However, the homogenized equations cannot describe the
effect of the periodicity length parameter l on the overall plate behaviour (the
length-scale effect).

In the work by Baron (2002), a new approximate model of medium thick-
ness uniperiodic plates was proposed. This model, obtained by using the to-
lerance averaging technique, cf. Woźniak and Wierzbicki (2000), includes the
length scale effect.

The aim of this contribution is an extension and a certain generalization
of the 2D model of a medium thickness plate derived by Baron (2002) and the
analysis of a certain quasi-stationary and dynamic problem for a rectangular
plate. In the above article, in the course of modelling in terms containing the
initial stress, fluctuation of displacement were taken into consideration. The
obtained model will be referred to as the length-scale model, since it includes
the effect of the length period l on the overall plate behaviour. The general
averaged model equations obtained in this paper will be transformed into a
form which would enable investigation of dynamic and stability problems. A
new expression for the critical force will be compared with those obtained from
the homogenized model of uniperiodic plates. It will be shown that in some
special cases related to compression in the mid-plane in the direction along
a certain axis and tension in the perpendicular direction, the homogenized
model leads to higher values of critical forces than in the length-scale model
introduced in this paper.

Throughout the paper the subscripts α, β, . . . run over 1, 2, subscripts
i, j, . . . over 1,2,3 and superscripts A,B, . . . over 1, 2, . . . , N ; summation co-
nvention holds for all aforementioned indices.
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2. Basic assumptions and notations

By x = (x1, x2) we denote Cartesian coordinates of a point on the plate
mid-plane Π = (0, L1) × (0, L2), and by z a Cartesian coordinate in the
direction normal to the mid-plane. By z = ±δ(x), x ∈ Π we denote functions
representing the upper and lower plate boundary, respectively; hence 2δ(x)
is the plate thickness in a point x ∈ Π. By ρ = ρ(x, z) and Aijkl(x, z) we
denote mass density and the tensor of elastic moduli of the plate material
and assume that every z = const is an elastic symmetry plane. We also
define Cαβγδ := Aαβγδ−Aαβ33A33γδ(A3333)−1, Bαβ := Aα3β3. We shall assume
that the functions δ(·), ρ(·), Aijkl(·) are l-periodic with respect to the x1-
coordinate, and are sufficiently regular with respect to z. Let p+ and p−

be loadings (in the z-axis direction) on the upper and bottom surfaces of
the plate, respectively. Let σoαβ be a tensor of the initial stress and b be
a constant body force acting in the z-axis direction. Furthermore, let t be
the time coordinate. The averaged value of an arbitrary integrable function
ϕ(x1, x2, t) in the periodicity interval (x1 − l/2, x1 + l/2) will be denoted by

〈ϕ〉(x, t) = 1
l

x1+l/2∫

x1−l/2

ϕ(ξ, x2, t) dξ x = (x1, x2) (2.1)

For an uniperiodic function ϕ(·), the above averaged value is independent
of x1.

3. Modelling procedure. Model equations

Setting

µ(x) =

δ∫

−δ

ρ(x, z) dz p(x) = p+(x) + p−(x) + b〈µ〉(x)

J(x) =

δ∫

−δ

z2ρ(x, z) dz Gαβγδ(x) =

δ∫

−δ

z2Cαβγδ(x, z) dz

No
αββ =

δ∫

−δ

σoαβ dz Dαβ(x) =

δ∫

−δ

KαβBαβ(x, z) dz
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where in the expression summation convention with respect to α and β does
not hold for Dαβ , and Kαβ is a shear coefficient (introduced by Jemielita
(2001)), we obtain the system of equations

(Gαβγδϑ(γ,δ)),β −Dαβϑβ − Jϑ̈α = 0
(3.1)

No
αβw,αβ + [Dαβ(ϑβ + w,β)],α − µẅ + p = 0

in which the deflection w and rotation ϑα are basic unknowns.

The above equations represent the medium thickness 2D-plate model of the
Hencky-Boole type. For an uniperiodic plate, the above system of equations
has functional coefficients which are periodic with respect to the argument x1.
These coefficients are certain highly oscillating and non-continuous functions.
The exact solution to boundary value problems formulated for these equations
is, in most cases, rather complicated. That is why various approximate models
leading to equations with constant coefficients are proposed. We can mention
here a known homogenized model. However, this model is not able to describe
the effect of the period length on the overall plate behaviour. In the paper
by Baron (2002), a new non-asymptotic model was proposed. This model was
obtained by using the tolerance averaging method summarized by Woźniak
and Wierzbicki (2000).

