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A computer model of a tilt-rotor has been developed for calculating perfor-
mance, simulating flight and investigating stability and control. The model
is composed of a fuselage, wings, an empennage, engine nacelles and ro-
tors. Tiltrotor equations of motion have been obtained by summing up
inertia, gravity and aerodynamic loads acting on each part of the aircraft.
Aerodynamic loads at wings, empennage and rotor blades have been cal-
culated using a quasisteady model. For rotor induced velocity, the Glauert
model has been used. The influence of the rotor inflow wing and empen-
nage aerodynamic loads has been found using the actual value of induced
velocity. The computer program of tilt-rotor model has been developed in
the MatLab environment. The sub-programs for load calculation have been
supplemented by modules for calculation of trim states and stability and
control matrices. During the first stage of model investigation, steady fli-
ght conditions were calculated, which gave insight into rotorcraft behaviour
and model quality.
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Notations

Indicies

a – aerodynamic
b – inertia
c – related to three-dimensional body (fuselage, nacelle)
f – fuselage
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g,G – gravity
h – horizontal stabilizer
i – inertia
I = 1 – element (wing, nacelle, rotor) on right side of aircraft
I = 2 – element (wing, nacelle, rotor) on left side of aircraft
J = 1, 2, 3 – rotor blade index of i-th rotor
m – aerodynamic moment, moving element, mass
n – nacelle
p – aircraft, fuselage
r – rotor

Matrices and vectors

A – rotation matrix of moving element, A = A(φ,ϕ, γ)
AG – aircraft rotation matrix
Ar – transformation matrix of coordinate system in airfoil
AV – velocity matrix
C – control vector, C = [τ, δw, δh, δv,Θ]

⊤

Ix – inertia matrix of x-th element
k() – coefficients of inflow due rotors and wings

Qxy – y-th loads of x-th element, Qxy = [F xy,Mxy]
⊤

V – vector of linear velocity in Opxpypzp, V = [U, V,W ]
⊤

V a – section velocity
V c – vector of linear velocity of three-dimensional body
U – induced velocity in Opxpypzp
W – wind velocity in Opxpypzp
∆W () – inflow due rotors and wings in Opxpypzp
X – vector of aircraft motion,

X = [V ,Ω,xg,Φ]
⊤ = [U, V,W,P,Q,R, xg , yg, zg, Φ,Θ, Ψ ]

⊤

Y x – state vector of x-th element
g – vector of gravity acceleration
gp – vector of gravity acceleration in Opxpypzp
rCG – position of C.G. in Opxpypzp
rnCG – position of C.G. in moving element coordinate system
rn – position of moving element coordinate system in Opxpypzp
xg – translation of aircraft relative to ground, xg = [xg, yg, zg]

⊤

Ω – vector of angular velocity in Opxpypzp, Ω = [P,Q,R]
⊤

Ωp – velocity matrix of plane (non-moving element)
Ωm – velocity matrix of moving element
Φ – Euler’s angles described as vector, Φ = [Φ,Θ, Ψ ]⊤

Θ – control of rotor swash-plates, Θ = [Θ01, Θ02, Θ11, Θ12, Θ21, Θ22]
⊤
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δw – inclination angles of wing flaps (ailerons),
δw = [δw11, δw12, δw21, δw22]

⊤

δh – inclination angles of elevators, δh = [δh1, δh2, δh3]
⊤

δv – inclination angles of rudders, δv = [δv1, δv2]
⊤

ω – angular velocity of rotors, ω = [ω1, ω2]
⊤

τ – angle of nacelle tilt

Coefficients

Ar – characteristic area
Cx(α, δ) – drag coefficient (in 2D flow)
Cz(α, δ) – lift coefficient (in 2D flow)
Cmy(α, δ) – aerodynamic pitch moment coefficient (in 2D flow)
Cxc(α, δ) – drag coefficient (in 3D flow)
Cyc(α, δ) – side force coefficient (in 3D flow)
Czc(α, δ) – lift coefficient (in 3D flow)
Cmxc(α, δ) – aerodynamic bank moment coefficient (in 3D flow)
Cmyc(α, δ) – aerodynamic pitch moment coefficient (in 3D flow)
Cmzc(α, δ) – aerodynamic yaw moment coefficient (in 3D flow)
Rr – characteristic length
Va – modulus of motion velocity of section Va = |V a|
c(y) – chord (characteristic dimension)
g – gravity acceleration
mx – mass of x-th element
α – angle of attack
β – slip angle
δ – angle of inclination of steering element
ρ – air density

