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The paper deals with a new nonlocal integral-type model for simulation of an
anisotropic, localised damage and for prediction of combined failure modes in
a plane-notched concrete specimen. The nonlocal incremental-type model of
the elastic-brittle-damage material is an extension of the relevant local model
originated by Murakami and Kamiya (1997), modified later to the incremen-
tal form by Kuna-Ciskał and Skrzypek (2004). In order to avoid the mesh-
dependence and ensure stability and convergence, two localisation limiters are
examined: the concept of Nonlocal Averaging (NA) and the additional Cut-
off Algorithm (CA), applied to damage conjugate thermodynamic forces. The
elastic-brittle damage constitutive equations are formulated in an incremen-
tal and nonlocal fashion, by the use of a damage dissipation potential defined
in the space of averaged regularised damage variables instead of the corre-
sponding local ones. The Gauss distribution function is taken as the weight
function for the definition of a nonlocal continuum. In order to assess how
much the new nonlocal model is capable of describing localised strain and
damage fields, an example of the plane double-notched specimen of Nooru-
Mohammed (1992) is examined. Much emphasis is put to proper choice of the
characteristic length of the nonlocal continuum. Convergence of the mesh size
is proved for both, the damage incubation period and fracture, when a single
localisation limiter (NA) is active.

Key words: nonlocal approach, anisotropic damage, characteristic length,
mesh-dependence

1. Introduction

The use of classical local constitutive models is insufficient for problems whe-
re a strong strain softening effect occurs. In case of inelastic material beha-
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viour, two dissipative processes are responsible for the strain softening: (vi-
sco)plasticity and/or damage (cf. Hansen and Schreyer, 1994; Abu Al-Rub
and Voyiadjis, 2003). In the case of Local Models (LM), the stress at a gi-
ven point is assumed to be uniquely determined by the strain history at this
point only. However, as the (visco)plasticity and damage frequently localize
over narrow zones of a continuum, statistical homogeneity in a representative
volume element is lost. Hence, the characteristic length scale has to be intro-
duced into the nonlocal model (NL) in order to account for the influence of
an internal state variable also at neighbouring points. From a computational
point of view, in the case of the localised phenomena, ill-posedness of the bo-
undary value problem and mesh sensitivity of finite element computations are
met. In particular, incorporation of viscosity retains ellipticity of the problem,
such that the well-posedness is preserved because the viscosity implicitly in-
troduces length-scale measures that reduce the strain and damage localisation
(cf. Wang et al., 1996; Dornowski and Perzyna, 2000; Glema et al., 2000). On
the other hand, if (visco)plasticity is not accounted for, some computational
localisation limiters should be used provided by the concept of nonlocal we-
ighted averaging (cf. Bažant, 1984; Pijaudier-Cabot and Bažant, 1987; Bažant
and Pijaudier-Cabot, 1988; Jirasek, 1998; Comi, 2001; Comi and Perego, 2004;
Voyijadis and Abu Al-Rub, 2002).

If f(x) is a local field in a volume V , the corresponding nonlocal field is
defined as

f(x) =
1

V

∫

V

h(x, ξ)f(ξ) dξ (1.1)

where h(x, ξ) is a monotonically decreasing weight function, defined in such
a way that a uniform field is not altered by it

V (ξ) =

∫

V

h(r) dV r = |x− ξ| (1.2)

As the weight function h(r), the Gauss distribution function

h(r) = exp
(

−
r2

2l2

)

(1.3)

or the bell-shape function

h(r) =











(

1−
r2

R2

)2

0 ¬ r ¬ R

0 R ¬ r

(1.4)
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are frequently used. In (1.3) l is the internal length of the nonlocal continuum,
whereas R is called the interaction length that is related, but not equal, to
the internal length l. If the orientation of material fibres is considered, a more
complicated averaging operator might be used, where not only the distance
between the points x and ξ, but also the orientation of principal axes at these
points are accounted for (cf. Bažant, 1994).

