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This paper provides heat transfer analysis in a straight fin with a step change in thick-
ness and variable thermal conductivity, which is losing heat by simultaneous convection
and radiation. The calculations are carried out by using the differential transformation me-
thod (DTM) that can be applied to various types of differential equations. The results
obtained employing DTM are compared with an accurate numerical solution to verify the
accuracy of the proposed method. Several graphs are provided to illustrate how the tem-
perature distribution is affected by the (i) thickness parameter, (ii) dimensionless fin semi
thickness, (iii) length ratio, (iv) thermal conductivity parameter, (vi) Biot’s number, and
(vii) radiation-conduction parameter. This collection of graphs provides a comprehensive
picture of the thermal performance of the system under steady state conditions.
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Nomenclature

Ac, a – dimensional and dimensionless area of cross-section
Bi – Biot number
C1, C2, C3 – integration constants
h – coefficient of heat transfer
x1, x2, x3 – axial coordinate for entire fin and for thin and thick section of fin, respectively
α – thickness parameter
t, δ – unreduced and dimensionless semi-thickness of fin, respectively
L, l, λ – length of entire fin, length of its thin section and l-to-L ratio, respectively
T – temperature
Ta, Tb – temperature of ambient fluid and base of fin, respectively
T1, T2 – temperature within thin and thick section of fin, respectively
k, kb – temperature-dependent thermal conductivity and its value at fin base, respec-

tively
κ – slope of thermal conductivity curve
Nr, β – conduction-radiation and thermal conductivity, respectively
ε – emissivity
σ – Stefan-Boltzmann constant
θ, φ – dimensionless temperature within thin and thick section of fin, respectively
ξ, τ – dimensionless axial coordinate of thin and thick section of fin, respectively
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1. Introduction

Extended surfaces (fins) are widely used in many engineering applications which include, but are
not limited to, air conditioning, refrigeration, automobile and chemical processing equipment.
The primary objective of using fins is to enhance the heat transfer between the base surface and
its convective, radiative or convective-radiative environment. An extensive review on this topic
is presented by Kraus et al. (2002). The assumptions of constant thermo-physical properties and
uniform heat transfer coefficient reduce the mathematical complexity of the energy equation and
allow closed form analytical solutions for a number of cases as documented in Kraus et al. (2002).
If a large temperature difference exists within a fin, the thermal conductivity varies from the base
to the tip of the fin, the variation being dependent on the material of the fin. In real operating
conditions, the heat transfer coefficient also varies along a fin. The variation may be a function
of the spatial coordinate along the fin or the local temperature difference between the fin surface
and the surrounding fluid. A brief review of published works that is of immediate relevance
to the present paper is now presented. Bert (2002) applied DTM to steady-state heat transfer
in a triangular-profile fin with constant properties. Kundu (2007) analytically carried out the
thermal analysis and optimization of longitudinal and pin fins of uniform thickness subject to
fully wet, partially wet and fully dry surface conditions. Sharqawy and Zubair (2008) carried out
an analysis to study the efficiency of straight fins with different configurations when subjected
to simultaneous heat and mass transfer mechanisms. Domairry and Fazeli (2009) solved the
nonlinear straight fin differential equation by the homotopy analysis method (HAM) to evaluate
the temperature distribution within the fin. Arslanturk (2009)developed correlation equations
for the optimum design of annular fins with temperature-dependent thermal conductivity. Kul-
karni and Joglekar (2009) proposed and implemented a numerical technique based on residue
minimization to solve the nonlinear differential equation governing the temperature distribution
in a straight convective fin having temperature-dependent thermal conductivity. Khani et al.
(2009) used HAM to derive approximate analytical solutions for the temperature distribution
and efficiency of a convective fin with simultaneous variation of the thermal conductivity and
heat transfer coefficient with temperature. Fouladi et al. (2010) utilized the variational iteration
method as an approximate analytical method to overcome some inherent limitations arising as
uncontrollability to the nonzero endpoint boundary conditions and used this method to solve
some examples in the field of heat transfer. Khani and Aziz (2010) used HAM to develop an
analytical solution for the thermal performance of a straight fin of trapezoidal profile when
both thermal conductivity and heat transfer coefficients are temperature dependent. Aziz and
Torabi (2012) numerically studied convective-radiative straight fins. They considered simultane-
ous variation of the thermal conductivity, heat transfer coefficient, and surface emissivity with
temperature for that research.