1. Introduction

In the recent years, increasing interest in tilt rotor technology is observed
among rotorcraft community. The development of V-22 aircraft spurred a gre-
at research and development effort in tilt rotor aerodynamics (McVeigh et
al., 2004), acoustics (Polak and George, 1998), flight control (Weakley et al.,
2003), aeroelasticity (Nixon et al., 2003), etc. The next tilt rotor project, Bell-
Agusta BA 609, initiated a tilt-rotor design effort in Europe. Recently, several
European research projects concerning tilt rotor technology are going on or
have already been completed (Cicale, 2003), and some new initiatives appe-
ared. Despite the expanding interest in development and applications of the
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tilt-rotor, there are not many papers published in generally accessed literature
presenting a comprehensive approach to the tiltrotor modelling and simulation
(Polak and George, 1998; McVicar and Bradley, 1992; Srinivas and Chopra,
1996). It was a background for developing at Warsaw University of Technolo-
gy, a computer model of the tiltrotor for flight simulation and analysis of trim,
stability and control in various flight conditions.

2. General model of mobile objects

A tiltrotor computer model was constructed using the generic model of mobile
objects, developed at Warsaw University of Technology, to simplify model
derivation and simulation of motion for various air, water and land vehicles.
This software in the MatLab environment is composed of a main program
and sub-programmes performing computations frequently done in dynamics
of airplanes, helicopters, sea vessels, etc.

The possibility of the general approach stems from the fact that inertia,
gravity and aerodynamic/hydrodynamic loads that act on the vehicles con-
sidered are described by the same formulae in reasonably chosen coordinate
systems. As a consequence, using this software, computer models of six de-
grees of freedom motion of various vehicles may be prepared in a fast and
efficient way by a proper selection of systems of coordinates and application
of supporting subroutines.

Within this software, a vehicle is modelled as the base part (”fuselage”) to
which other parts/elements of it are joined. These parts may be fixed to the
fuselage or may rotate and/or translate relative to it.

Equations of motion are derived in the main system of coordinates fixed
to the fuselage by summing loads acting on all elements of the vehicle. These
loads are calculated in local coordinate systems fixed to the elements and then
transformed to the system of coordinates of the fuselage. It is easy to change
the number of elements of a model by adding new or deleting the existing
elements and enriching the methods of calculating loads by application of
various methods. The computer program for modelling vehicle dynamics is
constructed in the same modular way, by applying subroutines for calculating
each type of loads and their transformation to the main ”fuselage” system of
coordinates.

Various subprograms were developed for frequently performed operations
like calculation of inertia matrices, flow velocities in different coordinate sys-
tems, angles of attack, slip angles, table-look procedures for aerodynamic co-
efficients, etc.

The generic model was used for the tilt rotor and sea vessel analysis.
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3. Tiltrotor model

The tiltrotor model investigated in this study was based on V-22 Osprey air-
craft. Due to the modular structure of the software, it is possible to adjust
the model to the concepts of tilt-wing, a partly tilting wing or other rotorcraft
with different empennage, wings, nacelles, etc.
The tiltrotor (Fig. 1) model is composed of a fuselage, two wings with two

trailing edge flaps at each wing, nacelles mounted at the wings tips, rotors
mounted in front of the nacelles and a horizontal stabilizer with three flaps
and two vertical fins with one rudder mounted on each fin. All components
of the aircraft are rigid. The rotors have three blades fixed to the shaft by a
pitch bearing. The pitch angles of rotor blades are controlled by swash-plates
for constant (collective) and harmonic (cyclic) components.

Fig. 1. Configuration of the tiltrotor

The tiltrotor equations of motion are derived in the aircraft coordinate
system Opxpypzp fixed to the fuselage (Fig. 2). The centre Op of the aircraft
system is placed in the point, where rotor shafts intersect with the fuselage
plane of symmetry. The Opxp axis lies in the longitudinal symmetry plane of
the fuselage, parallel to the horizontal reference plane of the aircraft and is
directed ”to the cockpit of the aircraft”. The Opzp axis lies in the longitudinal
plane of symmetry of the fuselage and is directed down to the undercarriage.
The Opyp axis is pointing right, while looking along the Opxp axis.
The two other systems of coordinates important for simulation of aircraft

motion (Fig. 2) are the ground coordinate system Ogxgygzg fixed to the ground
and the gravity coordinate system OGxGyGzG related to the gravity accelera-
tion. The centre of the ground coordinate system Og may be placed in any
selected point in space (for instance: a selected point on the airfield). The
aircraft motion is simulated from this point. The Ogzg axis is vertical, it co-
incidences with the direction of the Earth gravity acceleration and is directed



886 M. Miller, J. Narkiewicz

Fig. 2. Systems of coordinates of an aircraft

along its positive value. The axes Ogxg and Ogyg lie in the horizontal plane,
i.e. the plane perpendicular to the direction of gravity acceleration. The Ogxg
lies along the local geographical meridian pointing north, and the Ogyg axis
points east.
The centre OG of the gravity system of coordinates coincides with the

centre of fuselage Op. The axis of the gravity system is parallel to the axis
of the ground coordinate system. The gravity coordinate system is used for
describing the position and attitude of the aircraft. The gravity system is
translated from the inertia system by the vector xG(t) = [xG(t), yG(t), zG(t)]