In the present paper, the nonlocal measures (NA) of the force conjugates
{Y, B} are defined instead of the local ones {Y, B} previously used (LA).
The use of another Cut-off Algorithm (CA), originated by Murakami and Liu
(1995) Ŷ = kY, where k = 1 if Yeq ¬ Yu or k = Yu/Yeq if Yeq > Yu is also
tested from the point of view of convergence. The nonlocal measure Y of the
strain energy release rate Y was earlier used by Pijaudier-Cabot and Bažant
(1987) and by Comi and Perego (2004) for a simple isotropic elastic-damage
model.

By contrast, a more extended case is considered in the present paper, where
the anisotropic damage measure D is used and an additional scalar parameter
β stands for the damage hardening. The other possibility is to directly avera-
ge the damage as suggested by Bažant and Pijaudier-Cabot (1988) or strain
(cf. Bažant and Liu, 1988). The nonlocal variables {Y, B}, with the cut-off
algorithm {Ŷ, B̂} if necessary, affect the nonlocal definition of the damage
dissipation potential F (Y, B) instead of the traditional one F (Y, B), when
the local approach is used (cf. Murakami and Kamiya, 1997). The developed
model is capable of capturing the damage anisotropy and deactivation (incu-
bation period) as well as the failure mechanism (fracture). The essential point
is how to properly choose the internal length parameter of the nonlocal con-
tinuum. This length may be assessed by experimental comparison of energy
in a specimen where damage is constrained to remain diffuse, and another
one where damage localizes to yield a single crack (cf. Mazars and Pijaudier-
Cabot, 1989, 1996). It may also be established from the maximum size of
the aggregate in concrete da, such that l ≈ 3da holds (cf. also Saouridis and
Mazars, 1992). Some particular suggestions can be found in the comparative
study on different models for concrete: local (Ottosen) or nonlocal (nonlocal
damage and gradient plasticity). The internal length values are thus set to
l ≈ 5mm for the gradient plasticity model, and to l ≈ 8mm for the non-
local damage model. On the other hand, Comi and Perego (2004) used for
the nonlocal concrete model the value l = 1.1mm. In what follows, a proper
characteristic length is numerically assessed from simulation tests on damage
and fracture prediction in the double-notched specimen of Nooru-Mohammed
(1992). Different values of characteristic lengths for concrete are numerically
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tested in the present paper, ranging from 0mm (local) to 20mm, to finally
assess the value l = 7.5mm as the ”optimal” one, to preserve characteristic
damage incubation and ultimate localised failure prediction without violating
the stability and mesh convergence.

2. Total form of the local elastic brittle damage constitutive

model

When a total stress-strain formulation is used, the general thermodynamically
based theory of local constitutive and evolution equations of an elastic-brittle
damaged material is the key for further extension (cf. Murakami and Kamiya,
1997). The Helmholtz free energy is defined in a local fashion as a function
of the elastic strain tensor εe, the second rank damage tensor D, and the
scalar damage hardening variable β. The Helmholtz free energy, decomposed
into the elastic ψe(εe,D) and damage ψd(β) terms, is postulated as a state
potential

ρψ(εe,D, β) = ρψe(εe,D) + ρψd(β) (2.1)

Following Murakami and Kamiya assumptions, both terms of free energy (2.1)
are represented as

ρψe(εe,D) =
1

2
λ( trεe)2 + µ tr (εe · εe) + η1( trε

e)2 trD+

+η2 tr (ε
e · εe) trD+ η3 trε

e tr (εe ·D) + η4 tr (ε
∗e · ε∗e ·D) (2.2)

ρψd(β) =
1

2
Kdβ

2

where λ and µ are Lamè constants for the undamaged material, whereas η1,
η2, η3, η4 and Kd are the damage material constants.
In order to properly describe the unilateral damage response under tension

or compression, the modified elastic strain tensor ε∗e is defined in the principal
strain co-ordinate system

