
JOURNAL OF THEORETICAL

AND APPLIED MECHANICS

44, 1, pp. 163-184, Warsaw 2006

PIECEWISE LINEAR luz (. . .) AND tar (. . .) PROJECTIONS.
PART 1 – THEORETICAL BACKGROUND

Dariusz Żardecki

Automotive Industry Institute (PIMOT), Warsaw

e-mail: zardecki@pimot.org.pl
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matical apparatus are very useful for modelling of nonlinear systems, eg
systems with freeplay or friction.

Key words: non-linearties, piecewise linear systems, algebraic and diffe-
rential equations

1. Introduction

Nonlinear systems which can be modelled using piecewise linear equations
are called ”piecewise linear systems”. Oftentimes, the piecewise linearity is a
result of non-linear approximation of a function. But piecewise linear charac-
teristics with well-marked points of ”fractures” can be consequences of varia-
tional principles referring to physical processes with constrains – see Grzesi-
kiewicz (1990) for examples. So, from the mathematical point of view, such
a piecewise linearity might be a result of some optimization task with limits
(see example below).

Theorem 1.1. The optimisation task yopt(x, a) : minQy(x−y)∧y ∈ [−a, a],
where Q(x− y) is a convex function has the solution

yopt(x, a) =











a if x  a
x if −a < x < a
−a if x ¬ −a
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Proof
This task is solved by analysis of the function family q(y) = Q(x − y) (where x

is the parameter) on the Oyq plane with the limits y ∈ [−a, a]. It is shown in Fig. 1
for Q(x− y) = |x− y|.

Fig. 1. Topological solution to the optimization task
�

The theory of piecewise linear systems contains methods of modelling,
static and dynamic analysis, numerical procedures for algebraic and differential
piecewise linear equations, etc. This has been developed for about 30 years with
connection to the non-linear theory of electrical circuits, non-linear control
theory and, recently, also by the way of works on the non-linear contact theory
of discrete mechanical systems (details and bibliographic information is given
by Żardecki (2001, 2005)).
There are two methods of modelling piecewise linear systems (Kevenaar

and Leenaerts, 1992):

• In the first method the model is described by linear equations varied for
all ranges of its piecewise linearity. The ranges can be conditioned by
constraints or (the simplest case) given by fracture points of characteri-
stics;

• In the second method the model is given in a compact analytic form
for full range of variability by piecewise linear equations based on linear
and nonlinear forms of the ”module” and ”sign” type. The nonlinear
characteristics are superceded by function series without logic operators
and definition step-by-step.

The first approach is more all-matching, unfortunately it leads to long-
drawn-out descriptions. Such models are very difficult for analytical transfor-
mation and reduction, especially when they have implicit forms. Such inconve-
niences can be avoided when the second manner of modelling is applied. Of
course, synthesis of the compact form of a model can be difficult and, theoreti-
cally, even impossible. But creation of an analytical piecewise linear model give
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a chance for its analytical simplification and reduction in terms of its appa-
rent variables. Such analytical transformations are easier to be accomplished
by application of special mathematic apparatus prepared before. Piecewise li-
near projections are very helpful for simplification of numerical simulations
procedures. In the case of multidimensional systems with deep closed loops
and acting in variable structures with disentanglement constraints, when the
full compact type of a model is impossible to formulate, a mixed manner of
the modelling is preferred.
Analytical description of piecewise linear projections makes use of func-

tions and pseudo-functions which are called basic projections. They can be
created by elementary projections or their simple compounds and combina-
tions, eg. y = x, y = sgn(x), y = |x| = x sgn(x), and so on. The new
projections can be treated also as basic ones for specific applications. In the
case of modelling of mechanical systems with freeplay and friction, they ought
to refer to stiffness characteristics with ”dead zone” and to Coulomb’s friction
characteristics. Such characteristics have a lot of topological likenesses. This
was a fundamental remark for the author’s idea of creation the luz (. . .) and
tar (. . .) piecewise linear projections with their special mathematical appara-
tus. Fundamentals for luz (. . .) and tar (. . .) apparatus were introduced in the
author’s dissertation (Żardecki, 1992) and extended by Żardecki (2001).
This paper contains the main points of the theory including recent unpu-

blished theorems (with proofs) concerning algebraic and differential equations
and inclusions. Application of the luz (. . .) and tar (. . .) theory to the mo-
delling of systems with freeplay and friction are presented in the second part
(Żardecki, 2006).