⊤,
which is a function of time. The vector xG(t) describes the translation of the
tiltrotor in space. It should be noted here that the point OG may not be the
centre of gravity of the aircraft.
The relation between the gravity and the aircraft system of coordinates is

described by Euler’s angles of rotation. The relation between the coordinates
in both systems is given by an equation

xp = AG(Ψ,Θ,Φ)xG (3.1)

where the rotation matrix AG has the form

AG =
(3.2)

=







cosΨ cosΘ sinΨ cosΘ − sinΘ
cosΨ sinΘ sinΦ− sinΨ cosΦ sinΨ sinΘ sinΦ+ cosΨ cosΦ cosΘ sinΦ
cosΨ sinΘ cosΦ+ sinΨ sinΦ sinΨ sinΘ cosΦ− cosΨ sinΦ cosΘ cosΦ







Aircraft motion is described by the vector

X = [V ,Ω,xg,Φ]
⊤ = [U, V,W,P,Q,R, xg , yg, zg, Φ,Θ, Ψ ]

⊤ (3.3)

as a composition of four vectors:
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– translation velocity V = [U, V,W ]⊤

– rotation (rates) Ω = [P,Q,R]⊤

– Euler’s angles written in a vector form Φ = [Φ,Θ, Ψ ]⊤

– translation of the aircraft relative to the ground xg = [xg, yg, zg]
⊤.

3.1. Equation of motion

Equations of motion of the aircraft are derived using d’Alambert princi-
ple, summing up at the point Op all loads (forces and moments) acting on
the fuselage, wings, control surfaces, nacelles, and rotors. The system of six
equations of motion is obtained, which may be grouped as two subsystems for
forces and moments acting on the fuselage and wings (index p), two nacelles
(indices n1, n2) and two rotors (indices r1, r2)

F p + F n1 + F n2 + F r1 + F r2 = 0
(3.4)

M p +Mn1 +Mn2 +M r1 +M r2 = 0

Each element of the above equations consists of inertia, aerodynamic and
gravity parts

Q() = [F (),M ()]
⊤ = Q()i +Q()a +Q()g (3.5)

3.2. Inertia loads

The expression for inertia loads is obtained from the conservation of mo-
mentum, which after performing some mathematical manipulations, may be
written in the matrix form

Qpb = IpẎ p +ΩpIpY p (3.6)

where the tilt-rotor state vector Y p = [U, V,W,P,Q,R]
⊤ is composed of com-

ponents of aircraft translation velocity and rates. The inertia matrix has the
form

Ip =



















mp 0 0 0 Szp −Syp
0 mp 0 −Szp 0 Sxp
0 0 mp Syp −Sxp 0
0 −Szp Syp Ixp −Ixyp −Ixzp
Szp 0 −Sxp −Ixyp Iyp −Iyzp
−Syp Sxp 0 −Ixzp −Iyzp Izp



















(3.7)
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and the velocity matrix is

Ωp =



















0 −R Q 0 0 0
R 0 P 0 0 0
−Q P 0 0 0 0
0 −W V 0 −R Q

W 0 −U R 0 P

−V U 0 −Q P 0



















(3.8)

Expression (3.6) describes inertia loads acting on the fuselage and on parts of
the rotorcraft fixed to it, i.e. wings and control surfaces.

For parts of the aircraft rotating relative to the fuselage, i.e. nacelles
(Fig. 3) and rotors, the inertia loads are calculated as

Qmb = Im(Ẏ p + Ẏ m) + (Ωp +Ωm)Im(Y p + Y m) (3.9)

In (3.9), the inertia matrices of rotating elements are calculated in the
fuselage system of coordinates.

Fig. 3. Nacelle coordinate systems

Additional velocity matrices Ωm are added, containing in a general case the
rates and velocities of these elements relative to the fuselage. In the tiltrotor
case, they have the form
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Im =



















mm 0 0 0 Szm −Sym
0 mm 0 −Szm 0 Sxm
0 0 mm Sym −Sxm 0
0 −Szm Sym Ixm −Ixym −Ixzm
Szm 0 −Sxm −Ixym Iym −Iyzm
−Sym Sxm 0 −Ixzm −Iyzm Izm



















(3.10)

Ωm =



















0 −Rm Qm 0 0 0
Rm 0 −Pm 0 0 0
−Qm Pm 0 0 0 0
0 0 0 0 −Rm Qm
0 0 0 Rm 0 −Pm
0 0 0 −Qm Pm 0



















The nonlinear parts of equation (3.9) contain all accelerations acting on the
rotating elements, including gyroscopic effects.