ε∗eI = 〈ε
e
I〉+ ζ〈−ε

e
I〉 = k(ε

e
I)ε
e
I ζ ∈ 〈0, 1〉

k(εeI) = kI = H(ε
e
I) + ζH(−ε

e
I) I = 1, 2, 3

(2.3)

where 〈·〉 denotes the Macauley bracket, H(·) is the Heaviside step function,
εeI(I = 1, 2, 3) are the principal values of ε

e, and ζ is an additional material
constant responsible for the unilateral damage response effect under tension or
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compression (cf. Krajcinovic, 1996). For ζ = 1 the modified strain tensor ε∗e

is identical to εe, so that the unilateral damage (crack opening/closure) effect
is not accounted for. In contrast, for ζ = 0, the strain tensor ε∗e is modified
in such a way that the negative principal strain components are replaced by
zeros, whereas the positive ones remain unchanged.
When the general coordinate system is used, the modified strain tensor

ε∗e is expressed as follows (cf. Hayakawa and Murakami, 1997 )

ε∗eij =
3
∑

I=1

ε∗eI QIiQIj =
3
∑

I=1

k(εeI)ε
e
IQIiQIj = Bijklε

e
kl (2.4)

where Bijkl =
∑3
I=1 k(εI)QIiQIjQIkQIl is a fourth rank tensor built of the

direction cosines between the principal strain axes and the current spatial
system.
The following local, total stress–strain relations of the anisotropic elasticity

coupled with damage are furnished from (2.2)1 according to the conventional
procedure of the thermodynamic formalism

σ =
∂(ρψ)

∂εe
= [λ( trεe) + 2η1( trε

e)( trD) + η3 tr (ε
e ·D)]I+

(2.5)

+2[µ+ η2( trD)]ε
e + η3 tr (ε

e)D+ η4(ε
∗e ·D+D · ε∗e) :

∂ε∗e

∂εe

When the vector-matrix notation is used, the above reduces to

{σ} = [Λs(D)]{εe} (2.6)

where [Λs(D)] stands for the locally defined secant stiffness matrix.
The thermodynamic force conjugates of the internal state variables {D, β}

are defined in a local form as follows

Y = −ρ
∂ψe

∂D
= −[η1( trε

e)2 + η2 tr (ε
e · εe)]I− η3( trε

e)εe − η4ε
∗e · ε∗e

(2.7)

B = ρ
∂ψd

∂β
= Kdβ

The damage dissipation potential, defined in the space of local force conjugates
{Y,−B}, is assumed in the form (cf. Murakami and Kamiya, 1997)

F (Y, B) = Yeq − (B0 +B) = 0 Yeq =

√

1

2
Y : L : Y (2.8)
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where B0 and B stand for the initial damage threshold and the subsequent
damage force conjugate, respectively. The fourth-rank tensor L is defined here
in a simplified way

Lijkl =
1

2
(δikδjl + δilδjk) (2.9)

However, in a more general case, it may also be assumed as a tensor function
of damage L(D), linear in D (cf. Hayakawa and Murakami, 1997; Bielski et
al., 2006). Finally, the local damage evolution equations are established from
the damage potential by the normality rule

Ḋ = λ̇d
∂F

∂Y
β̇ = λ̇d (2.10)

where the consistency condition is used to eliminate λ̇d

λ̇d =
α∂F
∂Y
: Ẏ

∂B
∂β

= α
L : Y

2KdYeq
: Ẏ (2.11)

3. Nonlocal formulation of the damage dissipation potential and

evolution equations

Local state equations (2.1) through (2.6), combined with the local evolution
law for Ḋ and β̇, were applied by Kuna-Ciskał and Skrzypek (2004). This
approach, however, is not capable of predicting damage evolution in the case
of localised damage and strain fields because of a spurious mesh effect. In what
follows, the Nonlocal Approach (NA) to damage dissipation and evolution is
proposed. In general, to avoid the singularity of Y at the crack tip when the
mesh size tends to zero, the Cut-off Algorithm (CA) may optionally be used
in the neighbourhood of the crack tip, according to the scheme (cf. Skrzypek
et al., 2005a, 2005b)

