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The research presents certain theorems concerning the algebra of vector
systems of forces applied to a flat material line, rigid only in its plane.
The considerations are based on a modification of one of two axiomatic
equivalences assumed in the algebra of systems of forces applied to a
rigid body. The problem is of particular importance for the theory of
thin-walled beams.

Key words: system of forces, equivalent systems, system reduction

1. Introduction

This work continues, in a sense, the paper entitled Kinematyczna równo-
ważność układów sił [Kinematic equivalence of force systems] (Piechnik, 1978),
that gave rise to a heated discussion in MTiS, not so much due to its content,
but the use of the adjective ”kinematic”. That contribution proposed a certain
definition of the equivalence of systems of forces applied to the central line of a
thin-walled bar with an open profile. This study assumes a different definition,
based on two obvious axioms of the equilibrium of forces, and shows a proof
of the former definition as a theorem. This approach illustrates much better
the idea behind and the need for such a theorem that may probably find an
application in other domains of mechanics as well. The kinematic equivalence
theorem in the theory of thin-walled bars has the same significance as the
static equivalence theorem in the solid bar theory.
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2. System of forces

If forces P 1,P 2, . . . ,P n anchored at points Q1, Q2, . . . , Qn, respectively,
are applied to a material line in the form of an open (no loops) broken line
with rigid sections, rigidly connected the plane of the line, then we say that
the system of forces (Fig. 1), described as

A =

[
P 1 P 2 . . . P n
Q1 Q2 . . . Qn

]

is applied to the line.

Fig. 1.

The force anchoring point may also be located off the line. Then, it can be
imagined to be connected to the line with a rigid bar without a mass; the line
remains open. Among possible systems, it is possible to differentiate special
cases that shall receive separate names.

2.1. Special cases of force systems

Zero system

The zero system {0} is a system where all force vectors are equal to 0.

Single-element system

The single-element system is a system consisting of only one force P ,
anchored at any arbitrary point Q

A =

[
P

Q

]
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Couple of forces

The couple of forces, or the couple, for short, is a set of two non-zero
vectors of opposite forces that are not located in a single line and are applied
at the points that belong to the same section of the broken line (Fig. 2)

A =

[
P −P
Q1 Q2

]

Fig. 2.

Bicouple of forces

The bicouple of forces, or the bicouple, for short, is a couple of couples
located in parallel planes containing line sections or rigid sections without a
mass where particular couples are applied (Fig. 3)

A =

[
P −P −P P

Q1 Q2 R1 R2

]

Fig. 3.



110 S.Piechnik

2.2. The question of reduction of force systems

Theoretical mechanics deals with systems of forces applied to a rigid body
and allows one to formulate notions of the static and dynamic operation of the
system. This is formulated in the following manner in Królikiewicz (1959):

• If a rigid body is motionless and keeps motionless after the application
of a force system A and the same effect is produced under the impact of
a system B, it is said that the static operation of both systems A and
B is identical.

• If a rigid body is in motion under the impact of the force system A and
the same motion is produced by the impact of the system B, it is said
that the dynamic operation of both systems A and B is identical.

In the considered case of a material line that is not a rigid object, motion
can be decomposed – according to the principles of kinematics – into trans-
lation and rotation of the rigid body and its deformation. In order to take
advantage of the notions and the algorithm of operation provided by theore-
tical mechanics and to assume the above-mentioned kinematic method of the
description of motion, the notion of kinematic operation1 shall be introduced.

If a deformable material line gets deformed under the impact of
the force system A and the same deformation is produced by the
impact of the system B, it is said that the kinematic operation of
both systems A and B is identical.

The question of the reduction of a system of forces operating on a material
line shall be reduced to the replacing of a given system A with another system
of forces R, identical with the system A wit respect to the static, dynamic
and kinematic operation. The present research shall be limited to the reduction
with respect to a pole.

First, however, one should ask, whether there can exist two such systems
of forces applied to a material line that produce the same static and dynamic
effect and the same deformation, and whether such systems may be determined
deductively?

