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The object of investigations are Functionally Graded Materials (FGM)
which on the microstructural level are made of two kinds of very thin
laminae. These FGM will be referred to as the Functionally Graded
Laminates (FGL). The aim of this contribution is to formulate discrete-
continuum and continuum 3D-models of elastodynamics of FGL. The
proposed modelling procedure constitutes a certain generalization of the
approach to the modelling of periodic structures leading to a system of
finite difference equations and then to their continuum approximation,
Rychlewska and Woźniak (2003). The obtained results are applied to the
analysis of a certain layered structure with a FGL transition zone. The
optimization problem related to the position of the transition zone is
discussed.
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1. Introduction

Functionally Graded Materials (FGM) are usually regarded as heterogeneous
composites having effective (macroscopic) properties varying smoothly in spa-
ce. A review of researches on FGM can be found in Suresh and Mortensen
(1998). In this paper, the object of considerations are micro-layered linear
elastic solids made of two materials and having macroscopic properties conti-
nuously varying in the direction normal to the layering. These solids will be
referred to as the Functionally Graded Laminates (FGL). A fragment of FGL
on the macro and micro-level is shown in Fig. 1. The modelling approach pre-
sented in this contribution takes into account some concepts and assumptions
of the tolerance averaging technique formulated and applied in Woźniak and
Wierzbicki (2000) for periodic structures. This technique was also used in the
modelling of elastodynamics of functionally graded laminated shells, Woźniak
et al. (2005), functionally graded laminated plates, Jędrysiak et al. (2005) and
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functionally graded laminates with interlaminar microdefects, Rychlewska et
al. (2006). The purpose of this contribution is to formulate discrete-continuum
models of FGL which state a basis for continuum models. To this end, a certain
generalization of the known approach to the modelling of periodic structures is
applied. For the aforementioned periodic structures, the periodic simplicial di-
vision technique was used in Rychlewska and Woźniak (2003). In this case, the
system of finite difference equations is obtained. These equations constitute
foundations of different continuum models represented by equations with con-
stant coefficients. For functionally graded laminates, the proposed continuum
model equations have slowly-varying, smooth coefficients.
Notations. The index n run over 1, . . . , N unless otherwise stated and

is assigned to the n-th layer of FGL. Subscripts α, β, γ, δ run over the sequ-
ence 1, 2 and subscripts i, j, k, l over 1, 2, 3. For an arbitrary sequence {fm},
m = 0, . . . , N , we define the difference operators

∆fm =
fm+1 − fm

l
m = 0, . . . , N − 1

∆fm =
fm − fm−1

l
m = 1, . . . , N

where the superscript m is related to the interface z = ml between the m-th
and (m + 1)-th layer (provided that m = 1, . . . , N − 1) and m = 0, m = N
are related to the boundary planes z = 0, z = Nl, respectively.
In the physical space, we introduce the cartesian orthogonal coordinate

system 0x1x2x3 with the x3 axis normal to the lamina interfaces. Let ∂αf and
∂kf stand for partial differentiation of the function f(x1, x2, x3) with respect
to xα and xk, respectively. We also use gradient operators ∇ = (∂1, ∂2, ∂3),
∇ = (∂1, ∂2, 0), gradient-difference operators D = (∂1, ∂2,∆), D = (∂1, ∂2,∆)
and introduce notations z = x3, x = (x1, x2). The time coordinate is denoted
by t and time differentiation by the overdot. Small bold-face letters represent
vectors and points in 3D space, capital bold-face letters stand for second order
tensors, and block letters are used for higher order tensors. In the paper, the
absolute notations one used.