In accordance with the tolerance averaging procedure, the unknown de-
flection w and rotations ϑα are assumed in the form

ϑα(x, t) = ϑ
o
α(x, t) + ϑ

∗

α(x, t)

w(x, t) = wo(x, t) + w∗(x, t)

where wo(·), ϑoα(·) are the averaged deflection and rotations, and w∗(·), ϑ∗α(·)
describe fluctuations of the fields ϑα(x, t), w(x, t) caused by the inhomogeneity
of the plate. At the same time, the functions wo(·), ϑoα(·) have to be slowly
varying and w∗(·), ϑ∗α(·) have to be periodic-like functions, cf. Woźniak and
Wierzbicki (2000). We shall also assume that the fluctuations w∗(·), ϑ∗α(·) can
be approximated by

ϑ∗α(x, t)
∼= ha(x1)Θaα(x, t) a = 1, 2, . . . , n

w∗(x, t) ∼= gA(x1)WA(x, t) A = 1, 2, . . . , N
(3.2)

where WA(·), Θa
α(·) are new slowly varying unknowns. At the same time,

ha(x1), g
A(x1) represent two systems of linear independent periodic shape

functions, postulated a priori in every special problem under consideration.
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These functions are called mode-shape functions and they have to approxi-
mate the expected form of the oscillating part of free vibration modes of the
periodicity cell. The above functions have to satisfy the conditions 〈Jha〉 = 0,
〈µgA〉 = 0, ha(x1) ∈ O(l), gA(x1) ∈ O(l), lha,1(x1) ∈ O(l), lgA,1(x1) ∈ O(l).
Taking into account the aforementioned conditions, we shall also introduce
functions

h
a
= l−1ha gA = l−1gA

which are of the order O(1) when l→ 0.
In the subsequent considerations, slowly varying functions wo, ϑoα, W

A,
Θaα are basic kinematics unknowns. In order to obtain a system of equations
for these unknowns, we shall apply a procedure similar to that discussed in
Baron (2002), however, in terms containing the initial stress N o

αβ , the fluctu-
ation of displacement will not be neglected. That means that the assumption
No
αβw,αβ ≈ N o

αβw
o
,αβ has been substituted by the relation

No
αβw,αβ = N

o
αβ(w

o + w∗),αβ

Setting aside all transformations, which are similar to those presented in
Baron (2002), we arrive at the equations:
— equations of motion

Mαβ,β −Qα − 〈J〉ϑ̈oα = 0
(3.3)

No
αβw

o
,αβ + lN

o
α2〈gA〉WA

,α2 +Qα,α − 〈µ〉ẅo + p = 0

— kinematic equations for Θa, WA

l2〈Jhahb〉Θ̈bα +Ma
α − lM̃a

α,2 = 0

(3.4)

l2〈µgAgB〉ẄB +QA − lQ̃A,2 +

−N o
α2(l〈gA〉wo,α2 + l2〈gAgB〉WB

,α2) +N
o
11〈gA,1gB,1〉WB − l〈gAp〉 = 0
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— constitutive equations

Mαβ = 〈Gαβγδ〉ϑo(γ,δ) + 〈ha,1Gαβ1δ〉Θaδ + l〈h
a
Gαβ2δ〉Θaδ,2

Qα = 〈Dαβ〉(ϑoβ + wo,β) + l〈h
a
Dαβ〉Θaβ + 〈gA,1Dα1〉WA + l〈gADα2〉WA

,2

Ma
α = 〈ha,1hb,1Gα11δ〉Θbδ + 〈h,1Gα1γδ〉ϑo(γ,δ) + l〈ha,1h

b
Gα12δ〉Θbδ,2 +

+l2〈hahbDαβ〉Θbβ + l〈h
a
Dαβ〉(ϑoβ + wo,β) + l〈h

a
gA,1Dα1〉WA +

+l2〈hagADα2〉WA
,2 (3.5)