3.3. Gravity loads

The gravity forces and moments are calculated first in the centres of gravity
of the fuselage and aircraft elements. Next, they are transformed to the cen-
tre Op of the fuselage system of coordinates. The vector of gravity acceleration
in the gravity system of coordinates has components

g = [0, 0, g]⊤ (3.11)

It is rotated with respect to the fuselage system of coordinates using the trans-
formation

gp = AG(Ψ,Θ,Φ)g (3.12)

The masses of fuselage, wings and empennage are accounted for together and
the gravity loads of these parts are calculated as fuselage gravity loads

F pg = mpgp = mpAGg
(3.13)

Mpg = rCG × F pg = rCG × (mpAGg)

where the vector rCG describes the position of C.G. of the fusela-
ge/wings/empennage relative to Op. The positions of C.G. of other parts of
the airplane in the local systems of coordinates are calculated as

rCG = rn + A(φ, θ, ψ)rnCG (3.14)

where: rn is the vector of C.G. of the given element relative to the fuselage
centre, A(φ, θ, ψ) – general description of the matrix of rotation of the local
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system of coordinates (fixed to the element) relative to the fuselage system of
coordinates (it should be defined separately for each rotating element of the
tilt-rotor), rnCG – vector of the position of CG of the element in the local
system of coordinates.

The gravity loads acting on other aircraft elements are transferred to the
fuselage system of coordinates by using formulae

F ng = mngp = mnAGg
(3.15)

Mng = [rn +A(φ, θ, ψ)rnCG]× F ng = [rn + A(φ, θ, ψ)rnCG]× [mnAGg]

3.4. Aerodynamics loads

In the generic model, two methods of calculation of quasi-steady aerody-
namic loads are used: a 2D model for elongated elements composed of airfoils
and a 3D model for solid bodies.

Fig. 4. Two-dimensional flow model

The two dimensional flow (Fig. 4) is used for wings, rotor blades and hori-
zontal and vertical stabilizers. For better description, some coordinate systems
are introduced:

– coordinate system of the mounting point of the element ONxNyNzN

– local airfoil coordinate systems Oaxayaza

– coordinate system fixed to the airfoil aerodynamic centre Oacxacyaczac

– coordinate system connected with the geometrically twisted airfoil
Oagxagyagzag

– coordinate system defined by the vector of velocity of the local airfoil
Oavxavyavzav

– coordinate system of local inflow of the airfoil OV xV yV zV .
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The transformation of the mentioned above coordinate systems can be descri-
bed as

xN = ry + rac + AagAavAaV xV = ry + rac + ArxV

where Ar = AagAavAaV .
The elongated element is divided along the span for cross sections in which

the two dimensional flow is assumed. In each cross section, the instant total
flow velocity (Fig. 4) is calculated as

V ()i = A
−1
r()A

−1(V +Ω × r() − AGW +U () +∆W ()) (3.16)

taking into account the velocities of:

a) motion of the fuselage and their aircraft elements in the inertia coordi-
nate system

b) motion of the air W due to wind, gusts, etc.

c) inflow due rotors and wings.

Ar() matrix is a substitute matrix describing rotations of the coordinate sys-
tems in airfoil (Fig. 4) from the system of the mounting point of the element to
the system of local velocity inflow (Ar = AagAavAaV ). The inflow due rotors
and wings ∆W () is calculated as

∆W () = k()(V +Ω × r() − AGW +U ()) (3.17)

where k() is a coefficient assumed for a given element.
On rotor blades, the rotor induced velocity U () obtained from Glauert’s

model is also taken into account while calculating flow velocity. Aerodynamic
loads acting in the ”aerodynamic centre” (AC) of the cross sections are cal-
culated using aerodynamic coefficients for the airfoil section obtained for the
actual airfoil angle of attack α and deflection δ of flaps (if they exist) by a
table look procedure. In the cross sections, the vectors of aerodynamic forces
and moments are calculated in the flow coordinate system as

dP = [dD, 0, dL]⊤ dM = [0, dM, 0]⊤ (3.18)

where:
— drag

dD =
1

2
ρc(y)V 2a Cx(α, δ)dy (3.19)

— lift

dL =
1

2
ρc(y)V 2a Cz(α, δ)dy (3.20)

— moment

dM =
1

2
ρc2(y)V 2a Cmy(α, δ)dy (3.21)
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Fig. 5. Three-dimensional airflow

The loads are transferred to the element local system of coordinates, integrated
along the span and transferred to the fuselage system of coordinates.