2. Definitions and introduction luz (. . .) and tar (. . .) projections

Definition 2.1. For −∞ < x < +∞ and a  0

luz (x, a) = x+
|x− a| − |x+ a|

2
tar (x, a) = x+ a sgh(x)

where

sgh (x) =











−1 if x < 0
s∗ ∈ [−1, 1] if x = 0
1 if x > 0
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Fig. 2. Geometric interpretation of luz (. . .) and tar (. . .) projections

The cross-invertibility of the luz (. . .) and tar (. . .) projection is their main
attribute.

Theorem 2.1. (On invertibility, formal proof by Żardecki (2001))

luz (x, a) = tar−1(x, a)

tar (x, a) = luz−1(x, a)

For all x, the luz (x, a) and tar (x, a) are like anti-functions, when a
has a non-negative value. Note that such attribute is not true (see Fig. 3)
for projections luz (x,−a) and tar (x,−a) defined according to the presented
formulas (details by Żardecki (2001)).

Fig. 3. Geometric interpretation of projections with a negative parameter

The luz (. . .) and tar (. . .) can be treated as cases of a more general
talu (x, a1, a2) projection.

Definition 2.2. For −∞ < x < +∞ and a1, a2  0

y = talu (x, a1, a2) =











x− (a1 − a2) if x  a1
a2s
∗ if −a1 ¬ x ¬ a1

x+ (a1 − a2) if x ¬ −a1

where s∗ ∈ [−1, 1].
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Fig. 4. Geometric interpretation of talu (. . .) projection

So

talu (x, a, 0) = luz (x, a) talu (x, 0, a) = tar (x, a)

talu (x, 0, 0) = luz (x, 0) = tar (x, 0) = x

The tar (. . .) and talu (. . .) projections have inequivalent areas. It means that
dynamic models using tar (. . .) and talu (. . .) must be mathematically treated
as inclusion models. Going off the inequivalence (by additional dependencies),
description of the inclusion in such a model is replaced by varied structural
equations.

3. Basic mathematical apparatus of luz (. . .) and tar (. . .)
projections

The luz (. . .) and tar (. . .) projections have interesting properties. Their
formulas compose some mathematical apparatus. It is given by theorems and
remarks presented below. Their proofs were published by Żardecki (2001).
Attention: Constants a, b, c, k, . . . appearing in the theorems are non-

negative.

Theorem 3.1. (On oddness)

luz (−x, a) = − luz (x, a)

tar (−x, a) = − tar (x, a)

Theorem 3.2. (On multiplication by a positive constant)

k luz (x, a) = luz (kx, ka)

k tar (x, a) = tar (kx, ka)
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Note: In the case of multiplication by some negative constant, Theorem 3.2
should be combined with Theorem 3.1, eg.:

−k luz (x, a) = luz (−kx, ka)

Theorem 3.3. (On compounds)

luz ( luz (x, a), b) = luz (x, a+ b)

luz ( tar (x, a), b) =











luz (x, b− a) if b > a
x if b = a
tar (x, a− b) if b < a

luz ( talu (x, a, b), c) =

{

luz (x, a+ c− b) if c  b
talu (x, a, b− c) if c < b

tar ( luz (x, a), b) = talu (x, a, b)

tar ( tar (x, a), b) = tar (x, a+ b)

tar ( talu (x, a, b), c) = talu (x, a, b+ c)

Note: On the base of Theorem 3.3 (as well as Theorem 2.1), we can describe

luz ( tar (x, a), a) = x

tar ( luz (x, a), a) = x

Theorem 3.4. (On linear combination of luz (. . .) projections)

k1 luz (x, a1)± k2 luz (x, a2) =

=











k1[ luz (x, a1)− luz (x, a2)] + (k1 ± k2) luz (x, a2) if a2 > a1
(k1 ± k2) luz (x, a1) if a2 = a1
±k2[ luz (x, a2)− luz (x, a1)] + (k1 ± k2) luz (x, a1) if a2 < a1

Note: Replacement of the ordinary combination of luz (. . .)-type function by
a special concatenate series is the essence of this formula. Such a form ma-
kes calculation of substitutive characteristics for piecewise linear systems easy
(Żardecki, 1995).