M̃a
α = 〈h

a
hb,1Gα21δ〉Θbδ + 〈h

a
Gα2γδ〉ϑo(γ,δ) +

+l〈hahbGα22δ〉Θbδ,2
QA = 〈gA,1gB,1D11〉WB + 〈gA,1D1β〉(vtoβ +wo,β) + l〈gA,1h

a
D1β〉Θaβ +

+l〈gA,1gBD12〉WB
,2

Q̃A = 〈gAgB,1D21〉WB + 〈gAD2β〉(ϑoβ + wo,β) + l〈gAhaD2β〉Θaβ +
+l〈gAgBD22〉WB

,2

Averaged 2D-model equations (3.3)-(3.5) constitute the starting point for
the subsequent analysis. The underlined terms in the above equations describe
the influence of fluctuation displacement neglected in Baron (2002). In most
cases, we deal with plates having a homogeneous structure in the x2-axis
direction (cf. Fig. 2). For such a type of uniperiodic plates, all coefficients in
equations (3.3)-(3.5) are constant, and the subsequent considerations will be
restricted to the aforementioned type of plates.

4. An orthotropic plate with stiffeners

Now let us assume that the plate is of constant thickness and is made of
an orthotropic material, where the principal axis of orthotropy coincides with
the Cartesian axis (x, z). Moreover, let us assume that the plate is reinforced
by a certain system of periodically spaced stiffeners, cf. Fig. 2. We also assume
that the torsional stiffness of the stiffeners in the plane normal to the x2-axis
is neglected. Let M be mass density of a stiffener and I be bending stiffness
of the stiffener, respectively. Moreover, let

G11 = G1111 G22 = G2222
G12 = G1122 = G2211 G = G1212 = G1221 = G2112 = G2121
D1 = D11 D2 = D22
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be stiffness of the orthotropic plate under consideration.

Fig. 2. A scheme of the uniperiodic plate under consideration

Let us take exclusively two modal shape functions

h(x1) = h
1(x1) = lh(x1) g(x1) = g

1(x1) = lg(x1)

as the first approximation of the plate fluctuations caused by the uniperiodic
plate structure.
Let us consider the interval 〈0, l〉 as a representative plate segment. We

assume that h(x1) is an odd function and g(x1) is an even function of x1.
On the above assumptions, we obtain from (3.3)-(3.5) the following system of
equations for the unknowns ϑα, Θ1 = Θ, W , w

〈G11〉ϑo1,11 + 〈G〉ϑo1,22 + (〈G12 + 〈G〉)ϑo2,12 − 〈D1〉(ϑo1 + wo,1)− 〈J〉ϑ̈o1 = 0
〈G22〉ϑo2,22 + 〈G〉ϑo2,11 + (〈G12 + 〈G〉)ϑo1,12 − 〈D2〉(ϑo2 + wo,2)−
−l〈gD2〉W,2 − 〈J〉ϑ̈o2 = 0
No
αβw

o
,αβ + 〈D1〉(ϑo1 + wo,1),1 + 〈D2〉(ϑo2 + wo,2),2 + lN o

α2〈g〉W,α2 +

+l〈gD2〉W,22 − 〈µ〉ẅo + p = 0 (4.1)

−l2〈h2G〉Θ,22 + (〈h2,1G11〉+ l2〈h
2
D1〉〉)Θ + l〈hg,1D1〉W + l2〈h2J〉Θ̈ = 0

−l2No
αβ〈g2〉W,αβ − l2〈g2D2〉W,22 +N

o
11〈g2,1〉W + 〈g2,1D1〉W − lN o

α2〈g〉wo,α2 +
−l〈gD2〉(ϑo2 + wo,2〉),2 + l〈hg,1D1〉Θ + l2〈g2µ〉Ẅ − l〈gp〉 = 0

and an independent equation for Θ2

−l2〈h2G22〉Θ2,22 + (〈h2,1G〉+ l2〈h
2
D2〉)Θ2 + l2〈h2J〉Θ̈2 = 0 (4.2)

Equations (4.1) together with (4.2) have constant coefficients and will be exa-
mined together with appropriate boundary and initial conditions.
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The stiffnesses of the plate will be calculated taking into account structural
anisotropy. It means that the plate is made of a homogeneous and isotropic
material and reinforced by a system of parallely spaced material inclusions. By
means of a particular way of calculating the stiffnesses, cf. Sokołowski (1957),
this composite plate can be treated as homogeneous but made of an anisotropic
material. In this paper, in the inertial terms, the factual mass distribution is
yet taken into consideration.
Material properties of structurally anisotropic (strictly: orthotropic) plate

shown in Fig. 2 are represented by the Young modulae E1, E2 and by the
Poisson ratios ν1, ν2. In this case, the plate stiffnesses are given by