The fuselage and nacelles (Fig. 5) are treated as three-dimensional bodies.
Aerodynamic loads, as in the 2D case, are calculated in the centre of local,
flow coordinate system

P()a =
1

2
ρArV

2C()c(α, β)

(3.22)

M()a =
1

2
ρArRrV

2Cm()c(α, β)

using the local instant velocity V c = [Uc, Vc,Wc]
⊤ in the body aerodynamic

centre. The angle of incidence α and angle of slip β are calculated as

α = a sin
Wc

√

U2c + V
2
c +W

2
c

β = a sin
Vc

√

U2c + V
2
c

(3.23)

and the table look procedure is used for obtaining the aerodynamic coefficients.
The loads from the flow system of coordinates are transformed to the element
system of coordinates using the rotation matrix

AV =







− cos β cosα − sin β cos β sinα
− sin β cosα cos β sin β sinα
− sinα 0 − cosα






(3.24)

Finally, as in the 2D case, the loads are transformed from the element local
system of coordinates to the fuselage system of coordinates.
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4. Details of modelling tiltrotor parts

4.1. Fuselage

The inertia loads acting on the fuselage are calculated from formula (3.6),
gravity loads from (3.13) and the aerodynamic loads from (3.22). The iner-
tia matrix covers the fuselage, wings and empennage – elements fixed to the
fuselage.

4.2. Wings

The tiltrotor wings have prescribed planeform, twist and airfoil distribu-
tion along the span. At each wing, there are two flaps (ailerons) controlled
individually. Flap deflection angles δw = [δw11, δw12, δw21, δw22]

⊤ form a part
of control variables in the simulation of aircraft motion. The aerodynamic lo-
ads are calculated using the 2D model. The induced velocities of rotors are
included into velocity of wing airflow calculated in sections along the span.

4.3. Horizontal stabilizer

The horizontal stabilizer forms a part of the empennage and is mounted
at the fuselage tail. There are three flaps (elevators) at the trailing edge of the
stabiliser, controlled individually. The horizontal stabilizer may have arbitrary
airfoil shape and twist angle distribution along the span. The aerodynamic
loads are calculated using the 2D model. Influence of the induced velocity of
rotors is taken into account in the stabilizer sections along the stabilizer span
with the time delay due to the distance travelled from the rotor to empennage.
The elevator deflection angles, written as the vector δh = [δh1, δh2, δh3]

⊤ are
a part of the vector of control variables.

4.4. Vertical stabilizers

The vertical stabilizers are mounted at the tip of the horizontal stabilizer.
There is one flap (rudder) at the trailing edge of each of the two stabilizers,
controlled individually. The vertical stabilizers may have arbitrary airfoil sha-
pe and twist angle distributions along the span. The aerodynamic loads are
calculated using the 2D model. Influence of the induced velocity of the rotors
is taken into account in the proper sections along the stabilizer span with the
time delay due to the distance travelled from the rotor to empennage. The
rudder deflection angles δv = [δv1, δv2]

⊤ are a part of the vector of control
variables.



894 M. Miller, J. Narkiewicz

4.5. Engine nacelles

The engine nacelles are placed at the tip of each wing. They may rotate
about the axis perpendicular to the fuselage plane of symmetry. The nacelles
inertia loads are calculated using expression (3.10) and gravity loads using
expression (3.15). Aerodynamic loads are calculated using the 3D model. The
velocity of airflow around the nacelles contains inflow from the rotors and a
component due to rotation of nacelles about the fuselage axis. The angle of
nacelle rotation τ is included into the set of control variables.

4.6. Rotors

The rotors rotation axes are perpendicular to the axis of nacelle rotation
relative to the fuselage. When the rotor axes are in the horizontal position, the
right rotor rotates clockwise, and the left counter-clockwise looking from the
rear of the fuselage. For calculations of inertia loads, the rotors are treated as
rotating discs and in the hub system of coordinates, the inertia matrices have
the form

Iri =



















mri 0 0 0 0 0
0 mri 0 0 0 0
0 0 mri 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 Izri



















(4.1)

The final form of inertia matrices of rotors (3.10)1 results from nacelle and
rotors rotation about the fuselage axis.

Each rotor has three blades mounted to the shaft by pitch bearings. The
pitch of the rotor blades is controlled by the swash-plate, resulting in collective
and periodic control in the form

θij = θ0i + θ1i cos
(

Ωit+
2π

3
j
)

+ θ2i sin
(

Ωit+
2π

3
j
)

(4.2)

The blades may have arbitrary planeform, twist and airfoil distribution along
the span. The aerodynamic loads are calculated using strip theory with qu-
asisteady aerodynamic loads using the table-look procedure for calculations of
aerodynamic coefficient of airfoils (2D model described above). The induced
flow is calculated using Glauert’s model. The control of rotor swash-plates may
be written in the vector form Θ = [Θ01, Θ02, Θ11, Θ12, Θ21, Θ22]

⊤ containing
the sub-set of tiltrotor control variables.

The control vector of the tiltrotor

C = [τ, δw, δh, δv,Θ]
⊤ (4.3)
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consists of (respectively) tilt angle of nacelles, angles of deflection of ailerons,
elevators and rudders, pitch control of rotors, which is 16 control states. The
angular velocity of the rotor is assumed constant.