These studies consider fins with constant cross-sectional area or tapered fins. Aziz (1994)
investigated optimum dimensions of convective rectangular fins with a step change in the cross-
-sectional area. A similar profile was also adopted for radial fins by Kundu and Das (2001).
Malekzadeh et al. (2006) used the differential quadrature method for optimization of convective-
-radiative flat and step fins. Recently, Kundu (2009) analyzed an annular fin with a step change in
thickness under fully and partially wet surface conditions. The optimization study demonstrated
that an annular fin with a step change in thickness is a better choice for transferring rate of
heat in comparison with the concentric-annular disc fin for the same fin volume and identical
surface conditions. Kundu and Aziz (2010) used a numerical procedure to study the thermal
performance of a step convective-radiative fin with temperature-dependent thermal conductivity
and convective base heating.

A careful assessment of the foregoing literature shows that the most studies of step fins
assume that the fins lose heat either by convection or radiation. The purpose of the present
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paper is to demonstrate the usefulness of DTM to analytically solve the problem of convective-
-radiative heat transfer from a step fin with temperature dependent thermal conductivity. The
results to be presented will highlight the effects of the thickness parameter α, dimensionless fin
semi-thickness δ, length ratio λ, thermal conductivity parameter β, Biot number Bi, radiation-
-conduction parameter Nr, on the temperature distribution. Thermal analysis of step fins is a
new application for DTM which was used for other engineering applications (Yaghoobi et al.,
2011; Yaghoobi and Torabi, 2011, 2012).

2. Description of the problem

A rectangular step fin of unreduced thickness 2t and length L is shown in Fig. 1. The fin is
attached to a primary surface at fixed temperature Tb and loses heat by simultaneous convection
and radiation to the surrounding medium. The sink temperatures for convection and radiation
are denoted by Ta and Ts, respectively. As is customary, the fin tip is assumed to be adiabatic.
It is also assumed that the convection heat transfer coefficient h, and the emissivity coefficient
of surface ε, are both constant. The radiative exchange between the fin and its base is neglected.
Since the fin is assumed to be thin, the temperature distribution within the fin does not depend
on the vertical direction.

Fig. 1. Schematic of a convective-radiative fin with a step change in thickness

The energy balance equation for a differential element of the fin is given as
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(2.1)

where k(T ) and σ are the thermal conductivity and Stefan-Boltzmann constant, respectively.
The thermal conductivity of the fin material is assumed to be a linear function of temperature
according to

k(T ) = kb[1 + κ(T − Tb)] (2.2)

where kb is the thermal conductivity at the base temperature and κ is the slope of the thermal
conductivity-temperature curve. Invoking the continuity of temperature and heat current at the
junction, the boundary conditions of the governing equations can be expressed as
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Introducing the following dimensionless parameters
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(2.4)

and by assuming θa = θs = 0, the formulation of the fin problem reduces to the following
equation
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with the following boundary conditions
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3. Fundamentals of differential transformation method (Zhu, 1986)

Let x(t) be analytic in a domain D and let t = ti represent any point in D. The function x(t) is
then represented by one power series whose center is located at ti. The Taylor series expansion
of x(t) is in form of

x(t) =
∞
∑

k=0

(t− ti)
k

k!

[dkx(t)

dtk

]

t=ti
∀t ∈ D (3.1)

The particular case of Eq. (3.1) when ti = 0 is referred to as the Maclaurin series of x(t) and
is expressed as

x(t) =
∞
∑

k=0

(t)k

k!

[dkx(t)

dtk

]

t=0
(3.2)

As explained by Hassan (2004), the differential transformation of the function x(t) is defined as
follows

X(k) =
(H)k

k!