G11 =
E1d

3

12(1 − ν1ν2)
G22 =

E2d
3

12(1 − ν1ν2)

G12 = ν1G22 = ν2G11 G =

√
G11G22
2(1 + ν1)

Setting for the plate material E = E1 and ν = ν1, it can be shown that

G11 = 〈G11〉 =
Ed3

12(1− ν2) = Ho

Similarly, taking into account averaging formula (2.1), we obtain

G22 = 〈G22〉 = Ho

(
1 +

EsI

Hol

)

where Es is the Young modulus of the stiffener. Defining by ψ = EsI/(Hol)
a constant which will be called the coefficient of nonhomogeneity related to
uniperiodic plate structure, we obtain

G22 = 〈G22〉 = Ho(1 + ψ)

From the condition νG22 = ν2G11, cf. Sokołowski (1957), we conclude that
ν2 = ν(1 + ψ). Hence

G22 =
E2d

3

12(1 − ν1ν2)
=

E2d
3

12[1− ν2(1 + ψ)] =
Ed3

12(1 − ν2)(1 + ψ)

E2 = E
1− ν2(1 + ψ)
1− ν2 (1 + ψ)

One should pay attention that if ν2 < 0.5, we obtain an additional condition
for the coefficient ψ

ψ <
1− 2ν
2ν
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The shear stiffness will be calculated from the formula

〈D1〉 =
Ed

2(1 + ν)
K11

〈D2〉 =
E2d

2(1 + ν2)
K22 =

Ed[1− ν2(1 + ψ)]
2(1− ν2)[1 + ν(1 + ψ)] (1 + ψ)K22

Following Jemielita (2001), for dynamic problems, we introduce the shear co-
efficients

K11 =
5

6− ν K22 =
5

6− ν(1 + ψ)
From assumptions on structural anisotropy (the plate can be treated as ho-
mogeneous), we conclude that the stiffnesses, calculated by application of the
mode-shape function h(x1), g(x1), are constant, i.e. 〈h2,1G11〉 = G11〈h2,1〉.
Equations (4.1), together with the aforementioned procedure of calculating

the coefficients, are the starting point for the analysis of special problems,
which will be explained in the next section.

5. Applications

We are going to apply the model equations obtained in the previous section
to the analysis of stability and a dynamic problem for a rectangular unipe-
riodic plate. The plate is simply supported on its edges and subjected to the
initial stress on the plate mid-plane, Fig. 3. Taking into account the boundary
conditions, for a plate simply supported on all edges, we look for the solution
to equations (4.1) in the form

ϑ1 = e
iωt

∞∑

m=1

∞∑

n=1

ϑ1mn cosαmx1 sinβnx2

ϑ2 = e
iωt

∞∑

m=1

∞∑

n=1

ϑ2mn sinαmx1 cos βnx2

Θ1 = e
iωt

∞∑

m=1

∞∑

n=1

Θ1mn cosαmx1 sinβnx2 (5.1)

w = eiωt
∞∑

m=1

∞∑

n=1

wmn sinαmx1 sinβnx2

W = eiωt
∞∑

m=1

∞∑

n=1

Wmn sinαmx1 sinβnx2
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where: αm = mπ/L1, βn = nπ/L2, m,n = 1, 2, . . . and ϑ1mn, ϑ2mn, Wmn,
wmn are constant amplitudes, ω is a vibrations frequency.

Fig. 3. A scheme of a uniperiodic plate subjected to an edge loading

Let us denote

H1 = α
2
n〈G11〉+ β2n〈G〉+ 〈D1〉

H2 = β
2
n〈G22〉+ α2n〈G〉+ 〈D2〉

G = 〈G12〉+ 〈G〉

B =
α2mβ

2
n〈g2〉〈D2〉G

H1H2 − α2mβ2nG
2 +

〈hg,1〉2〈D1〉
〈g2,1G11〉+ l2〈h

2
D1〉+ l2β2n〈h

2
G〉

and introduce non-dimensional stiffness and forces

D1 = 1−
H2〈D1〉 − β2n〈D2〉G
H1H2 − α2mβ2nG

2

D2 =
〈D2〉
〈D1〉

(
1− H1〈D2〉 − α2m〈D1〉G

H1H2 − α2mβ2nG
2

)

N1 =
N11
〈D1〉

N2 =
N22
〈D1〉

(N12 = 0)