1In the case of a rigid body, the notion of ”dynamic operation” would certainly
be sufficient as dynamics is the division of mechanics that deals with motion and
equilibrium of material bodies. Similarly, the notion of dynamic operation would be
sufficient in the analysis of a material line, because dynamics deals with both rigid
bodies and bodies under deformation. The introduction of the notions of static or
kinematic operation is aimed at making clear distinctions in the research.
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The answer is obviously ”no”. Mathematics is insufficient, as there is a
need for experiments and appropriate measurements.
While considering systems of forces applied to a rigid body in the fra-

mework of theoretical mechanics (Paluch, 2001), we reduce the analysis of a
similar problem, amitting deformation, to purely geometrical operations by in-
troducing intuitive axioms of the equivalence of systems of forces that allowed
us to define the notion of elementary transformation, understood as follows:

α) removing two opposite vectors located on one straight line from the
system or adding them to it,

β) removing or adding several vectors with the identical origin and the sum
equal to 0.

The two definitions allowed us to produce the basic definition in the follo-
wing form:

Two systems X and Y are statically equivalent if and only if a
finite number of elementary transformations α and β applied to
the system X produces the system Y (Królikiewicz, 1959).

This definition provided the ground for proving the basic theorem on the
equivalence of systems of forces:

For two systems to be statically equivalent, it is necessary and
sufficient for them to have equal sums and moments with respect
to one pole.

Thus, the question of both system equivalence and reduction to a simpler
system with respect to any pole can be considered in the sense of the basic
definition, exclusively in deductive terms, without violating the physical sense.
The above definition of equivalence is not sufficient in the case in question,

where a deformation of the material line can occur. Therefore, if we want to
consider the problem of ”equivalent operation” of two or more applied systems
of forces in purely deductive terms, we must assume a different basic definition
of the equivalence and thus modify the problem of the reduction of forces.

3. Kinematic equivalent systems

Elementary transformations

Let us first consider a flat material line in the form of a broken line con-
sisting of rigid sections connected in a rigid manner only in the line plane. It
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can be easily guessed that the analysis of any curve can be obtained through
the limit transition.
In the case in question, intuition prompts us to assume a slightly modified

version of the above- mentioned notions of elementary transformations, and
of the transformation α in particular.
Further on, we shall assume the following definitions of elementary trans-

formations:

Adding to or removing from the already applied set of forces of:

α̃) two opposite forces located along the same straight line be-
longing to the line plane,

β) two or more forces anchored at the same point of the line and
with the sum equal to zero

at any point shall not change the kinematic or static and dynamic
effects of the material line.

The operations α̃ and β applied to a given system shall be called elemen-
tary transformations, as in theoretical mechanics.

Secondary elementary transformations

The following operations shall be called the secondary elementary trans-
formations:

• a system of forces with a common origin can be replaced with their sum
with the same origin,

• each force in a system of forces can be decomposed into a sum of several
components, anchored at the same point of origin,

• each force located in the plane of a line can be shifted in the direction
of its operation to another point of the line.

It can be easily shown with the elementary transformations that all these
transformations produce systems equivalent with the original one.

3.1. Basic definition

Two systems of forces A and B applied to a flat material broken
line made of rigid elements joined in a rigid way in its plane and
infinitely limp in the direction perpendicular to the plane shall
be called kinematically equivalent if and only if a finite number of
appropriate elementary operations α̃ and β applied to the system
A produces the system B.
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In view of this definition, the following theorems are obviously true:

• A ≡ A

• if A ≡ B then B ≡ A

• if A ≡ B and B ≡ C then A ≡ C

which show that the relation of kinematic equivalence is reflexive, symmetric
and transitive. It should be added that the algebra of equivalent systems often
uses the notion of a representative – usually the simplest system, i.e. the system
consisting of the smallest number of forces. The notion ”representative” shall
also be used in this text.