Ŷ = kY k =











1 if Yeq ¬ Yu

Yu
Yeq

if Yeq > Yu
(3.1)

where the cut-off factor k is defined as follows

k =
Yu
Yeq
=
B0 +B

Yeq
(3.2)
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and B0 stands for the initial damage threshold. The new variable Ŷ is next

subjected to the nonlocal treatment (NA) Ŷ, according to the following for-
mula (cf. e.g. Pijaudier-Cabot and Bažant, 1987; Comi and Perego, 2004)

Ŷ =

∫

Ωd

Ŷ(ξ)ϕ(x, ξ) dΩd

∫

Ωd

ϕ(x, ξ) dΩd
ϕ(x, ξ) = exp

[

−
(d(x, ξ)

d∗

)2]

(3.3)

where ϕ(x, ξ) is the weight function and d∗ stands for the internal length of
the nonlocal continuum.
The damage dissipation potential in the space of nonlocal force conjugates

{Ŷ,−B} is assumed in an analogous form as in the local space {Y,−B}, where
only the isotropic hardening is accounted for (2.8)

F (Ŷ, B) = Ŷ eq − (B0 +B) = 0 Ŷ eq =

√

1

2
Ŷ : L : Ŷ (3.4)

In equation (3.4), B stands for the nonlocal damage force conjugate of the
nonlocal damage hardening variable β. The nonlocal evolution equations for

β̇ and Ḋ are finally established from the normality rule instead of (2.10)

Ḋ = λ̇d
∂F

∂Ŷ
β̇ = λ̇d (3.5)

where the consistency condition is used to calculate λ̇d

Ḟ = 0 =
∂F

∂Ŷ
:

.

Ŷ +
∂F

∂B
Ḃ λ̇d = α

L :

.

Ŷ

2KdŶ eq
:

.

Ŷ (3.6)

A factor α = 1 or α = 0 is used for the active or passive damage growth,
respectively.

4. Incremental formulation of the nonlocal model and the failure

criterion

In the case of a nonlocal continuum, new nonlocal variables Y and B or, al-

ternatively, Ŷ and B are used in the evolution equations only, instead of the
local ones Y and B. Hence, the internal damage variables are also defined in
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a nonlocal sense, e.g. D and β. Other state variables, σ and εe are not sub-
jected to the nonlocal averaging, however the locally-defined siffness matrix
Λs(D) in (2.6) has to be replaced by the new, nonlocally prescribed secant ma-
trix Λ

s
(D) that accounts for damage nonlocality. In the paper by Kuna-Ciskał

and Skrzypek (2004), the incremental constitutive equations were derived in
a local sense, to enable introduction of the general failure criterion based on
Drucker’s material stability postulate, and to ensure convergence and nume-
rical stability. When the nonlocal approach is used, the new nonlocal effective
tangent stiffness matrix Λ

t
(εe,D) has to be defined instead of the local one

Λt(εe,D). To this end, the local secant stiffness matrix Λs(D) in (2.6) has
to be modified in a nonlocal sense, Λ

s
(D), accounting for damage nonlocality

(3.5). Then, the new nonlocal effective tangent stiffness matrix Λ
t
(εe,D) is

established to yield the incremental constitutive equation as follows

dσ = Λ
s
: dεe + εe :

∂Λ
s

∂D
: dD (4.1)

Finally, applying (3.5) to obtain nonlocal damage increments dD on dεe, the
following incremental state equation is derived (cf. Kuna-Ciskał and Skrzypek
2004)

dσ =
[

Λ
s
+ αεe :

∂Λ
s

∂D
:
∂D

∂εe

]

: dεe = Λ
t
(εe,D) : dεe or

(4.2)

{dσ} = [Λ
t
(εe,D)]{dεe}

The square bracket in (4.2) represents the new nonlocal effective tangent stiff-

ness Λ
t
(εe,D) that follows damage nonlocality D (3.5). In order to introduce

the general failure criterion, Drucker’s material stability postulate is adopted

dσijdεij > 0 (4.3)