Substituting (5.1) into (4.1) and taking into account the aforementioned
denotations, after some transformations we obtain the following equations for
the unknowns wmn and Wmn

[
a11 l〈g〉β2n(N2 +D2)

l〈g〉β2n(N2 +D2) a22

] [
wmn
Wmn

]
=

[
0
0

]
(5.2)
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where

a11 = α
2
m(N1 +D1) + β

2
n(N2 +D2)−

〈µ〉
〈D1〉

ω2

a22 = 〈g2,1〉(N 1 + 1) + l2β2n〈g2〉(N 2 +D2)− l2B − l2
〈g2µ〉
〈D1〉

ω2

Equations (5.2) constitute the starting point for the subsequent examples.

Numerical calculations will be carried out for a constant-thickness concrete
plate with E = 29000MPa (concrete B25), ν = 0.20, reinforced by periodi-
cally spaced rolled steel sections (I-bar) with Es = 205000MPa, as it shown
in Fig. 2. We assume mode-shape functions in the form

h(x1) = l sin
2π

l
x1 g(x1) = l

(
c+ cos

2π

l
x1
)

(5.3)

The constant c can be calculated from the condition 〈µg〉 = 0

c = − ϕM
1 + ϕM

ϕM =
M

ρdl

For the above functions, we obtain

〈g〉 = c 〈g2〉 = 1
2
+ c2 〈g2,1〉 = 2π2

〈h2,1〉 = 2π2 〈h2〉 = 1
2

and

〈µ〉 = ρd(1 + ϕM ) = µo
1

1 + c
µo = ρd

(5.4)

〈g2µ〉 = µo[〈g2〉+ (1 + 〈g〉)2ϕM ] = µo
(1
2
− c
)

In the course of calculations, the influence of slenderness ratio λ, the parame-
ters ε = l/L2, κ = L2/L1 and the coefficient of non-homogeneity ψ = EsI/H0l
have been taken into account.

5.1. Dynamic problem

In this subsection, free vibrations in the long-wave propagation problem
will be discussed.
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The system of two linear equations for amplitudes wmn, Wmn (5.2) has
nontrivial solutions provided that its determinant is equal to zero. In this way,
we obtain the characteristic equation for free vibration frequencies

l2
〈µ〉〈g2µ〉
〈D1〉2

ω4 − 1

〈D1〉
{
〈µ〉〈g2,1〉(N 1 + 1) +

+l2β2n

[
〈g2µ〉N o + 〈µ〉〈g2〉(N 2 +D2)−

〈µ〉
β2n

B
]}
ω2 + β2n〈g2,1〉(N 1 + 1)N o +

+l2β2n[β
2
n〈g2〉(N 2 +D2)No − β2n〈g〉2(N2 +D2)2 −BN o] = 0 (5.5)

where

β2nNo = α
2
m(N1 +D1) + β

2
n(N2 +D2)

From (5.5), we arrive at the following approximate formulae for the lower ω1
and higher ω2 free vibration frequencies

ω21 =
β2n〈D1〉N o

〈µ〉 − l2β
4
n〈g〉2〈D1〉(N 2 +D2)2
〈g2,1〉〈µ〉(N 1 + 1)

(5.6)

ω22 =
〈g2,1〉〈D1〉(N1 + 1)

l2〈g2µ〉 +
〈D1〉[β2n〈g2〉(N 2 +D2)−B]

〈g2µ〉

Commenting on the obtained results, it should be admitted that, contrary
to the asymptotic homogenisation method, two basic free vibration frequencies
have been obtained. The higher frequency ω2 depends on the period-length l
and cannot be derived from the homogenized model.

In further analysis, formulae for frequencies (5.6) will be transformed into
a dimensionless form. To this end, we will introduce the denotations

a1 = λ
2 30(1 − ν)
6− ν a2 = λ

2 1− ν2(1 + ψ)
1 + ν(1 + ψ)

30(1 + ψ)

6− ν(1 + ψ)

e = ν(1 + ν) +

√
1 + ψ

2(1 + ν)
h1 = π

2
[
m2κ2 + n2

√
1 + ψ

2(1 + ν)

]
+ a1

h2 = π
2
[
n2(1 + ψ) +m2κ2

√
1 + ψ

2(1 + ν)

]
+ a2
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D1 = 1−
h2a1 − π2n2a2e

h1h2 − π4m2n2κ2e2
(5.7)