5. Calculation of trim in steady flight

Including inertia loads into the general form of equations of motion, the tilt-
rotor equations of motion have the form

IpẎ p +ΩpIpY p +
2
∑

i=1

(IniẎ ni +ΩniIniY ni) +
2
∑

i=1

(IriẎ ri +ΩriIriY ri) =

(5.1)

= Qpg +
2
∑

i=1

Qnig +
2
∑

i=1

Qrig +Qpa +
2
∑

i=1

Qnia +
2
∑

i=1

Qria

In a steady flight, the accelerations are zero and the equations of motion are
reduced to a system of 6 algebraic equations

Q = −ΩpIpY p −
2
∑

i=1

(IniẎ ni +ΩniIniY ni)−
2
∑

i=1

(IriẎ ri +ΩriIriY ri) +

(5.2)

+Qpg +
2
∑

i=1

Qnig +
2
∑

i=1

Qrig +Qpa +
2
∑

i=1

Qnia +
2
∑

i=1

Qria = 0

For trim conditions the equations of motion have the general form

Q(V p,Ωp,Φ, τ, δw, δh, δv,Θ) = 0 (5.3)

The values of trim controls in a steady flight are calculated using the
Levenberg-Marquardt method to minimise total loads (5.3) acting on the til-
trotor. This approach (Miller, 2004) allows one to obtain the trim states for
the cases when the number of calculated trim parameters is arbitrary, i.e. less,
equal or greater than the number of equations of motion.

Minimizing the nonlinear functions numerically leads to compution of local
minima, which may not be the real solution of the trim from the physical
point of view. To avoid such cases, the total loads acting on the tiltrotor in
a steady flight were monitored. Simulations of the tiltrotor flight were done
using controls calculated in the trim procedure to prove that the parameters
obtained by the minimisation method were correct.
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5.1. Data for simulation

The aim of simulation performed in this study was to check the validity of
the model and to get insight into tiltrotor behaviour in the trimmed state. Data
of V-22 were used in the simulation. A part of the design data was taken from
accessible literature (e.g., Miller and Narkiewicz, 2003; [11]). For parameters
with no available data, the values were assumed as for corresponding parts of
a similar aircraft (Miller, 2004). Base dimensions of the simulated tiltrotor are
shown in Fig. 6 (Miller and Narkiewicz, 2003) and given in Table 1.

Fig. 6. Dimensions of V-22

Table 1. Tiltrotor data

Rotor System

Number of blades 3

Blades tip speed m/s (fps) 201.75 (661.90)

Diameter m (ft) 11.58 (38.00)

Disc area m2 (ft2) 210.70 (2 268.00)

Weights

Take off kg (lbs) 15 032 (33 140)

Dimensions

Length, fuselage m (ft) 1 748 (57.33)

Width, rotors turning m (ft) 25.55 (83.33)

Width, horizontal stabilizer m (ft) 5.61 (18.42)

Height, nacelles fully vertical m (ft) 6.63 (21.76)

Height, vertical stabilizer m (ft) 5.38 (17.65)



Tiltrotor modelling for simulation... 897

5.2. Results of simulations

Before simulating motion of the complete tiltrotor, separate modules and
complete codes were debugged. Next, for the tiltrotor data, the results of sim-
plified cases were checked for consistency with the proper reactions on the
input. For instance, analysis of the influence of each control surfaces (Miller,
2004; Miller and Narkiewicz, 2001) on the tiltrotor flight was done for the
selected flight phases (Swertfager and Martin, 1992). The tiltrotor flight si-
mulations were done for three tiltrotor flight modes: helicopter, airplane and
conversion.

The longitudinal, symmetrical cases of the flight are presented in this
paper. The side velocity V , angular velocities P , Q, R roll Φ and yaw Ψ

angles as well as the rudder deflection angles δv = δv1 = δv2 were assu-
med zero. The same values were assumed for the deflection of wing flaps
δw = δw11 = δw12 = δw21 = δw22, angles of elevators δh = δh1 = δh2 = δh3 and
collective control of the rotor pitch Θ0 = Θ01 = Θ02 for flaps on the wings
and elevator. The longitudinal cyclic control of the rotor was assumed symme-
trical and Θ1 = Θ11 = Θ12, whereas the lateral cyclic control unsymmetrical
Θ2 = Θ21 = −Θ.

During the trim calculations for the assumed values of forward U and
vertical W flight velocities, the tiltrotor pitch angle Θ, deflection of flaps on
the wing δw and elevators δh, collective Θ0 and cyclic Θ1 pitch of rotor blades
and the nacelle tilt angle τ were computed.

The airplane, conversion and helicopter modes of the tiltrotor flight were
considered.

