
JOURNAL OF THEORETICAL

AND APPLIED MECHANICS

44, 4, pp. 837-848, Warsaw 2006

PLASTIC INTERFACIAL SLIP OF PERIODIC SYSTEMS
OF RIGID THIN INCLUSIONS UNDERGOING

LONGITUDINAL SHEAR

Vasyl A. Kryven

Faculty of Control Measurements and Computer Systems, Electrical Ternopil State Technical

University, Ternopil, Ukraine

e-mail: mmethod@tu.edu.te.ua

Georgiy T. Sulym

Faculty of Mechanical Engineering, Bialystok University of Technology, Poland

e-mail: sulym@pb.bialystok.pl

Myrosłava I. Yavorska

Faculty of Control Measurements and Computer Systems, Electrical Ternopil State Technical

University, Ternopil, Ukraine

e-mail: mmethod@tu.edu.te.ua

Plastic interfacial slip at the longitudinal shear of double periodic sys-
tems of thin rigid inclusions in elasto-plastic solids is investigated. Pla-
stic deformations are considered to be localized in the thin layers on the
inclusion-matrix boundary at the inclusion tips. The length of plastic
layers and the rupture displacement value at the inclusions tips caused
by plastic interfacial slip are determined. Particular cases of uniperio-
dical parallel or collinear inclusion systems are analyzed in detail.
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1. Introduction

While investigating mechanical properties of composite materials, the influence
on stress and strain states of inclusions of most various forms and configura-
tions should be given into account (Vanin, 1985). Especially, stress-deformed
state investigations in bodies with periodic systems of inclusions represent con-
siderable interest for the strength theory of composites, reinforced materials
and for prediction and optimization of their deformation characteristics. For
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linear-elastic bodies, this problem was investigated in a lot of works (Bere-
gnytsky et al., 1983; Deliavsky et al., 1998), but for elastic-plastic bodies, has
been studied insufficiently.

Fig. 1. Geometrical scheme of the problem

There are two approaches to plastic deformation analysis near stress con-
centrators. The first of them assumes that plastic deformations are located
in a region with an unknown boundary (a continuum plastic zone). In the
second ome, it is supposed that the plastic deformations are concentrated
in some layers with almost vanished thickness (discrete linear plastic zones).
Both kinds of zones are observed in experimental works. The localization of
plastic deformations in thin layers was found independently with the shape
of concentrators: for tension of thin (Leonow et al., 1963) and thick (Kamin-
skij et al., 1994) plates with cracks, for tension of plates with circular holes
(Rabotnow and Stankiewicz, 1965) and for torsion of circular smooth shafts
(Nadai, 1954). Plastic deformations are often located in plastic layers, called
Lüders-Czernov’s bands (Nadai, 1954; Sokołowskij, 1969) for materials with
sharp transitions between the elastic and plastic states on the stress-strain
curve with a well seen plastic flow zone. It should be emphasized that discre-
te linear plastic zones are not an absolute alternative for continuum zones. In
that case, when the number of discrete plastic zones increases, it can be shown
(Kryven, 1983) that in the limit a continuum zone is obtained.

The thin layered localizations of plastic zones on interfaces between inclu-
sions and a matrix can lead to separate inclusions, which has great influence
on the material strength. This phenomenon should be studied in detail.
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2. Common case of the double-periodic problem

2.1. Problem formulation

Within the framework of antiplane deformation we consider a double-
periodic problem connected with the plastic interfacial slip of thin rigid plate
inclusions forming a rectangular lattice in an ideal elastic-plastic body with
the Treska-St. Venant or Huber-Mises-Hencky yield condition

τ2yz(x, y) + τ
2
xz(x, y) = k

2

k is the yield limit of the material subject to shear. The inclusions occupy the
sectors x = 2na, |y+2mh| ¬ l (n,m ∈ Z), where 2a, 2h are distances between
the inclusion centers in horizontal and vertical directions respectively.

Fig. 2. Scheme of the conformal mapping

Consider now the case, when the non-zero component w(x, y) of the displa-
cement vector is symmetric with respect to straight-lines directed along the
inclusions axis and asymmetric with respect to straight-lines passing across
the inclusion centers and directed perpendicular to the inclusions.
We assume also that conditions of ideal soldering with the matrix are

satisfied before loading, and the plasticity zones arising as a consequence of
the loading are very thin layers adjoined to the inclusions and they initiate
from the points of maximum stress concentrations. It means that we suppose
that the borders of plasticity zones are thin layers and areas of inclusions
x = 2na± 0, L ¬ |y+2mh| ¬ l, where the length of the plasticity strips l−L
must be determined (2L is the length of the inclusion ideal contact zone).
The stress field is determined by two non-zero stress tensor compo-