2. Preliminaries

Let Ω × (0, L), Ω ⊂ R2, stand for a region occupied in the physical space by
the laminated medium under consideration in its natural configuration. The
subject of analysis is a FGL medium composed of two linear-elastic materials
distributed in N layers Λ1, . . . , , ΛN of the same thickness l. It is assumed that
N−1 ≪ 1. Every layer Λn is made of two homogeneous laminae Λ′n, Λ′′n having
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different thicknesses l′n, l
′′
n, respectively, n = 1, . . . , N . By ρ

′, C
′, ρ′′, C

′′ we
denote mass densities and tensors of elastic moduli in every pair of adjacent
laminae, cf. Fig. 1. The material volume fractions in the laminae Λ′n, Λ

′′
n are

denoted by ν ′n = l
′
n/l and by ν

′′
n = l

′′
n/l, respectively, ν

′
n+ν

′′
n = 1. Moreover, we

introduce the phase distribution sequence {νn} setting νn =
√
ν ′nν
′′
n. By ν

′(·),
ν ′′(·) we denote smooth functions defined on [0, L] representing distributions of
the mean volume fractions of lamina materials, ν ′(z)+ν ′′(z) = 1, z ∈ [0, L]. It
means that ν ′(zn) = ν

′
n, ν
′′(zn) = ν

′′
n for some zn ∈ [(n−1)l, nl], n = 1, . . . , N .

We also define ν(z) =
√
ν ′(z)ν ′′(z), z ∈ [0, L].

Fig. 1. Fragments of FGL on the macro- and micro-structural level together with a
scheme of the n-th layer, n = 1, . . . , N

The sequence {fm} will be referred to as slowly-varying (with a certain
tolerance 0 < ε ≪ 1) if the condition l|∆fm| ¬ εmax{|f0|, . . . , |fN |} holds
for every m = 0, 1, . . . , N − 1. In this case, we shall write {fm} ∈ SVε. For
a detailed discussion of the concept of slowly-varying function cf. Woźniak
and Wierzbicki (2000). Crucial assumptions related to the material volume
sequences are:

1◦ sequence {ν ′n}, n = 1, . . . , N , is strongly monotone;

2◦ sequence {ν ′n}, n = 1, . . . , N , is slowly varying.

Similar requirements are satisfied by the sequence {ν ′′n}, n = 1, . . . , N . Under
the above conditions, the laminated medium represents a certain Functionally
Graded Laminate (FGL). Moreover, it is assumed that the lamina materials
have elastic symmetry planes parallel to the lamina interfaces and that the
laminae are perfectly bonded.
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3. Modelling assumptions

Let w = w(x, z, t), x = (x1, x2) ∈ Ω, z ∈ [0, L] stand for the displacement
field at time t. The restriction of this field to the n-th layer Λn will be denoted
by wn i. e., wn = w(x, z, t), x ∈ Ω, z ∈ [(n − 1)l, nl], n = 1, . . . , N . Let us
also denote w′n = w(x, z

′
n, t), x ∈ Ω, z′n ∈ [(n−1)l, l′n+(n−1)l], n = 1, . . . , N

and w′′n = w(x, z
′′
n, t), x ∈ Ω, z′′n ∈ [l′n + (n− 1)l, nl], n = 1, . . . , N . Moreover,

let us denote by w̃n(x, z, t), z = c̃n, n = 0, 1, . . . , N , the restriction of the
displacement field to interfaces between the layers Λn and by wn(x, z, t),
z = cn, n = 1, . . . , N , the restriction of this field to interfaces between laminae
in Λn, n = 1, . . . , N , cf. Fig. 2, where c̃n = nl, cn = nl + l

′
n. We introduce

functions un(x, t), vn(x, t) satisfying conditions

w̃n = un n = 1, . . . , N

wn = un + 2
√
3lνnvn + l

′
n∆un n = 0, 1, . . . , N − 1

Fig. 2. A scheme of the n-th layer and displacements on interfaces, c̃n = nl,
cn = nl + l

′

n
, n = 1, . . . , N , N−1 ≪ 1

The first modelling assumption states that displacements in every laminae

belonging to the n-th layer, n = 1, . . . , N , are linear functions of z. This sta-
tement is satisfied if for every pair of laminae Λ′n, Λ