Piecewise linear luz (. . .) and tar (. . .) projections. Part 1... 169

Theorem 3.5. (On linear combination of tar (. . .) projections)

k1 tar (x, a1)± k2 tar (x, a2) =

=































(k1 ± k2) tar
(

x,
k1a1 ± k2a2
k1 ± k2

)

if
k1a1 ± k2a2
k1 ± k2

> 0

(k1 ± k2)x if
k1a1 ± k2a2
k1 ± k2

= 0

(k1 ± k2)
[

2x− tar
(

x,
∣

∣

∣

k1a1 ± k2a2
k1 ± k2

∣

∣

∣

)]

if
k1a1 ± k2a2
k1 ± k2

< 0

Note: In the case of summation, this formula simplifies to a compact formula

k1 tar (x, a1) + k2 tar (x, a2) = (k1 + k2) tar
(

x,
k1a1 + k2a2
k1 + k2

)

Theorem 3.6. (On disentanglement of the feedback system with luz (. . .))

If luz (y, b) = k luz (x− y, a) then

luz (y, b) =
k

k + 1
luz (x, a+ b)

luz (x− y, a) = luz (x, a+ b)− luz (y, b)

y =
k

k + 1
talu
(

x, a+ b,
k + 1
k
b
)

x =
k + 1
k
talu
(

y, b,
k

k + 1
(a+ b)

)

luz (y, b) k→∞−→ luz (x, a+ b)

Note: For linear system (when a = b = 0) it means self-evident dependence:
If y = k(x− y) then

y =
k

k + 1
x

From Theorem 3.6 we can create another formulas, for example:
If y = k luz (x− y, a) + c then

y =
k

k + 1
luz (x− c, a) + c

and so on.
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Theorem 3.7. (On disentanglement of the feedback system with tar (. . .))

If tar (y, b) = k tar (x− y, a) then

y =































x−
1
k + 1

luz (x, ka− b) if ka > b

k

k + 1
x if ka = b

k

k + 1
luz
(

x,
b− ka

k

)

if ka < b

x =



























y +
1
k
luz (y, ka− b) if ka > b

(

1 +
1
k

)

y if ka = b
(

1 +
1
k

)

tar
(

y,
b− ka

k + 1

)

if ka < b

y
k→∞
−→ x

Theorem 3.8. (On disentanglement of the feedback system with luz (. . .)
and tar (. . .))

If luz (y, b) = k tar (x− y, a) then

y = x−
1
k + 1

luz (x, ka + b) x = y +
1
k
luz (y, ka+ b)

y
k→∞
−→ x

Theorem 3.9. (On disentanglement of the feedback system with tar (. . .)
and luz (. . .))

If tar (y, b) = k luz (x− y, a) then

y =
k

k + 1
luz
(

x,
ka+ b
k + 1

)

x =
k + 1
k
tar
(

y,
ka+ b
k + 1

)

y
k→∞
−→ luz (x, a)

The main advantage of the elaborated mathematical apparatus for piece-
wise linear systems is the possibility of finding rather simple mathematical
dependences. Formulas concerning algebraic operations are analogous to well
known formulas of standard linear systems. The mathematical apparatus of
luz (. . .) and tar (. . .) coheres also with topological procedures basing on gra-
phs or block diagrams. For example, Theorem 3.6 expressed by block-diagram
symbols is illustrated in Fig. 5.
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Fig. 5. Block-diagram interpretation of Theorem 3.6

The analytical formulas enable reduction of cascade piecewise systems. For
example

tar ( luz ( luz (x, a), b), c) = tar ( luz (x, a+ b), c) = talu (x, a+ b, c)

The formulas concerning disentanglement of feedback system with luz (. . .)
or/and tar (. . .)) projections enables transformation and simplification of com-
plex models governed by piecewise linear algebraic equations. This important
matter will be discussed in the next section.

4. Algebraic equations with luz (. . .) and tar (. . .)

Oftentimes, in multi-dimensional piecewise linear systems, output varia-
bles are not explicity dependent on input variables, and they are liable to
constraints given by involved piecewise linear algebraic equations (treated as
static subsystems). The problem of their clearing turns out to be very impor-
tant for effective numerical simulation. If such piecewise linear constraints are
composed of luz (. . .) and tar (. . .) projections, an analytical disentanglement
may be unexpectedly easy to carry out. The basic mathematical apparatus
can be applied directly (for example Theorem 3.6) to one-dimensional con-
straint equations. For two-dimensional equations, theorems presented below
are a new chance.
Attention: constants a, b, c, k1, k2 in the following theorems are non-negative.
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Theorem 4.1. If

y + k1 luz (y − x, a) = f

x− k2 luz (y − x, a) = g

then

y = f −
k1

k1 + k2 + 1
luz (f − g, a)

x = g +
k2

k1 + k2 + 1
luz (f − g, a)