nents τxz(x, y) and τyz(x, y), and according with Hooke’s law we have
τxz(x, y) = µ∂w/∂x, τyz(x, y) = µ∂w/∂y (µ – shear modulus of the mate-
rial). Taking into account geometrical symmetry of the problem, we assume
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that the body loading is such that on the boundary of a periodic rectangle
((2n − 1)a; (2m− 1)h), the shear stress τxz = 0. Let us denote the stress τyz
in the tips of the periodic rectangle by τ0 and determine the composite stress-
deformed state considering τ0 as given. A constant τ0 determine the loading
of the body.
According with the equilibrium equations and Hooke’s law, the stress ten-

sor components τxz, τyz in the elastic part of the body are described by an
analytical function τ(ζ) = τyz + iτxz of the complex variable ζ = x + iy.
Due to periodicity of the problem, it is sufficient to determine them in the
rectangle −a ¬ x ¬ a, −h ¬ y ¬ h. The function τ(ζ) is analytical in this
rectangle with a notch along the segment x = 0, |y| ¬ l. Due to symmetry of
the problem instead of the periodic rectangle, it is sufficient to consider the
rectangle ABCD: 0 ¬ x ¬ a, 0 ¬ y ¬ h.
The following conditions must be satisfied on its boundary:

|τ(ζ)| = k (ζ = iy, L ¬ |y| ¬ l)
Reτ(ζ) = 0 (ζ = iy, |y| < L)

Imτ(ζ) = 0 ((ζ = iy, l < |y| ¬ h) ∨ (ζ = x± ih, 0 ¬ x ¬ a)∨
∨(ζ = a+ iy, |y| ¬ h))

(2.1)

The first one is a plasticity condition τ2yz(ξ) + τ
2
xz(ξ) = k2 on the region

ζ = iy, L ¬ |y| ¬ l. The second condition is the ideal soldering condition
w(x, y) = 0 on the inclusion surface ζ = iy, −L ¬ y ¬ L without plastic slip.
The condition w = 0 on the given interval is equivalent to ∂w(x, y)/∂y = 0.
Due to Hook’s law, it can be reduced to τyz(0, y) = 0 (|y| ¬ L). The last
equation in (2.1) describes the condition τxz = 0 on the remained boundary
of the region ABCD.
Equation (2.1) together with the condition

τ(a, h) = τ0 (2.2)

formulae the boundary value problem for the function τ(ζ).

2.2. Solution to the problem

Boundary problem (2.1), (2.2) in the rectangular ABCD for the function
τ(ζ) can be easily reduced to a problem in a half-plane for a new function
τ1(η) by mapping η(ζ) the rectangular to the half-plane Reη  0. We search
a solution to problem (2.1), (2.2) as a composition of functions

τ(ζ) = τ1
[
−i sn

( iKζ
h
, c
)]

(2.3)
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where sn is a Jacobian elliptic function reversed to one given by the integral
equality

ζ =
h

K

η∫

0

dt√
(1 + t2)(1 + c2t2)

(2.4)

where K is the full elliptic integral of the first mode

K =
1∫

0

dt√
(t2 − 1)(1 − c2t2)

and c (0 < c < 1) is the modular of the elliptic integral-solution of the equation

aK = hK ′

and K ′ – full elliptic integral of the second mode

K ′ =

1/c∫

1

dt√
(t2 − 1)(1 − c2t2)

This gives a possibility of changing the boundary value problem for the func-
tion τ(ζ) in the rectangle to the problem for the new unknown function τ1(ζ)
in the half-plane (simpler for further calculations).
The function ζ(η) is a conformal mapping of the right half-plane Reη > 0

into the rectangle 0 < Reζ < a, −h < Imζ < h. The points 0, −i, −i/c, i/c, i
correspond to −ih, a− ih, a+ ih, ih, respectively. The infinitely remote point
(E′) of the plane corresponds to the point ζ = a (E). Therefore, it is easy to
verify that the function τ1(η) will satisfy the following boundary conditions
in the half-plane Reη  0:

|τ1(η)| = k
(
Reη = 0, sn

iKL
h
¬ |Imη| ¬ sn iKl

h

)

Reτ1(η) = 0
(
Reη = 0, |Imη| ¬ sn iKL

h

)

Imτ1(η) = 0
(
Reη = 0, |Imη| > sn iKl

h

)
τ1
( i
c

)
= τ0

(2.5)

For further simplification we will omit the modular at the argument of the
Jacobian elliptic function sn .
The solution to boundary problem (2.5) can be received in the way given

by Kryven (1979), by taking into account that according to conditions (2.5)
the conformal mapping τ1(ζ) is known a priori because the half-plane Reη  0
is transformed into the half-circle Reτ1 > 0, |τ1| < k with the cut along the
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segment τ0 < Reτ1 < k, Imτ1 = 0. After direct construction of the mapping,
we find the function τ(ζ) by substituting τ1(η) in (2.3)