′′
n, pertinent displacements

w
′
n, w

′′
n are assumed respectively in the form

w
′

n =
(
2
√
3
νn
ν ′n
vn +∆un

)
z′n + un

(3.1)

w
′′

n =
(
∆un − 2

√
3
νn
ν ′′n
vn

)
z′′n + un + 2l

√
3νnvn + l

′

n∆un

where un = un(x, t), vn = vn(x, t), ∆un = ∆un(x, t), z
′
n ∈ [(n − 1)l, l′n +

(n− 1)l], z′′n ∈ [l′n + (n− 1)l, nl], n = 1, . . . , N . Moreover, conditions v0 = v1
and vN−1 = vN are implied by the postulated homogeneity of the layers Λ1
and ΛN , respectively.
The second modelling assumption states that the continuous mass distribu-

tion in the laminate can be approximated by a proportional mass distribution
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only on the interfaces between adjacent layers. This assumption can be applied
if macroscopic wavelengths are large when compared to the lamina thicknes-
ses. Let ρn, n = 1, . . . , N , stand for the mass density on the interface z = c̃n
between layers. Then, the above assumption implies that the kinetic energy
density will take the form

κn =
1

2
ρn(u̇n)

2 (3.2)

where

ρn =
1

2
ρ′[(ν ′n−1)

2 + ν ′n(2− ν ′n)] +
1

2
ρ′′[ν ′′n−1(2− ν ′′n−1) + (ν ′′n)2] (3.3)

The mean strain energy density in the n-th layer is given by

σn = ν
′

nσ
′

n + ν
′′

nσ
′′

n (3.4)

where

σ′n =
1

2
E
′ : C′ : E′ σ′′n =

1

2
E
′′ : C′′ : E′′

and where

E
′ =
1

2

(
∇w′n + (∇w′n)⊤

)
E
′′ =
1

2

(
∇w′′n + (∇w′′n)⊤

)

stand for pertinent linearized strain tensors.

4. Model equations

4.1. Discrete-continuum model

The governing equations for the basic unknowns un(x, t), n = 0, 1, . . . , N
and vn(x, t), n = 0, 1, . . . , N , x ∈ Ω, t ∈ R, will be derived from the principle
of stationary action for the action functional

A =
N∑

n=1

t1∫

t0

∫

Ω

Ln(vn,∇un,∆un, u̇n) dxdt

(4.1)

Ln = κn − σn
where κn and σn are determined by formulae (3.2), (3.4). Let us introduce
the following denotations

〈Cn〉 = ν ′nC′ + ν ′′nC′′ [Cn] = 2
√
3νn(C

′ − C
′′) · i3

[Cn]⊤ = 2
√
3νni3 · (C′ − C

′′) {Cn} = 12i3 · (ν ′′nC′ + ν ′nC′′) · i3
(4.2)
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where i3 = (0, 0, 1) is a unit normal to the layering. It can be shown that the
Euler-Lagrange equations related to (4.1) take the form

ρnü
n −D · (〈Cn〉 : Dun + [Cn] · vn) = 0

(4.3)

{Cn} · vn + [Cn]⊤ : Dun = 0

Equations (4.3) represent the discrete- continuum model of the FGL under
consideration. The above model equations have to be considered together with
relevant boundary and initial conditions. After obtaining a solution to the
specific boundary/initial value problem, the distribution of displacements in
the laminae Λ′n, Λ

′′
n, n = 1, . . . , N , is described by formulae (3.1).

Let us observe that the unknowns vn, n = 0, 1, . . . , N , can be eliminated
from the governing equations. We obtain

v
n = −{Cn}−1 · [Cn]⊤ : Dun (4.4)

Introducing the following tensors of effective elastic moduli

C
n
0 = 〈Cn〉 − [Cn] · {Cn}−1 · [Cn]⊤

we obtain equations
ρnü

n −D · (Cn0 : Dun) = 0 (4.5)

Equations (4.5) and (4.4) represent an alternative form of the general model
equations (4.3). It has to be emphasized that the solutions un, n = 0, 1, . . . , N ,
have a physical sense only if the sequences {ν ′n}, {ν ′′n} are slowly-varying.
Then, the mass density ρn reduces to the form

ρn = ρ
′ν ′n + ρ

′′ν ′′n

Equations (4.4), (4.5) constitute the foundations of subsequent analysis leading
to a continuum model of the FGL under consideration.