Proof
From the first equation

1
k1
(f − y) = luz (y − x, a) hence x = y − tar

(f − y

k1
, a
)

From the first and second equations

f − y

k1
=
x− g

k2
or x =

k2
k1
(f − y) + g

hence

y − tar
(f − y

k1
, a
)

=
k2
k1
(f − y) + g

y − g =
1
k1
tar (f − y, k1a) +

k2
k1
(f − y)

On the basis of Theorem 3.5

y − g =
( 1
k1
+
k2
k1

)

tar
(

f − y,
k1a
1
k1
+ k2
k1

)

hence

luz (y − g, k1a) =
1 + k2
k1
(f − y)

f − y =
k1
k2 + 1

luz (f − g − (f − y), k1a)

From Theorem 3.6

f − y =
k1
k2+1
k1
k2+1
+ 1
luz (f − g, k1a)

hence

y = f −
k1

k2 + k1 + 1
luz (f − g, a)

x =
k2
k1

(

f − f +
k1

k2 + k1 + 1
luz (f − g, a)

)

+ g
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and finally

x = g +
k2

k2 + k1 + 1
luz (f − g, a)

�

Note: If k1 = k, k2 = pk (linear dependence k1 and k2), then

y
k→∞
−→ f −

1
p+ 1

luz (f − g, a) x
k→∞
−→ g +

p

p+ 1
luz (f − g, a)

Theorem 4.2. If

y + k1 tar (y − x, a) = f

x− k2 tar (y − x, a) = g

then

y =
k2f + k1g
k2 + k1

+
k1

k2 + k1 + 1
luz
( f − g

k2 + k1
, a
)

x =
k2f + k1g
k2 + k1

−
k2

k2 + k1 + 1
luz
( f − g

k2 + k1
, a
)

Proof
From the first equation

f − y

k1
= tar (y − x, a)

hence

x = y − luz
(f − y

k1
, a
)

From the first and second equation

f − y

k1
=
x− g

k2
or x =

k2
k1
(f − y) + g

hence

y − luz
(f − y

k1
, a
)

=
k2
k1
(f − y) + g

k1y − k2(f − y)− k1g = luz (f − y, k1a)

(k1 + k2)y − (k2f + k1g) = luz (f − y, k1a)

y −
k2f + k1g
k1 + k2

=
1

k1 + k2
luz (f − y, k1a)

also

y −
k2f + k1g
k1 + k2

=
1

k1 + k2
luz
(

f −
k2f + k1g
k1 + k2

−
(

y −
k2f + k1g
k1 + k2

)

, k1a
)
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On the basis of Theorem 3.6

y −
k2f + k1g
k1 + k2

=
1

k1+k2
1

k1+k2
+ 1
luz
(

f −
k2f + k1g
k1 + k2

, k1a
)

y −
k2f + k1g
k1 + k2

=
1

k1 + k2 + 1
luz
(k1(f − g)
k1 + k2

, k1a
)

hence

y =
k2f + k1g
k2 + k1

+
k1

k2 + k1 + 1
luz
( f − g

k2 + k1
, a
)

So

x =
k2
k1

(

f −
k2f + k1g
k2 + k1

−
k1

k2 + k1 + 1
luz
( f − g

k1 + k2
, a
))

+ g

hence

x =
k2f + k1g
k2 + k1

−
k2

k2 + k1 + 1
luz
( f − g

k2 + k1
, a
)

�

Note: If k1 = k, k2 = pk (linear dependence k1 and k2), then

y
k→∞
−→
pf + g
p+ 1

x
k→∞
−→
pf + g
p+ 1

The variables f and g can be treated as input variables and y and x –
as output ones for two-dimensional static systems that were initialy described
by equations with entangled outputs. Those entanglements disappear thanks
to the presented theorems.
Sometimes, as a result of mathematical modelling, one obtains some mul-

tidimensional model with redundant variables. The theorem presented below
might be very useful for analytical reduction of the model.