D2 =
a2
a1

(
1− h1a2 − π2m2κ2a1e

h1h2 − π4m2n2κ2e2
)

B =
n2

a2
2

a1
h1c
2

h1h2 − π4m2n2κ2e2
+

m2n2κ2e
(
1
2 + c

2
)

2π2 + 12ε
2
[
a1 + π2n2

√
1+ψ

2(1+ν)

]

Multiplying both relations (5.6) by L22µo〈D1〉−1, and taking into account (5.4)
and (5.7), we obtain the following formulae for the non-dimensional frequencies

Ω21 = n
2π2(1 + c)

[
m2κ2(N1 +D1) +N2 +D2 + ε

2c2
(N2 +D2)

2

2(N 1 + 1)

]

(5.8)

Ω22 =
2π2

1− 2c
[ 2
ε2
(N1 + 1) + n

2
(1
2
+ c2
)
(N2 +D2)−B

]

In the course of numerical calculations, it has been assumed that the con-
crete plate has mass density ρ = 2200 kg/m3, thickness d = 0.15m and span
L2 = 6.00m. Three variants of reinforcing by rolled steel sections: I180, I220,
I240 are taken into account. The I-bar is spaced every 0.75m; also l = 0.75m
and ε = 0.125. The shape of the mid-plane is characterized by the ratio
κ = L2/L1, κ = 0.5; 1.0; 2.0. The values of parameters ψ and c are placed in
Table 1.

Table 1

I-bar
I M

ϕ ψ c
[10−8m4] [kg/m]

I180 1450 21.9 0.0885 0.490 −0.0813

I220 3060 33.1 0.1337 1.030 −0.1179

I240 4250 36.2 0.1463 1.420 −0.1276

Diagrams representing the interrelation between non-dimensional free vi-
bration frequencies Ω and forces N 1, N2 are presented in Fig. 4 and Fig. 5.
In these diagrams, the values of N 1, N2, Ω should be multiplied by 10

−3.

Numerical calculations were carried out for existing engineering structures.
We into account a concrete plate reinforced by a system of periodically spaced
I-bars. Thus, we dealt with a structure which has practical meaning in civil
engineering. The values of the in-plane stresses N11, N22 are restricted to those
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Fig. 4. Diagrams of interrelations between lower and higher free vibration
frequencies Ω1, Ω2 and forces N1 and N2

Fig. 5. Interrelation between the lower and higher free vibration frequency Ω1 and
stresses N1 and N2

which do not exceed the permissible stress. It has to be mentioned that the
plates under consideration satisfy, in the exact manner, all assumptions of the
theory proposed in this contribution.
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Under the aforementioned restrictions, lower free vibration frequencies ne-
arly coincide with those resulting from the homogenisation theory. Higher free
vibration frequencies, which cannot be calculated by the homogenisation me-
thod, do not have any meaning from the engineering point of view. However,
discussion on formulae (5.6) leads to the conclusion that higher vibration fre-
quencies can be calculated and applied provided that we shall deal with some
new composite material having suitable material properties.

5.2. Stability problem

Let us restrict the considerations to quasi-stationary processes and assu-
me that the plate is subjected to compression N11 along the x1 axis. This
compression have to be proportional to the stress N22 along the x2 axis; de-
note then γ = N22/N11. We conclude that nontrivial solutions to (5.2) exist
provided that

[〈g2,1〉k + l2β2nγ(k〈g2〉 − β2n〈g〉2γ)]N
2
1 +

−{〈g2,1〉(Do + k) + l
2[β2n〈g2〉(Do + kD2)− 2β4n〈g〉2D2γ − kB]}N 1 + (5.9)

+〈g2,1〉Do + l
2[β2n〈g2〉DoD2 − β4n〈g〉2D

2
2 −DoB] = 0

where

Do = α
2
mD1 + β

2
nD2 k = α2m + β

2
nγ

Real roots of Eqs (5.9) represent critical values of the edge in-plane lo-
adings for the stability problem under consideration. It can be observed that
in the framework of the proposed model we deal with two values of the critical
force N11,kr. This situation is quite different from those resulting from the
well-known typical procedures leading to the evaluation of the critical force.
Generalization of the well known analysis of a typical stability problem leads
in the considered case to the following results

• N11,kr = 〈D1〉Do/k for the homogenized model

• N11,kr = 〈D1〉Do/k + O(l)
2 for the model describing the length-scale

effect.