Substituting for dσij formula (4.2) into stability criterion (4.3), we obtain

∂2ψ

∂εij∂εkl
dεijdεkl = Hijkldεijdεkl > 0 (4.4)

The nonlocally defined quadratic form (∂2ψ/∂εij∂εkl)dεijdεkl must be posi-
tive definite for arbitrary values of the components dεij . Hence, eventually,
condition (4.4) requires that the nonlocal Hessian matrix H be positive definite
(cf. Chen and Han, 1995).
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The element tangent stiffness matrix is used for the quasi-Newton algo-
rithm for the first iteration step of solving non-linear equation (4.2) as long
as failure criterion (4.4) holds. The stiffness of the element in the FE mesh
that have come to failure is next reduced to zero. As a consequence, the failed
element is completely released from stress and an appropriate stress redistribu-
tion occurs in the neighbouring elements to ensure the global equilibrium. Note
that the above failure criterion, (4.4), assumes a brittle failure mechanism. Ho-
wever, when a broader class of materials is considered, a post-peak softening
regime can also be admitted which would result in strain localisation such that
a smooth drop in stiffness of elements that come to failure is met (cf. Bielski
et al., 2006).

5. Numerical simulation of nonlocal damage and fracture in

concrete under plane stress conditions

5.1. Computational algorithm for nonlocal description of damage and

fracture in an elastic-damage material

The iteration of the global equilibrium of a system is performed by
ABAQUS with the use of Newton-Raphson method. All variables are updated
by the end of an increment, after the convergence is achieved. The physical
relations are integrated at a point level (Gauss point of an element) by means
of the user-supplied subroutine UMAT, starting from the known equilibrium
state and for the elastic strain increment given in each iteration. The output
information – stresses and all other state variables – is updated by the end of
the integration increment and so are both stiffness matrices, Λ

s
(D) (secant)

and Λ
t
(εe,D) (tangent), accounting for damage nonlocality.

The integration is performed with explicit forward Euler’s scheme. The de-
rivatives (stiffness) are known at the starting point and kept constant along the
increment. Such an approach may successfully be used only for a sufficiently
small incremental step.

The particular form of the stiffness matrix depends on the state variables
as well as on the kind of deformation process taking place through a strain
increment. Namely, it depends on whether the process is active or passive.
”Active” (loading) denotes a process which implies evolution of the limit sur-
face (damage evolution); ”passive” (unloading) stands for changes inside the
limit surface (no damage evolution); ”neutral” denotes a process tangent to
the limit surface (no damage evolution).
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The integral-type nonlocal definition of variables is furnished by means
of another subroutine URDFIL, which gives an access to the file with results
during the analysis. The subroutine is called up at the end of any increment
in which new information is written to the results file. The local variables
from all integration points are written to an array and then subjected to the
nonlocal treatment (NA) according to formulae (3.1) through (3.3). The array
is placed in the COMMON block, hence the nonlocal variables from the end of
the present increment are accessible in all user routines for the next increment.
When applying the algorithm (CA)+(NA) (see Section 3), one more nume-

rical operation is neccessary. After ”cutting-off” CA and ”weighted averaging”

NA, the value of Ŷ eq has to be additionally shifted to meet the critical sur-
face at a particular integration point in which it was maximal before cutting;
otherwise the damage evolution process would be blocked.

5.2. Material data, geometry and loading

A double-edge notched plane-stress specimen follows an experiment car-
ried out by Nooru-Mohammed experiment (1992) and Nooru-Mohammed et
al. (1993). The experiment enabled analysis of various combinations of shear
and tension under controlled displacement. The model was investigated by di
Prisco et al. (2000) to simulate fracture by means of three approaches: the local
model, the gradient plasticity model and the nonlocal damage model. In what
follows, in order to prevail Mode I crack growth under tension, the shear com-
ponent was excluded (δt = 0). The material data for a high strength concrete
that describe the basic Murakami-Kamiya model are taken after Murakami
and Kamiya (1997) (see Fig. 1).