Theorem 4.3. If

luz (y − w, a) = k1 luz (w − u, c)

luz (u− x, b) = k2 luz (w − u, c)

then

luz (y − w, a) =
k1

k2 + k1 + 1
luz (y − x, a+ b+ c)

luz (u− x, b) =
k2

k2 + k1 + 1
luz (y − x, a+ b+ c)
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Proof
From the first equation, we have

u = w − tar
( 1
k1
luz (y − w, a), c

)

On the basis of both equations

luz (u− x, b) =
k2
k1
luz (w − u, c)

hence

luz
(

w − x− tar
( 1
k1
luz (y − w, a), c

)

, b
)

=
k2
k1
luz (y − w, a)

After inversion

w − x− tar
( 1
k1
luz (y − w, a), c

)

= tar
(k2
k1
luz (y − w, a), b

)

hence

w − x =
1
k1
tar ( luz (y − w, a), k1c) +

k2
k1
tar
(

luz (y − w, a),
k1
k2
b
)

On the basis of Theorem 3.5

w − x =
( 1
k1
+
k2
k1

)

tar
(

luz (y − w, a),
c+ b
1
k1
+ k2
k1

)

hence

w − x = tar
(1 + k2
k1
luz (y − w, a), b+ c

)

luz (w − x, b+ c) =
1 + k2
k1
luz (y − w, a)

luz (y − w, a) =
k1
k2 + 1

luz (w − x, b+ c)

or

luz (y − w, a) =
k1
k2 + 1

luz (y − x− (y − w), b+ c)

On the basis of Theorem 3.7

luz (y − w, a) =
k1
k2+1
k1
k2+1
+ 1
luz (y − x, a+ b+ c)

hence

luz (y − w, a) =
k1

k2 + k1 + 1
luz (y − x, a+ b+ c)
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The proof of the first part of theorem is ended.
The proof of the second part runs similarly. From the second equation

w = u+ tar
( 1
k2
luz (u− x, b), c

)

Taking into account that

luz (y − w, a) =
k1
k2
luz (u− x, b)

luz
(

y − u− tar
( 1
k2
luz (u− x, b), c

)

, a
)

=
k1
k2
luz (u− x, b)

y − u− tar
( 1
k2
luz (u− x, b), c

)

= tar
(k1
k2
luz (u− x, b), a

)

hence

y − u = tar
(k1 + 1
k2
luz (u− x, b), a+ c

)

luz (u− x, b) =
k2
k1 + k2

luz (y − u, a+ c)

luz (u− x, b) =
k2
k1 + k2

luz (y − x− (u− x), a+ c)

On the basis of Theorem 3.7 also

luz (u− x, b) =
k2

k1 + k2 + 1
luz (y − x, a+ b+ c)

�

Note: If k1 = k, k2 = pk (linear dependence), then

luz (y − w, a) k→∞−→
1
p+ 1

luz (y − x, a+ b+ c)

luz (u− x, b) k→∞−→
p

p+ 1
luz (y − x, a+ b+ c)

There is possible a formulation of analogous theorems for systems of equ-
ations with constraints containing the tar (. . .) or mixed pair luz (. . .) and
tar (. . .) projections. Such analytical formulas have rather complicated forms.
In comments to Theorems 4.1-4.3 we have considered also peculiar cases

when the coefficients k1, k2 were extremely large, but linearly dependent. Such
an outwardly impossible situation takes place in the case when a mathematical
model of so the called stiff dynamic system is set. For stiff systems, degene-
ration of equations of motion can be done by parametric operations. Such a
simplification of the model is easy to execute using the proved formulas for
disentanglement.
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5. Basic properties of ordinary differential equations and

inclusions with luz (. . .) and tar (. . .) projections

In this Section, we investigate basic mathematical properties of dynamical
systems described by equations and inclusions with the luz (. . .) and tar (. . .)
projections.
The necessity of taking into account not only equations but also inclusions

result from the indetermination (even though at the beginning of our study)
of tar (0, a). So, since tar (0, a) = as∗ ∈ [−a, a]):

• instead of formula ẋ(t) = f(. . . , tar (x(t), a), . . .) (differential state equ-
ation) we have ẋ(t) ∈ f(. . . , tar (x(t), a), . . .) (differential state inclu-
sion),

• instead of formula 0 = f(. . . , tar (x(t), a), . . .) (function equation) we
have 0 ∈ f(. . . , tar (x(t), a), . . .) (function inclusion).

Transformation of inclusion description requires an individual approach.
In cases when the tar (. . .) projections are elements of a single inclusion, the
theorems presented below can be very useful.
Attention: parameters a, b, . . . appearing in the following theorems are non-
negative.