[dkx(t)

dtk

]

t=0
(3.3)

where x(t) is the original function and X(k) is the transformed function. The differential spec-
trum of X(k) is confined within the interval t ∈ [0,H], where H is a constant. The differential
inverse transform of X(k) is defined as follows

x(t) =
∞
∑

k=0

( t

H

)k

X(k) (3.4)
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It is clear that the concept of differential transformation is based upon the Taylor series expan-
sion. The values of the function X(k) for values of the argument k are referred to as discrete, i.e.
X(0) is known as the zero discrete, X(1) as the first discrete, etc. The more discrete available,
the more precise restoration of the unknown function is possible. The function x(t) consists of
T -function X(k), and its value is given by the sum of the T -function with (t/H)k as its coeffi-
cient. In real applications, at the right choice of the constant H, larger values of the argument k,
the discrete of spectrum reduces rapidly. The function x(t) is expressed by a finite series, and
Eq. (3.4) can be written as

x(t) =
n
∑

k=0

( t

H

)k

X(k) (3.5)

Mathematical operations performed by the differential transform method are listed in Table 1.

Table 1. The fundamental operations of differential transform method

Original function Transformed function

x(t) = αf(t)± βg(t) X(k) = αF (k)± βG(k)

x(t) =
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dt
X(k) = (k + 1)F (k + 1)

x(t) =
d2f(t)

dt2
X(k) = (k + 1)(k + 2)F (k + 2)

x(t) = tm X(k) = δ(k −m) =
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k
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3.1. Solution with DTM

Now we apply the differential transformation method into Eq. (2.5)1. Taking the differential
transform of Eq. (2.5)1 with respect to ξ, and considering H = 1 according to Table 1, gives
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(3.6)

From the boundary condition in Eq. (2.6)1, that we have it in point ξ = 0, and exerting
transformation

Θ(1) = 0 (3.7)

The other boundary condition is considered as follows

Θ(0) = C1 (3.8)
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Accordingly, from a process of inverse differential transformation, in this problem we calculated
Θ(k + 2) from Eq. (3.6) as follows
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The above process is continued further. Substituting Eq. (3.9) into the main equation based on
DTM, the solutions are obtained as
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Also, we apply the differential transformation method into Eq. (2.5)2. Taking the differential
transform of Eq. (2.5)2 with respect to τ , and considering H = 1 according to Table 1, gives
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Letting φ(0) = C2 and (dφ/dτ)|τ=0 = C3, and exerting transformation

Φ(0) = C2 Φ(1) = C3 (3.12)

Using the same procedure as introduced in Eq. (3.9), the closed form of the solutions is obtained
as
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(3.13)

The integration constant C1 represents the temperature at the fin tip. C2 and C3 are the
temperature and temperature gradient at the cross-section where the step change in thickness
occurs, respectively. The constants can be evaluated from the boundary conditions given in Eqs.
(2.6)2,3,4 using Newton-Raphson method.
The calculations reported in this paper use n = 7, which was found to be sufficient to

give an accurate solution. An implication of this is that Eq. (2.5) only requires the summation
of a limited number of terms, and therefore the solution can be computed without excessive
computational effort.
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4. Results and discussion

The differential transformation method was applied to provide an analytical solution in terms
of an infinite power series. Figures 2a and 2b show the differences among the DTM and the
numerical solution (NS) for Eq. (2.5). In these figures, we assume that the fin is without a step
in the thickness, i.e. α = 1. These figures clearly show that with the DTM, a highly accurate
analytical solution of the problem is achievable. It should be noted that, for all numerical results
reported here, the following values of variables were used unless otherwise indicated by the
graphs or tables: α = 0.5, λ = 0.5, δ = 0.05, β = −0.4, Bi = 0.01, Nr = 0.01.

Fig. 2. Comparison of dimensionless temperature variation for various Biot number (a) and for various
conduction-radiation parameters (b) obtained by DTM (solid line) and NS (circle)

Figure 3a shows the effect of the thickness parameter, i.e. parameter α on the temperature
distribution in the step fin. The bottom curve corresponds to α = 0.2 and the top curve
corresponds to α = 0.8. As the parameter α increases, the temperature distribution within
the thin section of the fin increases, and the temperature distribution within the thick section
of the fin decreases but, as expected it is not significant.

Figure 3b illustrates the effect of the length ratio, i.e. λ on the temperature distribution in
the fin. As λ increases, i.e. as the thin section increases, the temperature distribution within
the thin section of the fin decreases.