The results of a steady flight in the airplane mode (horizontal with vertical
climb) are given in Fig. 7 - Fig. 10. The forward flight velocity was changed
within the range U = 10-180m/s, and the vertical velocity was changed within
the range W = −20-20m/s.

The tiltrotor pitch angle obtained from simulations was equal 0 for the
assumed flight conditions, and it was not presented in graphs. The calculated
deflection angles of wing flaps (Fig. 7) and elevators (Fig. 8) did not exceed
the values of available control surface deflections of V-22.

Fig. 7. Deflection of flaps



898 M. Miller, J. Narkiewicz

Fig. 8. Deflection of elevators

The collective control of the rotor (Fig. 9) is almost proportional to forward
speed. When the forward speed is low (below 60m/s), the minimal tilt angle of
nacelles (Fig. 10) assuring proper values of the lift is about 70◦. The deflection
of wing flaps is maximum for low forward speed, to balance the inclination of
lift from the rotors. The deflection of elevators is maximum, when the aircraft
is in the conversion mode because of the necessity to provide a proper tiltrotor
pitch moment. It has the maximum value when the conversion stops and the
rotor axis is in the horizontal position.

Fig. 9. Collective pitch

Fig. 10. Tilt angle of nacelles

5.3. Steady forward flight with vertical climb in conversion mode

In the conversion mode, a steady forward flight with vertical climb velocity
with possibile deflection angle of the nacelle was simulated. The forward flight
velocity was changed within the range U = 20-180m/s.
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As in the previous case, the values of calculated deflection angles of wing
flaps (Fig. 11) and elevators (Fig. 12) do not exceed the values of available
control for V-22. The collective pitch of rotor is approximately proportional
to forward speed. The deflection of wing flaps (Fig. 11) is maximum for low
forward speed. When the forward speed is low, the minimum tilt angle of
nacelles (Fig. 14) is about 55◦ assuring the proper aerodynamic lift. It becomes
smaller (about 43◦) when the forward speed increases.

Fig. 11. Deflection of flaps

Fig. 12. Deflection of elevators

Fig. 13. Collective pitch

Fig. 14. Tilt angle of nacelles
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5.4. Steady forward flight with vertical climb in helicopter mode

In the helicopter mode, a steady forward flight with vertical climb with the
tilt angle of the nacelles 90◦ was simulated. The forward flight velocity was
changed within the range U = −70-70m/s. The vertical velocity was changed
within the range W = −20-20m/s.

Fig. 15. Collective pitch

Fig. 16. Cyclic control (longitudinal)

Fig. 17. Deflection of flaps

For the assumed steady flight conditions, the negligible small value of pitch
angle of the tiltrotor is obtained. The collective control of rotor swash-plates
(Fig. 15) increases with the increase of vertical speed. The cyclic control of
rotor pitch (Fig. 16) varies in the opposite way: when the vertical speed in-
creases, the pitch angle of tiltrotor is also stabilized. The inclination angles
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Fig. 18. Deflection of elevators

of wing flaps (Fig. 17) and elevators (Fig. 18) obtained in calculations do not
exceed available values for V-22. In the range of negative forward speed, the
influence of flap deflection on tiltrotor motion is not substantial, but it beco-
mes noticeable at positive forward speed greater than 10-20m/s. The sign of
deflection of control surfaces depends on the direction of vertical speed.

5.5. Side flight in helicopter mode

In the side flight in the helicopter mode, the forward flight velocity was
changed within the range U = −70-70m/s, and the side flight velocity was
changed within the range V = −20-20m/s. The tiltrotor vertical velocity the
W = 0. The lateral cyclic pitch control was symmetrical Θ1 = Θ11 = Θ12 and
longitudinal cyclic control – unsymmetrical Θ2 = Θ21 = −Θ22. The aircraft
pitch and yaw angles, pitch and yaw rates and both rudder deflections were
assumed zero.

From equilibrium conditions, the roll angle of tiltrotor Φ, inclination angles
of wing flaps δw = δw11 = δw12 = δw21 = δw22, inclination angles of elevators
δh = δh1 = δh2 = δh3 and collective control of the rotor swash-plate Θ0 =
Θ01 = Θ02 were calculated. The results are shown in Fig. 19 - Fig. 24.

In these flight conditions, the tiltrotor roll angle depends on side velocity.
The deflections of flaps and elevators are small. The value of the cyclic pitch
control depends on the value of side speed and its sign.

Fig. 19. Deflection of flaps



902 M. Miller, J. Narkiewicz

Fig. 20. Deflection of elevators

Fig. 21. Collective pitch

Fig. 22. Roll angle of tiltrotor

Fig. 23. Cyclic control (lateral)

Fig. 24. Cyclic control (longitudinal)
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5.6. Stability and controllability

For stability analysis, of the tiltrotor the equations of motion are nume-
rically linearized with respect to state and control variables for given trim
values. This allows analysis of the control matrix and calculation of eigenva-
lues and eigenvectors for examination stability. This option of model analysis
allows one to investigate the stability and controllability of the aircraft.