Theorem 5.1. Inclusion ẋ(t) ∈ y(t)− b tar (x(t), a) for which tar (0, a) per-
forms the optimization task

tar (0, a)opt : min
tar (0,a)

Q(ẋ) ∧ tar (0, a) ∈ [−a, a]

where Q(. . .) is a convex function is equivalent to:

– differential equation with singularity s∗ ∈ [−1, 1]

ẋ(t) = y(t)− b tar (x(t), a)

where
bas∗ = b( tar (0, a))opt = y(t)− luz (y(t), ba)

– differential variable-structure equation

ẋ(t) =

{

y(t)− b tar (x(t), a) if x(t) 6= 0

luz (y(t), ba) if x(t) = 0



178 D.Żardecki

Proof
The differential inclusion ẋ(t) ∈ y(t)− tar (x(t), a) is equivalent to the differential

equation

ẋ(t) =

{

y(t)− b tar (x(t), a) if x(t) 6= 0

y(t)− b tar (0, a) if x(t) = 0

Because of tar (0, a) = as∗, where s∗ ∈ [−1, 1], we have b tar (0, a) ∈ [−ba, ba].
On the basis of Theorem 1.1, applying luz (. . .) notation, the task

b( tar (0, a))opt :

min
b tar (0,a)

Q(ẋ(t)) = min
b tar (0,a)

Q(y(t)− b tar (0, a)) ∧ b tar (0, a) ∈ [−ba, ba]

has the solution b( tar (0, a))opt = y(t)− luz (y(t), ba). Therefore, also

ẋ(t) =

{

y(t)− b tar (x(t), a) if x(t) 6= 0

y(t)− b( tar (0, a))opt = luz (y(t), ba) if x(t) = 0

�

Both forms of the description are equivalent. Determination of tar (0, a)
in the optimization task b( tar (0, a))opt = y(t) − luz (y(t), ba) caused a new
situation in which for x(t) = 0 the macro-projection b tar (x, a) is replaced by
a new piecewise linear macro-projection based on the variable y(t) and the
luz (. . .) projection.

Fig. 6. Determination of tar (x, a) projection for x = 0

Finally, for x(t) = 0, the state equation has been described as ẋ(t) =
= luz (y(t), ba). Analysing this form, we ascertain that it express a practical
rule: ”for x(t) = 0 if y(t) ∈ [−ba, ba] the blocked state (ẋ(t) = 0) is held as far
as y(t) /∈ [−ba, ba]”. The calculation of b( tar (0, a))opt = y(t) − luz (y(t), ba)
on the basis of formal minimization Q(ẋ(t)) is equivalent with application of
the heuristic rule describing ”motion blockade”. Such replacement of the for-
mal approach (optimization) by the well known heuristic rule is an important
practical method for resolving inclusion problems.
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Theorem 5.2. The inclusion 0 ∈ y(t) − b tar (x(t), a) is equivalent to the
equation

x(t) = luz
(1
b
y(t), a

)

Proof
The inclusion 0 ∈ y(t)− b tar (x(t), a) is equivalent to

0 =
{

y(t)− b tar (x(t), a) if x(t) 6= 0
y(t)− b tar (0, a) if x(t) = 0

For x(t) 6= 0 from y(t)− b tar (x(t), a) = 0, we obtain

luz
(y(t)
b
, a
)

= x(t)

For x(t) = 0 from y(t)− b tar (0, a) = 0, we obtain

y(t)
b
= 0 = x(t) or luz

(y(t)
b
, a
)

= 0 = x(t)

So, in fact

x(t) = luz
(y(t)
b
, a
)

for all x(t). �

Theorem 5.3. Degeneration of the inclusion εẋ(t) ∈ y(t) − b tar (x(t), a) by
ε→ 0 gives the equation

x(t) = luz
(y(t)
b
, a
)

Proof
εẋ(t) ∈ y(t)− b tar (x(t), a) ε→0−→ 0 ∈ y(t)− b tar (x(t), a)

On the basis of Theorem 6.2, we obtain the final result. �

On the basis of Theorem 5.3, we conclude that parametric reduction of the
inclusive model is deprived of its ambiguousness.
When the argument of the tar (. . .) projection is given by a linear combi-

nation of variables, Theorems 5.1-5.3 can be used directly, but for a modified
form of the inclusion model. For a typical two-variable model, this is presented
in the proof of Theorem 5.4.
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Theorem 5.4. The inclusion
[

ẋ1(t)
ẋ2(t)

]

∈

[

y1(t)− b1 tar (x1(t)− x2(t), a)
y2(t) + b2 tar (x1(t)− x2(t), a)

]

for which tar (0, a) performs the optimization task

tar (0, a)opt : min
tar (0,a)

Q(ẋ1(t)− ẋ2(t)) ∧ tar (0, a) ∈ [−a, a]

Q(. . .) is a convex function is equivalent to:

– differential equation with singularity s∗12 ∈ [−1, 1]
[

ẋ1(t)
ẋ2(t)

