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In the paper, nonlinear vibrations of torsionally deformed multi-mass
mechanical systems are studied. The systems consist of shafts connected
by an arbitrary number of rigid bodies together with a local nonlinearity
having the characteristic of a hard type. It is proposed to describe this
characteristic by irrational functions. In the considerations, an approach
using the wave solution to equations of motion is applied. Detailed nu-
merical calculations are given for a two-mass and a three-mass system.
They focus on nonlinear effects in the considered systems.
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1. Introduction

In the paper, nonlinear torsional vibrations of discrete-continuous mechanical
systems with a local nonlinearity having the characteristic of a hard type are
studied. This characteristic is described by irrational functions. The considered
systems consist of shafts with circular cross-sections connected by means of
rigid bodies. In the case of torsional deformations, the equations of motion of
shafts are classical wave equations (cf. Pielorz, 2003).

Vibrations of nonlinear discrete systems with nonlineariries having hard
type characteristics are considered mainly with polynomials of the third de-
gree (cf. Hagedorn, 1981; Szemplińska-Stupnicka, 1990). The present paper
concerns discrete-continuous systems with a local nonlinearity. Local nonline-
arities are suggested by engineering solutions (cf. Thomson, 1981), and here
irrational functions are proposed for their description. These functions contain
the cubic nonlinearity.
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Considerations in the present paper are similar to those given in Pielorz
(1995). The differences are in the assumed functions describing local nonline-
arities.

The method proposed for the determination of solutions in arbitrary cross-
sections of shafts in the system leads to equations with a retarded argument.
The numerical analysis is performed for a two-mass and a three-mass system
and is focussed on the effect of the local nonlinearity on angular displacements
in selected cross-sections.

2. Governing equations

The discrete-continuous model of a multi-mass torsional system under consi-
deration is shown in Fig. 1. It is assumed that the x-axis is parallel to the
main axis of the system, and its origin coincides with the position of the left-
hand end of the first shaft in an undisturbed state at the time instant t = 0.
The i-th shaft, i = 1, 2, . . . , N , is characterized by the length li, density ρ,
shear modulus G and polar moment of inertia I0i. The i-th rigid body con-
necting appropriate shafts is characterized by the mass moment of inertia Ji.
A single local nonlinearity is located in the cross-section x = 0, and it can re-
present mechanical properties of various elements, such as clutches and gears,
having nonlinear characteristics. The rigid body J1 is loaded by the external
loading M(t). Damping in the system is taken into account by an equivalent
external and internal damping in the selected cross-sections x0i with coeffi-
cients di, Di in the form

Mdi(t) = −diθi,t(x0i, t) MDi(t) = GJ0iDiθi,xt(x0i, t) (2.1)

where θi are displacements of the i-th shaft. Moreover, it is assumed that the
displacements and velocities of shaft cross-sections are equal to zero at the
time instant t = 0.

Fig. 1. A nonlinear discrete-continuous model of a torsional system
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In the cross-section x = 0, the local nonlinearity with the hard type cha-
racteristic is located. It is described by functions

Msp(t) =

{

k1θ1(0, t)− kw(−θ1(0, t))
w for θ1 ¬ 0

k1θ1(0, t) + kw(θ1(0, t))
w for θ1  0

(2.2)

where k1 and kw appear at the linear and nonlinear terms, respectively, the
exponent w is assumed to be a real number greater than 1, and in the case
of a hard characteristic kw is a positive constant. The linear case corresponds
to kw = 0.
Local nonlinearities and the functions of type (2.2) for their description

are justified by numerous experimental studies (cf. Boiler and Seeger, 1987;
Szolc, 2003; Thomson, 1981). The constants k1 and kw are usually determi-
ned experimentally. Functions (2.2) contain the third degree polynomial used
in Pielorz (1995), and here the results by Pielorz (1995) are generalized by
introducing irrational functions.
On the above assumptions and upon the introduction of the following

dimensionless quantities

x =
x

l1
t =
ct

l1
θi =

θi

θ0
di =

dil1

J1c

Di =
Dic

l1
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k1l
2
1

J1c2
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kwθ
2
0l
2
1

J1c2
Kr =

I01ρl1

J1

Ei =
J1

Ji
M =

Ml21
J1c2θ0

M sp =
Mspl

2
1

J1c2θ0
li =
li

l1

Bi =
I0i

I01
(2.3)

the determination of angular displacements θi is reduced to solving N equ-
ations

θi,tt − θi,xx = 0 i = 1, 2, . . . , N (2.4)

with the zero initial conditions

θi(x, 0) = θi,t(x, 0) = 0 i = 1, 2, . . . , N (2.5)

and with the following nonlinear boundary conditions:
— for x = 0

M(t)− θ1,tt +Kr(D1θ1,xt + θ1,x)− d1θ1,t −Msp(t) = 0 (2.6)

— for x =
∑i
k=1 lk, i = 1, 2, . . . , N − 1

θi(x, t) = θi+1(x, t)
(2.7)

−θi,tt −KrBiEi+1(Diθi,xt + θi,x) +KrBi+1Ei+1(Di+1θi+1,xt + θi+1,x) +

−Ei+1di+1θi,t = 0
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— for x =
∑N
k=1 lk

−θN,tt −KrBNEN+1(DNθN,xt + θN,x)−EN+1dN+1θN,t = 0 (2.8)

where θ0 is a fixed angular displacement, the bars denoting dimensionless
quantities are omitted for convenience, and the comma denotes partial diffe-
rentiation.