Fig. 1. Double-edge notched specimen configuration (cf di Prisco et al., 2000) and
material data (cf Murakami and Kamiya, 1997)
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5.3. Simulation of fracture in a double-notched specimen

Assuming a uniform normal displacement δn applied at the top of the
specimen shown in Fig. 1 (δt = 0), a complete process of damage growth and
fracture is simulated until the ultimate failure of the specimen is predicted.
A combined non-symmetric tension/shear failure mode is developed due to
the non-symmetric boundary conditions used (Fig. 1). Two zones of failed
elements where the ellipticity is lost (checking nonlocal Hessian matrix H
(4.4)) are spreading inwards in opposite directions from the notches as long as
the ultimate fracture mechanism is not achieved. The releasing of consecutive
failed elements from stresses results in stress redistribution in neighbouring
(non-failed) elements. The distribution of stresses along the MN line (Fig. 1)
becomes more and more non-uniform, finally yielding strong stress localisation
in front of two failed zones that come into touch when the ultimate fracture
is met.

Fig. 2. FEM meshes for convergence tests
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To check the influence of characteristic length of nonlocal continuum
(4.2) on the damage evolution and fracture processes, the following values of
d∗ = 2.5, 5.0, 7.5, 10.0, 20.0mm are tested. The range of values is taken on
the basis of di Prisco et al. (2000), where for the nonlocal damage model
d∗ ≈ 8mm is adopted. The finite element size must be lower than the charac-
teristic length to make the nonlocal approach active, so the rectangular mesh
2.5mm×2.5mm is adopted here (Fig. 2a). Other meshes, shown in Fig. 2b and
Fig. 2c are defined for the convergence test.

The effect of increasing value of d∗ on Y eq is shown in Fig. 3 and Fig. 4. The
characteristic length defines the area over which Yeq is averaged, according to
(3.3). The bigger d∗ – the larger area, the more balanced and lower values of
the averaged variable around the present integration point (Fig. 3), and the
less advanced damage and fracture process at a chosen level of load (Fig. 4).

Fig. 3. Effect of the characteristic length on Yeq localization – precritical stage

The increasing value of d∗ clearly makes the fracture progress slower, as shown
in Fig. 4. Depending on the value of d∗, at the same post-critical loading step
(54), a different advance of fracture is met. In other words, an increase of d∗

results in an increase of both critical displacements shown in Fig. 5.

The value of the ”incubation” displacement (Fig. 5) denotes the displace-
ment of the edge DC (Fig. 1) at the instant of macro-crack appearance, while
the ”fracture” displacement means the displacement of the same edge at the
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Fig. 4. Effect of the characteristic length on Yeq localization – postcritical stage

Fig. 5. Effect of the characteristic length on critical displacements: incubation and
failure

overall failure of the structural element. It is observed that, for d∗ ¬ 7.5mm,
the second critical displacement at fracture becomes (almost) non-sensitive to
the characteristic length size.

5.4. Effect of the characteristic length on the equivalent crack shape

Simulations of the crack growth by the nonlocal approach developed in
the present paper depend on the characteristic length of a nonlocal continuum
(cf. Nooru-Mohammed et al., 1993; Skrzypek et al., 2005a, 2005b). When the
(NA) algorithm is used, the increasing width of the crack is observed when the
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characteristic length grows. At the same time, the direction of macro-cracking
changes: the lower d∗ the more the crack shape tends to a straight form (see
Fig. 6).

Fig. 6. Effect of d∗ on mesh deformation (crack pattern) at failure

Fig. 7. A test on the mesh shape dependence (d∗ = 7.5mm): (a) regular rectangular
mesh, (b) irregular triangular mesh

Let us consider the mesh-dependence of the numerical simulations of dama-
ge and fracture. The local approach is element shape-dependent. For different
finite element shapes, different crack patterns are usually obtained. Namely,
when the local approach is used, the crack may propagate from the current
failed element to the neighbouring one, the edge of which is shared with the
corresponding edge of the current failed element. In other words, the element
shape restricts possible directions of crack propagation (cf Murakami and Liu,
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1995; Kuna-Ciskał, 1999). By contrast, the nonlocal approach presented in this
paper allows obtaining the crack pattern independent of the element shape (see
Fig. 7).