τ(ζ) = k
sn Klh

√
sn 2 iKζh + sn

2KL
h − sn KLh

√
sn 2 iKζh + sn

2Kl
h

sn iKζh
√
sn 2Klh − sn 2KLh

(2.6)

Let us find the length of the plastic strips by taking into account the third
relation of condition (2.5). From the limit case in (2.6) at ζ → a + ih, after
some calculations we receive

sn
KL

h
=
k2 − τ201
k2 + τ201

sn
Kl

h

Here we have

τ01 =

√
p+ k2q −

√
p− k2q√

2q
p = k4 + τ40 − 2k2c2τ20 sn 2

Kl

h

q = 2τ20
(
1− c2 sn 2Kl

h

)

The quantity τ01 corresponds to the stress component τyz in the point (a, 0)
of the rectangular boundary.
To obtain the plasticity strip length d = l − L we determine L from the

function reversed to sn by integral (2.4).
The maximal displacement jump [[w]] = g is achieved in the inclusion tips,

and it is given by the following formula

g =
k

µ

l∫

L

τyz(+0, y) dy (2.7)

where µ denotes the shear modulus of the body material. We can find the
component τyz from formula (2.6)

τyz(0, y) = k
sn Klh

√
sn 2Kyh − sn 2KLh

sn Kyh
√
sn 2Klh − sn 2KLh

L < |y| < l

By substituting the variable sn 2(Ky/h) = t into integral (2.7), we have

g =
kh

2µK
sn Klh√

sn 2Klh − sn 2KLh

sn 2Kl
h∫

sn 2KL
h

√
t− sn 2KLh

t(1− t)(1− c2t2) dt (2.8)

Let us look at particular cases of the slip zone evolution problem for pe-
riodic systems of inclusions.
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3. The case of a collinear system of rigid thin equidistant
inclusions in the same plane

A collinear inclusion system is a consequence of the double-periodic systemone
when distance between the centers of inclusions in the horizontal direction
trends to infinity: a→∞. In this case, we have

sn
iKζ
h
→ sinh πζ

2h
sn
Kl

h
→ sin πl

2h
sn
KL

h
→ sin πL

2h

Therefore, at a→∞ we receive from (2.6)

τ(ζ) = k
sin πl2a

√
sinh2 πζ2h − sin2 πL2h − sin πL2a

√
sinh2 πζ2h − sin2 πl2h

sinh πζ2h
√
sin2 πl2h − sin2 πL2h

Due to the conditions τ∞yz = τ0, τ
∞
xz = 0, we have at infinity

τ0 = k
sin πl2h − sin πL2a√
sin2 πl2h − sin2 πL2h

The dependence of the plastic strips length on the load is given by

d = l − 2h
π
arcsin

(k2 − τ20
k2 + τ20

sin
πl

2h

)
(3.1)

Displacement jumps in the inclusion tips can also be expressed in a closed
form as a function of the load

g =
2kh
πµ

sin πl2h√
sin2 πl2h − sin2 πL2h

[f2(l)− f2(L)]

(3.2)

f2(y) = sin
πL

2h
arctan

[
sin

πL

2h
tan

(
arcsin

cos πy2h
cos πL2h

)]
− arcsin cos

πy
2h

cos πL2h

4. The case of a complanar system of rigid thin equidistant
inclusions

A periodic system of parallel inclusions is a consequence of the double-periodic
system when the distance between the inclusion centers in the vertical direction
trends to infinity: h→∞. Here we have

sn
iKζ
h
→ tan πζ

2a
sn
Kl

h
→ tanh πl

2a
sn
KL

h
→ tanh πL

2a
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Thus from (2.6) we obtain:

τ(ζ) = k
tanh πl2a

√
tan2 πζ2a + tanh

2 πl
2a − tanh πL2a

√
tan2 πζ2a + tanh

2 πl
2a

tan πζ2a
√
tanh2 πl2a − tanh2 πL2a

Since limζ→∞ τ(ζ) = τ0, limy→∞ tan(iπy/2a) = i, and due to the last
formula, we find

τ0 = k
tanh πl2a

√
1− tanh2 πL2a − tanh πL2a

√
1− tanh2 πl2a√

tanh2 πl2a − tanh2 πL2a

τ∞yz = τ0
τ∞xz = 0

and

d = l − 2a
π
arcsinh

(k2 − τ20
k2 + τ20

sinh
πl

2a

)
(4.1)

In this case, the displacement jump in the inclusion tips can be expressed
in a closed form from integral (2.8)

g =
ka

µπ

tanh πl2a tanh
πL
2a

cosh2 πL2a
√
tanh2 πl2a − tanh2 πL2a

[f1(l)− f1(L)]