Solutions to equations of motion (2.4) are sought in the form

θi(x, t) = fi(t− x) + gi
(

t+ x− 2
i−1
∑

k=1

lk

)

i = 1, 2, . . . , N (2.9)

where the functions fi and gi represent waves caused by the external loading
M(t) propagating in the i-th shaft in the positive and negative directions of
the x-axis, respectively. They are continuous and equal to zero for negative
arguments.

Substituting solutions (2.9) into boundary conditions (2.6)-(2.8), the fol-
lowing set of equations for the unknown functions fi and gi is obtained

rN+1,1g
′′

N (z) + rN+1,2g
′

N (z) = rN+1,3f
′′

N (z − 2lN ) + rN+1,4f
′

N (z − 2lN )

gi(z) = fi+1(z − 2li) + gi+1(z − 2li)− fi(z − 2li) i = 1, 2, . . . , N − 1
(2.10)

r11f
′′

1 (z) =M(z) + r12g
′′

1 (z) + r13f
′

1(z) + r14g
′

1(z)−Msp(z)

ri1f
′′

i (z) + ri2f
′

i(z) = ri3g
′′

i (z) + ri4g
′

i(z) + ri5f
′′

i−1(z) + ri6f
′

i−1(z)

i = 2, 3, . . . , N

where (i = 2, 3, . . . , N)

r11 = KrD1 + 1 r12 = KrD1 − 1

r13 = −Kr − d1 r14 = Kr − d1

ri1 = KrEi(BiDi +Bi−1Di−1) + 1 ri2 = Ei[Kr(Bi +Bi−1) + di]

ri3 = KrEi(BiDi −Bi−1Di−1)− 1 ri4 = Ei[Kr(Bi −Bi−1)− di]

ri5 = 2KrBi−1EiDi−1 ri6 = 2KrBi−1Ei

rN+1,1 = KrBNEN+1DN + 1 rN+1,2 = EN+1(KrBN + dN+1)

rN+1,3 = KrBNEN+1DN − 1 rN+1,4 = EN+1(KrBN − dN+1)
(2.11)

Equations (2.10) are solved numerically by means of the Runge-Kutta me-
thod. These equations are similar to those in Pielorz (1995). Differences lay in
the description of Msp.
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3. Numerical results

The main aim of numerical calculations is to investigate the influence of the
local nonlinearity with the hard-type characteristic described by irrational
functions (2.2) on the behaviour of the considered discrete-continuous sys-
tems. This is done on the basis of the amplitude-frequency curves for angular
displacements of the two-mass and the three-mass torsional systems for selec-
ted parameters such as the exponent w, the coefficient kw, the amplitude of
the external moment and damping coefficients which are connected with the
nonlinear effects.

The external moment M(t) appearing in equations (2.10) can be arbitrary.
Similarly to the investigations of nonlinear discrete systems, it is assumed in
the form of the following harmonic function M(t) = M0 sin(pt), where p is
the dimensionless loading frequency, M0 is the loading amplitude and the
discussion is focussed on the solutions in steady states.

Numerical results given below are exemplary. Some comparable calcula-
tions given in Pielorz (1995) for the special case of a discrete-continuous mo-
del with the local nonlinearity shown in Fig. 1, confirm the correctness of the
results obtained by means of the wave approach. They are done for a system
consisting of a single shaft with the right-hand end being fixed, using the wa-
ve method and the method of separation of variables, neglecting the internal
damping and assuming that the cubic nonlinearity is of the hard type.

During the determination of amplitude frequency curves for angular di-
splacements, a jump phenomenon is observed, i.e., there exist values for the
frequency of the external moment M(t) where displacement amplitudes jump
from higher to lower values.
Equations (2.10) are solved from z = 0 in two manners: with the zero

initial conditions for each p and with nonzero initial conditions in such a
way that the last values for solutions become new initial conditions for the
next value of p. Equations (2.10) are equations with a retarded argument,
so these new initial conditions ought to be known in appropriate intervals of
the lengths 2li as it is required in (2.10). Amplitude jumps take place for
smaller values of frequencies p in the case of zero initial conditions for each p.
It should be pointed out that the jump phenomenon is typical for nonlinear
discrete systems (cf. Hagedorn, 1981; Szemplińska-Stupnicka, 1990).