4.2. Continuum model

We shall assume that for the finite sequence {fn}, n = 1, . . . , N , in equ-
ations (4.5), (4.4) there exists a continuous function f(z), z ∈ [0, L] such
that fn are approximated by f(nl) for n = 1, . . . , N . Moreover, for macrosco-
pic deformation wavelengths large when compared to the lamina thicknesses
we assume that the function f(·) is differentiable, and we shall approximate
∆fn by ∂3f(nl). Under the above conditions, equations (4.4), (4.5) can be
interpreted as a certain finite difference approximation of the equations

ρü−∇ · (Ch : ∇u) = 0 (4.6)
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and

v = −{C}−1 · [C]⊤ : ∇u (4.7)

where C
h is the tensor of effective elastic moduli

C
h = 〈C〉 − [C] · {C}−1 · [C]⊤

and

ρ = ρ′ν ′ + ρ′′ν ′′

Equations (4.6) and (4.7) represent the continuum model equations of the FGL
under consideration. In the subsequent section, the proposed models will be
compared with models obtained by using a similar discretization approach and
presented in Rychlewska (2006).

5. Comparison of models

The modelling procedure proposed in Rychlewska (2006) is based on the con-
cepts of the tolerance averaging technique formulated and applied in Woźniak
and Wierzbicki (2000) for periodic composites. Moreover, this approach is a
certain generalization of the modelling technique leading to a system of finite
difference/differential equations. To make this paper self-consistent, we outline
below the basic concepts and results presented in Rychlewska (2006).

Instead of (3.1), the displacements w′n, w
′′
n are assumed respectively in

the form

w
′

n = [(un − l
√
3νnvn)z

′

n + (un − l′n∆un + l
√
3νnvn)(l

′

n − z′n)]
1

l′n
(5.1)

w
′′

n = [(un − l
√
3νnvn)(l

′′

n − z′′n) +

+(un + l
′′

n∆un + l
√
3νnvn + l

2
√
3νn∆vn − l∆(l′n∆un))z′′n]

1

l′′n

where un = un(x, t), vn = vn(x, t), ∆un = ∆un(x, t), ∆vn = ∆vn(x, t),
z′n ∈ [(n − 1)l, l′n + (n− 1)l], z′′n ∈ [l′n + (n− 1)l, nl], n = 1, . . . , N .
On the assumption that the sequences {ν ′n}, {ν ′′n} of component volume

fractions in the FGL are slowly-varying, it was stated that {un}, {νnvn},
{l′n∆un} are slowly-varying (in a certain tolerance ε). Hence, the displace-
ments on interfaces between the adjacent layers are

w̃n
∼= un+l

√
3νnvn wn

∼= un−l
√
3νnvn w̃n+1

∼= un+l
√
3νnvn
(5.2)
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and strains in the laminae Λ′n, Λ
′′
n of the n-th layer are obtained in the form

ε′n = ∆un − 2l
√
3νn(ν

′

n)
−1
vn ε′n

∼= ∆un + 2l
√
3νn(ν

′′

n)
−1
vn (5.3)

The strain energy density is taken in the form analogous to that given by
(3.4), while the kinetic energy density is represented by

κn =
1

2
l2ρn(νn)

2(v̇n)
2 +
1

2
ρn(u̇n)

2 (5.4)

where ρn = ρ
′ν ′n + ρ

′′ν ′′n. Under denotations (4.2), the discrete-continuum
model is represented by equations

ρnü
n −D · Sn = 0 l2ρnν

2
nv̈
n + hn = 0 n = 2, . . . , N − 1 (5.5)

where

S
n = 〈Cn〉 : Dun + [Cn] · vn h

n = {Cn} · vn + [Cn]⊤ : Dun
(5.6)

n = 1, . . . , N

In the framework of continuum models, one can be mention here the tolerance
averaged model equations

ρü−∇ · S = 0 l2ρν2v̈ + h = 0 (5.7)

where

ρ = ρ′ν ′+ ρ′′ν ′′ S = 〈C〉 : ∇u+[C] ·v h = {C} ·v+[C]⊤ : ∇u
(5.8)

and the asymptotic approximation model equations are

ρü−∇ · (Ch : ∇u) = 0 v = −{C}−1 · [C]⊤ : ∇u (5.9)

where C
h is the tensor of effective elastic moduli.