(4.2)

f1(y) =
1

2 sinh πL2a
ln

∣∣∣∣∣∣

1− cosh πL2a
√
tanh2 πy2a − tanh2 πL2a

1 + cosh πL2a
√
tanh2 πy2a − tanh2 πL2a

∣∣∣∣∣∣
− arcsin tanh

πL
2a

tanh πy2a

5. Results and discussion

The dependence of the plastic strips length and the displacement jump on
the load τ0/k is shown in Fig. 3. In the case of collinear inclusions (lines 1-3)
this length decreases as the distance 2h between the inclusions increases. The
jump value of the displacement g in the inclusion tips changes in the same
way.
If h → ∞, we arrive at the case of a single inclusion (Vytvytsky and

Kryven, 1979). Thus, from (3.1), we have

d =
2τ20 l

k2 + τ20
g =

kl

µ

(
1− k2 − τ20

k2 + τ20
arccos

k2 − τ20
k2 + τ20

)
(5.1)

That is a dependence of d on τ0 for one inclusion. As a matter of fact, it
does not differ from the dependence described by curve 3 in Fig. 3. It means
that in the case of inclusions periodically situated on the same plane, the
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Fig. 3. Length of plastic strips versus load; 1, 2, 3 – l/h = 0.9, 07, 02;
3, 4, 5, 6, 7 – l/a = 0.1, 1, 2, 3, 5

solution for l/h ¬ 0.2 does not differ from the solution corresponding to a
single inclusion any longer.
In the case of a periodic system of coplanar inclusions for a → ∞, we

also obtain expression (5.1) from (3.1) for a single inclusion. The plastic strips
length decreases again together with the decrease of distances 2a between the
inclusions (lines 4-7 in Fig. 3). Moreover, the obtained results for the coplanar
inclusions system, as a mater of fact, do not differ from those obtained from
formula (5.1) for a single already inclusion at l/a ¬ 0.1.
Solution (2.6) to the two-periodic problem can be treated as an approxi-

mate one for the case of plastic interfacial slip of a rigid thin inclusion x = 0,
|y| ¬ l in the rectangular |x| ¬ a, |y| ¬ h deformed by a constant shear stress
τyz = τ0 along the sides y = ±h, |x| ¬ a. Accuracy of such an approximation
can be determined as a measure of nonhomogeneity of the stress τyz on hori-
zontal sides of the periodic rectangular (in both cases, the stresses τxz = 0).
From formula (2.6), it follows that the stress component τyz monotoni-

cally decrease on the periodic rectangular side from the point (0, h) to the
point (a, h), while the second stress component equals zero. The stress com-
ponent τyz attains its maximum value on this rectangle side

τ01 = k
sn Klh cn

KL
h − sn KLh cn Klh√

sn 2Klh − sn 2KLh
cn 2x = 1− sn 2x

at the point (0, h), and the minimum value τ0 at the point (a, h).
Thus, the measure of nonhomogeneity of the stress τyz on the horizontal

sides of the periodical rectangle for the double-periodic problem can be defined
as

Θ = max
τ0∈(0,k)

τ01 − τ0
τ01

= max
L∈(0,l)

τ01 − τ0
τ01

(5.2)
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The regions (between lines and the axis l/h = 0) in the space of geome-
trical parameters for which, according to the solution to the double-periodic
problem, the stress τyz on the horizontal sides of the periodical rectangle can
be treated as constant with an accuracy Θ are given in Fig. 4.

Fig. 4. Regions of geometric parameters in which the solution to the double-periodic
problem gives an approximation of the solution corresponding to the periodical

rectangle with the relative error not exceeding Θ

The closed-form solutions to problems under consideration enable one to
determine the effective shear modulus in composites reinforced by rigid bands
in the same way as it was done for the elastic problem by Ju and Chen Tsung-
Muh (1994a,b), Porohovsky et al. (1998), and finally to formulate conditions
of composite rupture on the basis of known deformation or energetic criteria.
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Plastyczny międzyfazowy poślizg okresowego układu sztywnych cienkich
inkluzji podczas wzdłużnego ścinania

Streszczenie

W ramach antypłaskiego stanu odkształcenia przeanalizowano plastyczny poślizg
na granice kontaktu dwuokresowego układu cienkich sztywnych inkluzji z ośrodkiem
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sprężysto-plastycznym podczas ścinania. Założono, że odkształcenia plastyczne znaj-
dują się w cienkich warstwach na granicy inkluzji w otoczeniu ich końców. Wyznaczo-
no długość warstw plastycznych oraz wartość skoku przemieszczenia spowodowane-
go plastycznym prześlizganiem. Dokładnie rozpatrzono również szczególne przypadki
jednookresowych zagadnień dla inkluzji w jednej i w równoległych płaszczyznach.
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