3.1. Two-mass system

The two-mass system is characterized by the following parameters

Kr = 0.05 k1 = 0.05 N = 1

l1 = 1 l2 = 1 E2 = 0.8
(3.1)
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The remaining parameters appearing in (2.10) can vary.

Diagrams in Fig. 2 and Fig. 3 show that using the wave approach one can
determine displacement amplitudes in arbitrary cross-sections. They are plot-
ted in five cross-sections x = 0, 0.25. 0.5, 0.75, 1.0 for w = 3.25, kw = 0.005,
M0 = 1.0, d0 = di = Di = 0.1. The diagrams in Fig. 2 contain two resonant
regions (ω1 = 0.126, ω2 = 0.351), while in Fig. 3 the third resonant region
(ω3 = 3.171). From diagrams in Fig. 2 it follows that the jump phenomenon
is observed in the second resonant region for all considered cross-sections, and
the both jumps occur for the same values of the frequency p in these cross-
sections. In the first resonant region, the maximal amplitudes decrease from
the cross-section x = 1.0 to the cross-section x = 0, while in the second reso-
nant region from x = 0 to x = 1.0. In the third region, the maximal amplitude
occurs in x = 0.5, while the smallest one in x = 1.0 and no nonlinear effects
are noticed there.

Fig. 2. Amplitude-frequency curves for angular displacements in x = 0, 0.25, 0.5,
0.75, 1.0 for the two-mass system with w = 3.25, kw = 0.005 and M0 = 1

Nonlinear effects are caused directly by the nonlinear moment Msp(t) de-
scribed by functions (2.2). They are also connected with the amplitude M0
of the external moment and with the external and internal damping. In the
further numerical analysis, the effect of the exponent w, the parameter kw
standing by the nonlinear term in (2.2), the amplitude M0 of the external
moment and damping are investigated. All results concern the solutions in
the cross-section x = 0, where the nonlinear discrete element is introduced
and the first two resonant regions because for p > 1.5 no nonlinear effects are
observed.
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Fig. 3. Amplitude-frequency curves for angular displacements in the third resonant
region for the two-mass system with w = 3.25, kw = 0.005 and M0 = 1

Amplitude-frequency curves for w = 1.9, 2.25, 2.5, 2.75, 3.0, 3.25 with
kw = 0.005, M0 = 1.0, d0 = di = Di = 0.1 are plotted in Fig. 4. From these
diagrams it follows that the maximal displacement amplitudes decrease with
the increase of the exponent w and the distances between jumps increase with
the increase of w. No amplitude jumps are observed for w = 1.9 and 2.25.

Fig. 4. The effect of w for the two-mass system in x = 0 with kw = 0.005 and
M0 = 1

The effect of the coefficient kw is shown in Fig. 5 for w = 3.25, M0 = 1.0,
d0 = di = Di = 0.1. It is assumed that kw = 0.0001, 0.001, 0.003, 0.005, 0.01.
One can see that the maximal amplitudes decrease with the increase of kw
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while distances between amplitude jumps increase with the increase of kw. No
jumps are observed when kw = 0.0001.

Fig. 5. The effect of kw for the two-mass system in x = 0 with w = 3.25 and
M0 = 1

Amplitude-frequency curves for angular displacements plotted in Fig. 6 for
M0 = 0.1, 0.25, 0.5, 1.0 with w = 3.25, kw = 0.005 and d0 = di = Di = 0.1
inform on the effect of the amplitude of the external moment. From these
curves it follows that the maximal amplitudes and jump distances increase
with the increase of M0. No jumps are noticed for M0 = 0.1.

Fig. 6. The effect of M0 for the two-mass system with w = 3.25 and kw = 0.005
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In Fig. 7, the effect of damping coefficients is presented for d0 = di = Di =
0.05, 0.1, 0.2, 0.3 with w = 3.25, kw = 0.005, M0 = 1.0. It is seen that the
maximal amplitudes in the second resonant region and the distances between
amplitude jumps decrease with the increase of d0.