The aim of the foregoing numerical analysis of equation (5.9) is to deter-
mine the interrelation between the non-dimensional critical force N 11,kr and
parameter γ = N22/N11. It is easy to verify that this interrelation depends on
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parameters: ν, κ = L2/L1, λ = L2/d, ε = l/L2. Having introduced (5.7) and
bearing in mind (5.9), we arrive at the following formula

{
2k + ε2n2γ

[
k
(1
2
+ c2
)
− n2c2γ

]}
N
2
1 +

−
{
2(Do + k) + ε

2
[
n2
(1
2
+ c2
)(
Doγ + k

a2
a1

)
− 2n4c2D2γ − kB

]}
N1 +

(5.10)

+2Do + ε
2
[
n2
(1
2
+ c2
)
Do

a2
a1
− n4c2D22 −DoB

]
= 0

Fig. 6. Diagrams of interrelations between the non-dimensional critical force and the
parameter γ = N11/N22
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The shape of the mid-plane is characterized here by the ratio κ = L2/L1,
κ = 1; 0.5; 2 for two cases of the slenderness ratio λ = L2/d, λ = 20 and
λ = 60. At the same time, the parameter ε = l/L is equal to 0.10. In both
cases, the ratio ψ = ESI/(Hol) is 0.5; 1,0; 1,5. Subsequent calculations will
be carried out for the aforementioned values of parameters.

In Fig. 6, diagrams representing the interrelation between N11 and
γ = N22/N11 is presented. In these diagrams N

I and N II denote solutions
to equation (5.10), and N o = Do/k is a non-dimensional critical force which
can be derived also from the homogenized plate model.

The diagrams presented in Fig. 6 indicate that for the plate compressed in
both directions, i.e. for γ > 0, the critical force is equal to N I, but the above
value is close to N o obtained from the homogenized model. In this case, the
stability analysis based on the proposed model leads to similar results found
from classical analysis. The above remark applies to a certain domain of γ ¬ 0
as well. Remarkable differences between the critical forces N 0 and N I, N II

appear for the parameter γ tending to −1/κ2. For example, for a square plate,
if the value of the tensile force N22 tends to the value of the compressive
force N11, we obtain N I < N0. Thus, the critical force should be calculated
from relations obtained within the proposed model, not from the homoge-
nized one.

6. Conclusions

In this contribution, a new averaged 2D-model of uniperiodic medium-
thickness elastic plates is proposed. The model is described by a system of
equations with constant coefficients. In contrast to the homogenized model,
cf. Lewiński (1991), the proposed model is derived by using a tolerance ave-
raging technique and describes the effect of the period-length on the overall
plate behaviour. Moreover, this model takes into account the new effect caused
by the interrelation between the in-plane forces and displacement fluctuations
due to uniperiodicity of the plate structure, and is a certain generalization of
that introduced in Baron (2002), where the above effect was neglected. The
obtained theoretical results were applied to stability analysis of a rectangular
uniperiodic plate. It was shown that, for some special cases, the value of the
critical force obtained from the proposed model were smaller than values de-
rived from the homogenized plate model. However, the specification of those
special cases has rather a qualitative than quantitative significance. At the
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same time, the effect of the coupling between the in-plane forces and displa-
cement fluctuations due to uniperiodicity of the plate structure does not play
any role as far as the plate stability is concerned.
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Pewien model wstępnie napiętych uniperidycznych płyt średniej grubości

Streszczenie

Celem pracy jest rozszerzenie i pewne uogólnienie dwywymiarowego modelu śred-
niej grubości (typu Reissnera) sprężystych płyt o jednokierunkowej strukturze pe-
riodycznej zaproponowanego przez Barona (2002). Zastosowano metodę uśredniania
tolerancyjnego opisanego np. przez Woźniaka i Wierzbickiego (2000). Metoda ta po-
zwala uwzględnić wpływ wymiaru powtarzalnego segmentu płyty (okresu powtarzal-
ności) na jej makromechaniczne własności, czyli tzw. efekt skali. Uzyskane ogólne
równania przekształcono do postaci dogodnej do analizy płyt technicznie anizotropo-
wych. Przeprowadzono analizę zagadnienia drgań swobodnych oraz stateczności płyt
stalowo-betonowych stosowanych w budownictwie. Uzyskano dodatkową relację do
obliczania sił krytycznych.
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