For the assumed tiltrotor design data, both stability and controllability
analysis was made for the whole forward speed range of the tiltrotor. In the
range of velocity considered, complex eigenvalues with negative real parts were
obtained only for low velocity of forward flight (from 60 to 70m/s), when
the conversion mode occurs. In other forward speed, negative real parts of
eigenvalues were obtained. These results show that in the steady flight, the
aircraft is stable in the whole range of flight velocities.

Analysing the control matrix, it may be stated that the control variables
influence the related loads with minor cross-coupling effects. For the airplane
mode, this is summarized in Table 2.

Table 2. Controllability analysis in the airplane mode

Loads
Control elements

airplane mode transition helicopter mode

Fx rotor collective
pitch

nacelles tilt angle,
rotor collective
pitch

rotor longitudinal
cyclic pitch

Fy rudders (no lateral
cyclic pitch)

rudders (no lateral
cyclic pitch)

rotor lateral cyclic
pitch

Fz flaps, elevators (not
nacelles tilt nor
longitudinal cyclic
pitch used)

flaps, nacelles tilt,
rotor collective
pitch, elevators
(smaller influence)

rotor collective pitch

Mx flaps, elevators,
rotor collective
pitch

deflection of flaps,
rotor collective
control

asymmetric rotor
collective pitch

My elevators (rotor
longitudinal cyclic
pitch not used)

deflection of
elevators, rotor
collective control

rotor longitudinal
cyclic pitch
(symmetric)

Mz rotor collective
pitch, rudders

rotor collective
pitch, rudders

rotor collective
pitch, rotor
longitudinal cyclic
pitch
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5.7. Results of numerical simulations

For the calculated steady flight parameters, simulations of flight were car-
ried out to check their accuracy. The steady flight in the airplane mode was
simulated for: U = 180m/s, V = W = P = Q = R = 0, Φ = Θ = Ψ = 0
and the trim parameters obtained from calculations were: deflection of wing
flaps δw = −6.75

◦, elevators δh = 7.23
◦ and collective pitch of the rotor

Θ0 = 45.91
◦.

The tiltrotor displacements are presented in Fig. 25 (horizontal) and in
Fig. 26 (vertical). The variations of attitude angles are very small (below 0.1◦).

Fig. 25. Horizontal displacement in the airplane mode

Fig. 26. Vertical displacement in the airplane mode

It can be seen that during 1800m distance, the flight altitude decreased by
about 0.1m and side translation was about 0.1m to the left. These values are
attributed to numerical errors in calculation of the trim values. Similar results
were obtained in the transition and helicopter modes.

6. Conclusions

The tiltrotor computer model was developed for flight simulation, trim stabi-
lity and control analysis. The model is composed of rigid elements: fuselage,
wings, empennage, rotors, but due to the modularity of the code these as-
sumptions may be easily released. The design parameters of V-22 tiltrotor
were used for simulations. Some data of the tiltrotor had to be assumed, and
there was no possibility to compare the results of numerical simulations with
the flight data. On the grounds of results of calculations performed, it may be
concluded that the developed model of the tiltrotor works properly.
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A tiltrotor is a complex rotorcraft, and several simplifying assumptions
had to be applied. They might be released by adjusting the model for specific
needs of a particular helicopter.
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Modelowanie tiltrotora dla symulacji w różnych stanach lotu

Streszczenie

Opracowano symulacyjny model statku powietrznego typu tiltrotor przeznaczony
do symulacji lotu oraz analizy osiągów, stabilności i sterowania. Model wiropłata zło-
żony jest z kadłuba, skrzydeł, usterzenia ogonowego, gondoli silnikowych i wirników.
Równania ruchu zostały uzyskane przez sumowanie obciążeń od sił bezwładności, gra-
witacyjnych i aerodynamicznych działających na każdy element statku powietrznego.
Obciążenia aerodynamiczne skrzydeł, stateczników i łopat wirników zostały obliczo-
ne z zastosowaniem quasistacjonarnego modelu opływu. Do wyznaczania prędkości
indukowanej wirników zastosowano model Glauerta. Wpływ strumienia zawirniko-
wego na skrzydła i stateczniki jest obliczany z wykorzystaniem aktualnej wartości
prędkości indukowanej wirników. Program do modelowania wiropłata został opraco-
wany w środowisku MatLab. Program zbudowany jest z modułów obliczeń obciążeń
poszczególnych elementów wiropłata, które wykorzystywane są również do wyznacza-
nia warunków lotu ustalonego, stateczności i sterowności. Podczas pierwszego etapu
badań wyznaczono warunki ustalonego lotu tiltrotora w różnych konfiguracjach, co
pozwoliło zbadać zachowanie i potwierdzić poprawność modelu.
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