Fig. 7. The effect of damping for the two-mass system

3.2. Three-mass system

Similar numerical calculations as for the two-mass system are performed for the
three mass system using equations (2.10) with the following basic parameters

Kr = 0.05 k1 = 0.05 N = 2

l1 = l2 = 1 E2 = E3 = 0.8 B2 = 1
(3.2)

In Fig. 8 and Fig. 9, the amplitude-frequency curves for angular displacements
in the cross-sections x = 0, 0.5, 1.0, 1.5, 2.0 of the three-mass system are plot-
ted with w = 3.25, kw = 0.005, M0 = 1.0 and d0 = di = Di = 0.1. Diagrams
in Fig. 8 contain three resonant regions (ω1 = 0.089, ω2 = 0.261, ω3 = 0.376),
while the diagrams in Fig. 9 the fourth resonant region (ω4 = 3.156). From
Fig. 8 it follows that in the first resonant region the maximal amplitudes de-
crease with the decrease of x, in the third resonant region they decrease with
the increase of x, while in the second resonant region no regularity of this type
occurs. The jump phenomenon is observed in the third resonant region with
the same distances between jumps taking place at the same frequencies p of
the external moment for all considered cross-sections. From Fig. 9 it follows
that no nonlinear effects are observed in the fourth resonant region, and that
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the highest amplitude occurs in the cross-section x = 0.5, while the smallest
one in x = 2.0.

Fig. 8. Amplitude-frequency curves for angular displacements in x = 0, 0.5, 1.0, 1.5,
2.0 for the three-mass system with w = 3.25, kw = 0.005 and M0 = 1

Fig. 9. Amplitude-frequency curves for angular displacements in the fourth resonant
region for the three-mass system with w = 3.25, kw = 0.005 and M0 = 1

Further numerical results concern the cross-section x = 0 where the local
nonlinearity is introduced and three resonant regions because for p > 1.5 no
nonlinear effects are seen.
The effect of the exponent w is shown in Fig. 10 where amplitude-frequency

curves are plotted for w = 1.9, 2.25, 2.5, 2.75, 3.0, 3.25 with kw = 0.005,
M0 = 1.0, d0 = di = Di = 0.1. From diagrams in Fig. 10 it follows that the
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maximal amplitudes decrease with the increase of w and the jump distances
decrease with the decrease of w. No jumps are noticed for w = 1.9 and 2.25.

Fig. 10. The effect of w for the three-mass system in x = 0 with kw = 0.005 and
M0 = 1

In Fig. 11, amplitude-frequency curves are presented for kw = 0.0001,
0.001, 0.003, 0.005, 0.01 with w = 3.25, M0 = 1.0 and d0 = di = Di = 0.1.
They indicate that the maximal displacement amplitudes decrease with the
increase of the coefficient kw standing by the nonlinear term in irrational func-
tions (2.2) and that the distances of jumps increase with the increase of kw.
No jumps occur for kw = 0.0001.

Fig. 11. The effect of kw for the three-mass system in x = 0 with w = 3.25 and
M0 = 1
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Diagrams in Fig. 12 plotted for M0 = 0.1, 0.25, 0.5, 1.0 and for w = 3.25,
kw = 0.005, d0 = di = Di = 0.1 show the effect of the amplitude of the external
moment on amplitudes of angular displacements. From them it follows that
the maximal amplitudes and jump distances decrease with the decrease of M0.
For M0 = 0.1 and 0.25 no jumps occur.

Fig. 12. The effect of M0 for the three-mass system in x = 0 with w = 3.25 and
kw = 0.005 and M0 = 1

Fig. 13. The effect of damping for the three-mass system in x = 0 with w = 3.25,
kw = 0.005 and M0 = 1

The effect of damping is shown in Fig. 13 for d0 = di = Di = 0.05, 0.1,
0.2, 0.3 with w = 3.25, kw = 0.005, M0 = 1.0. From Fig. 13 it follows that the
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maximal amplitudes and the distances of jumps decrease with the increase of
damping. For d0 = 0.3 no jumps are noticed.

4. Final remarks

From the above discussion, it follows that irrational functions can be inclu-
ded for the description of local nonlinearities with the characteristic of a hard
type in multi-mass discrete-continuous torsional systems investigated by me-
ans of the method using wave solutions to equations of motion. The irrational
functions describe weak and strong nonlinearities together with a linear ca-
se. The use of them give more possibilities for the description of appropriate
experimental data.

Numerical calculations show the effect of parameters occurring in the ir-
rational functions on the behaviour of the two- and three-mass systems. One
can notice that nonlinear effects in the form of the jump phenomenon are ob-
served in the second resonant region for the two-mass system, and in the third
resonant region for the three-mass system.
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Drgania skrętne układów dyskretno-ciągłych z lokalną nieliniowością

o charakterystyce typu twardego

Streszczenie

Praca dotyczy nieliniowych drgań wielomasowych układów odkształcanych skręt-
nie złożonych z wałów połączonych bryłami sztywnych. W układach tych uwzględ-
niono lokalną nieliniowość o charakterystyce typu twardego. Nieliniowość ta została
opisana za pomocą funkcji niewymiernych. W rozważaniach zastosowano podejście
wykorzystujące rozwiązanie falowe równań ruchu. Obliczenia numeryczne wykona-
no dla układu dwumasowego i układu trzymasowego. Skoncentrowano się w nich na
efektach nieliniowych w rozpatrywanych układach.
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