]

=

[

y1(t)− b1 tar (x1(t)− x2(t), a)
y2(t) + b2 tar (x1(t)− x2(t), a)

]

where

as∗12 = tar (0, a)opt =

=
1

b1 − b2
[y1(t)− y2(t)− luz (y1(t)− y2(t), (b1 − b2)a)]

– differential variable-structure equation
[

ẋ1(t)
ẋ2(t)

]

=

[

y1(t)− b1 tar (x1(t)− x2(t), a)
y2(t) + b2 tar (x1(t)− x2(t), a)

]

if x1(t) 6= x2(t)

[

ẋ1(t)
ẋ2(t)

]

=









y1(t)−
b1
b1 − b2

[y1(t)− y2(t)− luz (y1(t)− y2(t), (b1 − b2)a)]

y2(t) +
b2
b1 − b2

[y1(t)− y2(t)− luz (y1(t)− y2(t), (b1 − b2)a)]









if x1(t) = x2(t)

Proof
We create a new equation for the variable x12(t) = x1(t)−x2(t). Subtracting the

state equations
ẋ12(t) = y1(t)− y2(t)− (b1 − b2) tar (x(t), a)

For x12(t) = x1(t)− x2(t) = 0 using Theorem 6.1, we obtain

(b1 − b2) tar (0, a)opt = (b1 − b2)as∗12 = y1(t)− y2(t)− luz (y1(t)− y2(t), (b1 − b2)a)

hence
tar (0, a)opt =

1
b1 − b2

[y1(t)− y2(t)− luz (y1(t)− y2(t), a)]

After substitution we obtain final results. �
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In more complicated cases, when model equations contain multiple com-
ponents tar (xi, ai) and tar (xi − xj , aij), creation of new inclusions for the
variables xij = xi − xj leads to a unified multidimensional form of the
model

[ẋ1(t), ẋ2(t), . . . , ẋn(t)]> ∈

∈















y1(t)− b11 tar (x1(t), a1)− b12 tar (x2(t), a2) + . . . − b1n tar (xn(t), an)

y2(t)− b21 tar (x1(t), a1)− b22 tar (x2(t), a2) + . . . − b2n tar (xn(t), an)
...

yn(t)− bn1 tar (x1(t), a1)− bn2 tar (x2(t), a2) + . . .− bnn tar (xn(t), an)















Such a model should be completed by a rule of calculation of the unknown
tar (0, ai), eg. the optimization task based on general physical principles. But in
many cases, calculation of tar (0, ai) can be resolved practically using heuristic
procedures. Such a procedure (here the S-S procedure) for description of the so-
called ”stick-slip” process in the multidimensional model is presented below. It
makes use of the fact that for xi(t) = 0 a motion is blocked (ẋi(t) = 0) only for
s∗i (t) ∈ [−1, 1]. The saturation formula s

∗
i (t) = s

∗∗
i (t) − luz (s

∗∗
i (t), 1) expres-

sing the limitations on s∗i (t), where s
∗∗
i (t) refers to blocked state, enables

description of such ”stick-slip” conditions in the state x1(t) = 0, x2(t) = 0,...,
xn(t) = 0.

Definition 5.1. The S-S procedure for disentanglement of the inclusion sys-
tem and calculation of the ”stick-slip” process:

1. Determination of the ”stick-slip” variables xi for which xi(tk) = 0
at t = tk

2. Determination of the ”stick-slip” subsystem of the equations
ẋi(tk) = . . .

3. Setting tar (xi(t), ai)|xi(t)=0 = ais
∗
i = a(s

∗∗
i − luz (s

∗∗
i , 1)) in the

”stick-slip” subsystem

4. Calculation of s∗∗i from the ”stick-slip” subsystem for ẋi(tk) = 0

5. Calculation of tar (xi(t), ai)|xi(t)=0 = ais
∗
i = a(s

∗∗
i − luz (s

∗∗
i , 1))

6. Calculation of ẋi(tk) from the system equations.

Note that applying the S-S procedure, for the state x1(t) = 0, x2(t) = 0,...,
xn(t) = 0, we obtain
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0
0
...
0













=













y1(t)− b11a1s∗∗1 − b12a2s
∗∗
2 + . . . − b1nans

∗∗
n

y2(t)− b21a1s∗∗1 − b22a2s
∗∗
2 + . . . − b2nans

∗∗
n

...
yn(t)− bn1a1s∗∗1 − bn2a2s

∗∗
2 + . . .− bnnans

∗∗
n













[ẋ1(t), ẋ2(t), . . . , ẋn(t)]> =

=













y1(t)− b11a1[s∗∗1 (t)− luz (s
∗∗
1 (t), 1)] − b12a2[s

∗∗
2 (t)− luz (s

∗∗
2 (t), 1)] + . . .

y1(t)− b21a1[s∗∗s (t)− luz (s
∗∗
1 (t), 1)] − b22a2[s

∗∗
2 (t)− luz (s

∗∗
2 (t), 1)] + . . .