Eventually, changing the size of an element a convergence test was per-
formed. Results shown in Fig. 8 proved capability of the developed nonlocal
model to properly describe both the pre-critical damage evolution during in-
cubation period as well as the post–critical crack growth period. It is shown
that the use of an additional localisation limiter, the Cut-off Algorithm (CA),
is not necessary to meet a convergence. The use of a single localization limiter,
by the Nonlocal Averaging (NA) only, is capable of convergent prediction of
both critical displacements – at the crack initiation and the fracture.

Fig. 8. Convergence tests: (a) no localization limiters (local approach), (b) one
localization limiter (NA), (c) two localization limiters (NA+CA)
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6. Conclusions: capability of localization limiters

• The modified local Murakami-Kamiya model of an elastic-damage ma-
terial is capable of qualitative simulating secondary crack growth, but a
severe mesh dependence is observed when the local approach is used.

• A sufficient nonlocal extension of the modified Murakami-Kamiya model
of the elastic-brittle damage (NMMK) is achieved by the use of the
nonlocal damage variable definition (NA). No additional application of
the Cut-off Algorithm (CA) is necessary to meet a convergence (mesh
independence).

• The appropriate choice of the internal length of a nonlocal continuum
depends on the characteristic dimension of the model. If too small. i.e.
close to the local approach – the convergence is lost. If too large – the spe-
cific crack topology is lost (smeared too much). In the example used for
simulation of the crack growth in a double-notched concrete specimen,
the notch dimension is 5mm×25mm, whereas the ”optimal” internal
length is established to 7.5mm.

• The topology of secondary cracks, obtained by simulation when the
NMMK model is used, is similar to these obtained in benchmark tests by
di Prisco et al. The same double-notched sample geometry is incorpora-
ted, but the material used in the reference test (concrete) slightly differs
from the one used in the present simulation. Besides, simple loading is
used, δt = 0.

• The mesh size convergence is proved for both critical displacements, at
incubation and at fracture.
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Wpływ długości charakterystycznej na prognozowanie rozwoju uszkodzeń

i pękania w betonie przy zastosowaniu podejścia nielokalnego

Streszczenie

W pracy opisany został nowy, nielokalny model typu całkowego do symulacji roz-
woju anizotropowych uszkodzeń w betonie. Przedstawiony model nielokalny jest roz-
winięciem modelu lokalnego zaproponowanego w pracy Murakami i Kamiya (1997),
a zmodyfikowanego do formy przyrostowej w pracy Kuna-Ciskał i Skrzypek (2004).
W celu uniknięcia zależności rozwiązania numerycznego od siatki MES oraz zapew-
nienia stabilności i zbieżności zastosowano w obecnej pracy dwa sposoby ograniczania
lokalizacji: nielokalne uśrednianie (NA) oraz algorytm obcinania (CA), oba zastoso-
wane do sił termodynamicznych sprzężonych ze zmiennymi stanu uszkodzenia. Rów-
nania konstytutywne materiału sprężysto-kruchego zapisane zostały w formie przy-
rostowej z zastosowaniem zmiennych nielokalnych przy użyciu potencjału dyssypacji
zdefiniowanego w przestrzeni uśrednionych zmiennych stanu uszkodzenia. Jako funk-
cję wagową przyjęto funkcję Gaussa. Przy pomocy opisanego modelu przeprowadzono
numaryczną analizę rozwoju uszkodzeń i pękania w płaskim elemencie betonowym
z podwójnym karbem, badanym eksperymentalnie przez Nooru-Mohammeda (1992).
Przedyskutowano problem odpowiedniego doboru długości charakterystycznej konti-
nuum nielokalnego oraz jej wpływu na rozwiązanie numeryczne.
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