Fig. 3. Dimensionless temperature variation for various values of α (a) and of λ (b) obtained by DTM

For the case of different values for the dimensionless fin semi-thickness results of the present
analysis are depicted in Fig. 4a. As δ decreases, the cooling becomes more effective, promoting
lower temperatures in the fin. This interesting behavior occurs for both thin and thick sections
of the step fin. In Fig. 4b, we have plotted the effect of the thermal conductivity parameter on
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the temperature distribution within the fin. The results in the figure reveal that as the value
of β increases, the temperature distribution within the both sections increases.

Fig. 4. Dimensionless temperature variation for various values of δ (a) and of β (b) obtained by DTM

In Fig. 5a, the effect of Biot’s number Bi on the temperature distribution in the fin is
illustrated. The top curve corresponds to Bi = 0 (without convection effect) and the bottom
curve corresponds to Bi = 0.1. As Biot’s number increases, i.e. as convection gets stronger, the
cooling becomes more effective, promoting lower temperatures in the fin. In Fig. 5b, we illustrate
the effect of radiation-conduction parameter Nr on the temperature distribution in the fin. As
the radiative transport becomes stronger, the radiative cooling becomes more effective, which
in turn causes the lowering of temperatures in the fin. Moreover, all the mentioned parameter
effects on the tip temperature (TT) and junction temperature (JT) are tabulated in Table 2.

Table 2. The effects of various parameters on the tip (TT) and junction temperature (JT)

β = −0.2 β = 0.2
Bi δ λ α Nc = 0.01 Nc = 0.1 Nc = 0.01 Nc = 0.1

TT JT TT JT TT JT TT JT

0.01 0.05 0.4 0.4 0.7943 0.8528 0.5941 0.6853 0.8426 0.8895 0.6413 0.7296
0.8 0.8222 0.8533 0.6288 0.6815 0.8657 0.8902 0.6757 0.7261

0.8 0.4 0.7286 0.9404 0.5347 0.8624 0.7851 0.9558 0.5795 0.8877
0.8 0.8091 0.9356 0.6149 0.8450 0.8547 0.9528 0.6615 0.8732

0.1 0.4 0.4 0.8745 0.9105 0.6913 0.7652 0.9083 0.9354 0.7382 0.8059
0.8 0.8945 0.9134 0.7242 0.7664 0.9238 0.9378 0.7694 0.8074

0.8 0.4 0.8293 0.9635 0.6361 0.8999 0.8716 0.9738 0.6830 0.9207
0.8 0.8863 0.9625 0.7120 0.8909 0.9174 0.9734 0.7576 0.9137

0.1 0.05 0.4 0.4 0.3360 0.4942 0.3124 0.4640 0.4101 0.5703 0.3740 0.5300
0.8 0.3968 0.4877 0.3689 0.4571 0.4752 0.5650 0.4342 0.5235

0.8 0.4 0.2352 0.7898 0.2228 0.7644 0.2927 0.8330 0.2719 0.8071
0.8 0.3707 0.7605 0.3460 0.7338 0.4466 0.8098 0.4093 0.7811

0.1 0.4 0.4 0.5196 0.6437 0.4748 0.5992 0.6028 0.7152 0.5445 0.6633
0.8 0.5798 0.6486 0.5307 0.6016 0.6600 0.7207 0.5994 0.6660

0.8 0.4 0.4117 0.8537 0.3814 0.8277 0.4912 0.8880 0.4471 0.8628
0.8 0.5562 0.8417 0.5099 0.8123 0.6374 0.8799 0.5787 0.8506
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Fig. 5. Dimensionless temperature variation for various values of Bi (a) anf of Nr obtained by DTM

5. Conclusions

The present work is concentrated on the performance analysis of convective-radiative step fins
with temperature-dependent thermal conductivity. Since the fins have a step change in thick-
ness, the fin problem has been divided into two parts as thin and thick sections. Resulting two
nonlinear heat transfer equations with nonlinear boundary conditions have been solved by the
differential transformation method (DTM). As both the radiation and convection effects incre-
ase, they lower the fin temperature. Similarly, as the thermal conductivity of the fin increases,
i.e. the parameter β increases, it promotes slower cooling accompanied by higher local fin tem-
peratures. As a prominent result, it was found that the DTM solution can achieve extremely
accurate results. This paper shows us the validity and great potential of the DTM for nonlinear
problems in science and engineering.
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