...
yn(t)− bn1a1[s∗∗1 (t)− luz (s

∗∗
1 (t), 1)] − bn2a2[s

∗∗
2 (t)− luz (s

∗∗
2 (t), 1)] + . . .













and finally

[ẋ1(t), ẋ2(t), . . . , ẋn]> =

=













−b11a1 luz (s∗∗1 (t), 1) − b12a2 luz (s
∗∗
2 (t), 1) + . . .− b1nan luz (s

∗∗
n (t), 1)

−b21a1 luz (s∗∗1 (t), 1) − b22a2 luz (s
∗∗
2 (t), 1) + . . .− b2nan luz (s

∗∗
n (t), 1)

...
−bn1a1 luz (s∗∗1 (t), 1) − bn2a2 luz (s

∗∗
2 (t), 1) + . . . − bnnan luz (s

∗∗
n (t), 1)













If for all i = 1, 2, . . . , n the calculated s∗∗i ∈ [−1, 1], the all luz (s
∗∗
i , 1) = 0

and all ẋi(t) = 0. It means total blockade of the system. If the calculated
s∗∗i /∈ [−1, 1], then luz (s

∗∗
i , 1) 6= 0 as well. Thus the right sides of the equ-

ations are non-zero wherethrough the blockade state of that variables can be
terminated. Obviously, this way one can concern only some variables. As a re-
sult of the standard ODE (Ordinary Differential Equation) solver procedure, a
new dynamic state is calculated. This new state may contain new singularities
caused by some xi(t) = 0. The S-S procedure is used once again.
For full analysis, the S-S procedure should be applied alternately and in-

dependently for every combination of the singularity states, i.e.:
– for x1(t) = 0, x2(t) 6= 0, x3(t) 6= 0,..., xn(t) 6= 0
– for x1(t) 6= 0, x2(t) = 0, x3(t) 6= 0,..., xn(t) 6= 0
...
– for x1(t) = 0, x2(t) = 0, x3(t) 6= 0,..., xn(t) 6= 0
...
– for x1(t) = 0, x2(t) = 0, x3(t) = 0,..., xn(t) 6= 0
...
– for x1(t) = 0, x2(t) = 0, x3(t) = 0,..., xn(t) = 0
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Finally, we obtain multi-structural equations which take into consideration
all singular situations. Such a model can be complicated but ready to use in
simulations.
The S-S procedure seems to be an attractive proposition for solving the in-

clusion problems which appear in multi-body mechanical systems with blocked
motion, for example – in mechanisms with multiple dry friction (stick-slip pro-
blems). Obviously, in such cases, the S-S procedure leads to the same results as
the formal solution to the optimization task based on the Gauss ”acceleration
energy function”. This is described in the second part of the paper.

6. Final remarks

The paper presents the concept, definitions and theorems concerning the
luz (. . .) and tar (. . .) projections. These piecewise linear projections have very
interesting mathematical properties. Basic formulas, eg. on compounds, line-
ar combination, disentanglement of feedback systems constitute surprisingly
simple ”algebra” apparatus. The theorems as well as the S-S procedure concer-
ning differential inclusions enable efficient analysis of piecewise linear dynamic
systems described with the luz (. . .) and tar (. . .).
The luz (. . .) and tar (. . .) projections seem to be an interesting idea for

investigators working on piecewise linear models. Applications concerning non-
linear mechanical systems with freeplay (backlash, clearance) and friction (Co-
ulomb’s fiction with stiction) are discussed in the second part of the paper
(Żardecki, 2006).
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Przedziałami liniowe odwzorowania luz (. . .) i tar (. . .).
Część 1 – Podstawy teoretyczne

Streszczenie

Artykuł przedstawia definicje i twierdzenia dotyczące przedziałami liniowych od-
wzorowan luz (. . .) i tar (. . .). Odwzorowania i ich oryginalny aparat matematyczny
są bardzo użyteczne dla modelowania układów nieliniowych, np. układów z luzem
i tarciem.
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