It can be easily observed that continuum model equations (4.6), (4.7) ob-
tained in this paper have the same form like equations (5.9). It has to be
emphasized that, contrary to discrete-continuum model equations (4.3), mo-
del equations (5.5) and (5.6) describe the microstructure length-scale effect
on the overall behaviour of the FGL. It follows that also continuum tolerance
averaged models take into account the effect of the layer thickness l on the
dynamic behaviour of the FGL. The proposed continuum model neglects this
effect. Equations (4.6), (4.7) represent the continuum model corresponding to
that of the linear elasticity theory and described by equations obtained by the
known homogenization approach. However, the form of equations (4.6), (4.7)
is relatively simple and it can be applied to the analysis of special problems
in which the length-scale effect can be neglected. An example of such a case
will be shown in the subsequent section.
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6. Example of applications

As an example of applications we shall investigate the problem of harmonic
vibration along the x3-axis of a laminated solid consisting of two isotropic
homogeneous layers interconnected by a functionally graded layer, see Fig. 3.
Let us denote by E′, E′′ the elastic moduli of component materials in the
uniaxial extension and/or compression. By ρ′, ρ′′ mass densities of component
materials will be denoted. The problem will be treated as independent of x,
and hence (4.6) implies that

〈ρ〉ü− (Eeff uz)z = 0 (6.1)

where u = u3(z, t), z ∈ [0, L], t ∈ R and

〈ρ〉 = [1− ν̃(z)]ρ′ + ν̃(z)ρ′′ Eeff =
E′E′′

ν̃(z)E′ + [1− ν̃(z)]E′′ (6.2)

Fig. 3. The laminated solid consisting of two homogeneous layers and a graded
interlayer with inertial loading of the mass m

The function ν̃(·) is defined on [0, L] and determines the gradation of
material properties for the component material with the superscript ”bis”.
It is assumed that the graded layer has the thickness H and L = L1 + L2,
where L1, L2 are thicknesses from the midplane of the transition zone to the
boundary planes, see Fig. 3. The distribution of the volume fraction is shown
in Fig. 4. It is postulated in the following form

ν̃(z) =






0 if z ∈
[
−L1,−

H

2

]

1

2
+
z

H
if z ∈

[
−H
2
,
H

2

]

1 if z ∈
[H
2
, L2
]

(6.3)
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Fig. 4. The distribution of the volume fraction ν̃(z), z ∈ [−L1, L2]

Let us denote

c2 =
E′

ρ′
=
E′′

ρ′′
k =
E′

E′′
− 1 = ρ

′

ρ′′
− 1  0

The parameter k will be called the coefficient of inhomogeneity (k  0). Using
this parameter, we obtain

〈ρ〉 = ρ′
(
1− k

k + 1
ν̃(z)
)

Eeff =
E′

1 + kν̃(z)
(6.4)

For the sake of simplicity, let us restrict the considerations to the laminated
solid with the inertial loading as shown in Fig. 3. Let us also assume that
L1 = L2 = L/2. In this case, the governing equations have the form

(E′uz)z = 0 if z ∈
[
−L
2
,−H
2

]

( 1

1 + kν̃(z)
uz
)

z
= 0 if z ∈

[
−H
2
,
H

2

]

(E′′uz)z = 0 if z ∈
[H
2
,
L

2

]
(6.5)

with boundary conditions

u
(L
2
, t
)
= 0 mü

(
−L
2
, t
)
= p(t)− E′uz

(
−L
2
, t
)

(6.6)

and jump (continuity) conditions

u
(H
2
+ 0, t

)
= u
(H
2
− 0, t

)
u
(
−H
2
+ 0, t

)
= u
(
−H
2
− 0, t

)

uz
(H
2
+ 0, t

)
= uz

(H
2
− 0, t

)
uz
(
−H
2
+ 0, t

)
= uz

(
−H
2
− 0, t

)

(6.7)



On the modelling and optimization... 793

We shall investigate the eigenvalue problem setting

p(t) = p0 cos ω̆t u(z, t) = w(z) cos ω̆t

In the subsequent analysis, it is assumed that p0 = 0. Then equations
(6.5)-(6.7) are transformed to the form

wzz = 0 if z ∈
[
−L
2
,−H
2

]

( 1

1 + kν̃(z)
wz
)

z
= 0 if z ∈

[
−H
2
,
H

2

]

wzz = 0 if z ∈
[
H
2
, L
2

]
(6.8)

with boundary conditions

w
(L
2

)
= 0 − ω̆2mw

(
−L
2

)
+ E′wz

(
−L
2

)
= 0 (6.9)

and jump conditions

w
(H
2
+ 0
)
= w
(H
2
− 0
)

w
(
−H
2
+ 0
)
= w
(
−H
2
− 0
)

wz
(H
2
+ 0
)
= wz

(H
2
− 0
)

wz
(
−H
2
+ 0
)
= wz

(
−H
2
− 0
) (6.10)

Let us transform equations (6.8)-(6.10) to a dimensionless form by introducing
the argument

ζ =
z

L

where ζ ∈ [−1/2, 1/2]. Let us also denote

δ =
H

L
Ω2 =

ω̆2Lm

E′

Hence, we obtain equations (6.8)-(6.10) in the dimensionless form

wζζ = 0 if ζ ∈
[
−1
2
,−δ
2

]

( 1

1 + kν̃(ζ)
wζ
)

ζ
= 0 if ζ ∈

[
− δ
2
, δ
2

]

wζζ = 0 if ζ ∈
[δ
2
,
1

2

]
(6.11)

with boundary conditions

w
(1
2

)
= 0 −Ω2w

(
−1
2

)
+ wζ

(
−1
2

)
= 0 (6.12)
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and jump conditions

w
(δ
2
+ 0
)
= w
(δ
2
− 0
)

w
(
−δ
2
+ 0
)
= w
(
−δ
2
− 0
)

wζ
(δ
2
+ 0
)
= wζ

(δ
2
− 0) wζ

(
−δ
2
+ 0
)
= wζ

(
−δ
2
− 0
) (6.13)

We shall solve the optimization problem of finding the position of the
graded layer. To this end, for the known k, k > 0, we shall look for λ = minΩ2,
λ = λk(δ), and finally we shall find δ0 = maxλk(δ), δ ∈ [0, 1]. Hence

Ω2 =
1

1
2
(1− δ)(k + 2) + (k + 1)δ

The analysis of the above optimization problem was carried out for k = 1, 10,
20. The results are shown in Table 1. The optimization result was obtained
for δ = 1 (H = L) and k = 1 (E′ = 2E′′).

Table 1. Results of the analysis of the optimization problem

k
δ

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1 20
31

5
8

20
33

10
17

4
7

5
9

20
37

10
19

20
39

1
2

10 2
13

1
7

2
15

1
8

2
17

1
9

2
19

1
10

2
21

1
11

20 1
12

1
13

1
14

1
15

1
16

1
17

1
18

1
19

1
20

1
21

7. Conclusions

The main results of this contribution are:

• An averaged mathematical model for analysis of dynamic behaviour of
FGL is formulated. The obtained model equations are represented by a
system of finite-difference/differential equations.

• It is shown that it is possible to eliminate the unknowns vn,
n = 1, . . . , N , from the governing equations. Then, we arrive at model
equations depending on certain effective smoothly varying coefficients.

• The possible applications of the proposed model are illustrated by analy-
sis of an optimization problem for a FGL subjected to inertial loadings.



On the modelling and optimization... 795

• It can be observed that for periodic laminated structures coefficients in
continuum model equations (4.6), (4.7) are constant. In this case, the
obtained results coincide with those derived by the asymptotic approxi-
mation, Woźniak and Wierzbicki (2000).
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Modelowanie i optymalizacja laminatów o strukturze gradientowej

Streszczenie

Przedmiot rozważań stanowi szczególna klasa materiałów gradientowych, tzw.
laminatów o strukturze gradientowej, które na poziomie mikrostrukturalnym złożo-
ne są z dużej liczby bardzo cienkich warstewek. Celem pracy jest zaproponowanie
modelu dyskretno-ciągłego i ciągłego zagadnień elastodynamiki takich laminatów.
Sformułowany model ciągły został zastosowany do analizy drgań ośrodka obciążone-
go inercyjnie, złożonego z dwóch jednorodnych warstw, pomiędzy którymi znajduje
się strefa przejściowa. Przedyskutowano zagadnienie optymalizacji położenia strefy
przejściowej.
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