The sum and difference of systems

If there are two arbitrary sets of vectors given

A =

[
P 1 P 2 . . . . . . P n
Q1 Q2 . . . . . . Qn

]
B =

[
S1 S2 . . . . . . Sm
R1 R2 . . . . . . Rm

]

the following system shall constitute their sum

C = A+B =

[
P 1 P 2 . . . . . . P n S1 S2 . . . . . . Sm
Q1 Q2 . . . . . . Qn R1 R2 . . . . . . Rm

]

and the following system shall constitute their difference

D = A−B =

[
P 1 P 2 . . . . . . P n −S1 −S2 . . . . . . −Sm
Q1 Q2 . . . . . . Qn R1 R2 . . . . . . Rm

]

In particular, if m = n in the system B and the forces are anchored at the
points Q1, Q2, . . . , Qn, respectively, then the sum can be described as

A =

[
P 1 + S1 P 2 + S2 . . . . . . P n + Sn
Q1 Q2 . . . . . . Qn

]

The same description can be provided for the difference of systems.

The theorem on the sum of equivalent systems

Let us assume that
A+B ≡ C

and that
A ≡ D and B ≡ E
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By means of the theorems on reflexivity, symmetry and transitivity of the
equivalence relations, we shall easily show that the following obvious theorem
is true

D+ E ≡ C

This theorem shall be used to reduce any system applied to a material line.

System decomposition into ”flat” and ”normal” components

Let us assume a given system A. Let us decompose it into two systems: P
and N by means of the latter secondary elementary transformation

A = P+N

Let the system P be a flat system located within the line plane and the system
N be a system of forces perpendicular to the line plane.

Further on, we shall consider only systems N2. For this reason, line defor-
mation shall be called warping further on in the text.

The sum of a system

The sum of a random system N of forces

N =

[
P 1 P 2 . . . P n
Q1 Q2 . . . Qn

]

is understood to be the vector

S =
n∑

i−1

P i

It is obvious that if the transformation α̃ or β is applied to the system N,
the resultant system has the same sum. Thus, it is possible to formulate the
following theorem:

The sum of the system N is an invariant with respect to elementary
transformations.

2The algebra of P-type systems is a special (flat) case of the algebra of systems of
forces applied to a rigid body, considered by theoretical mechanics.
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The moment of a system

➢ The moment of a single-element system with respect to a given pole

Let us consider the following system in an oriented space

J =

[
P

Q

]

and an arbitrary point R belonging to the material line or rigidly joined
with it. The moment of the system J with respect to the pole R (Fig. 4) is
understood to be the following vector

MR(J) = RQ×P = r × P

Fig. 4.

It should be noted that the vector of the moment with respect to r belon-
ging to the material line plane π and with respect to P⊥π is parallel to π.

➢ The moment of the system N with respect to a given pole

The moment of a system with respect to a selected pole is understood to
be the sum of moments of all forces of the system with respect to the pole

MQ(N) =
n∑

i−1

ri × P i ri = RiQ i = 1, 2, . . . , n

It is obvious that if the transformation α̃ or β is applied to the system N,
the resultant system has the same moment. Thus, it is possible to formulate
the following theorem:

The moment of the system N is an invariant with respect to ele-
mentary transformations.



116 S.Piechnik

The bimoment of a system

➢ The bimoment of a bicouple

A bicouple (Fig. 3) can be assigned a number called a bimoment that is
equal to the triple product

Bω = [P , r,ρ]

where
P – any vector of the bicouple, e.g. P , anchored at Q1 as shown in

Fig. 3,
r – the radius-vector of the anchoring point of a selected force, the

origin of which is located at any point of the straight line of the
application of the second force in the bicouple (e.g. r = Q2Q1),

ρ – the radius-vector of the anchoring point of the above-selected
force vector, with the origin at any point of the plane of the
second bicouple, e.g. ρ = R2Q1.

➢ The bimoment with respect to a selected pole

If the anchoring point of the vector ρ is distinguished, as the pole is R2
in Fig. 3, one can speak of a bimoment with respect to this pole.

➢ The bimoment of the system N

A bimoment of the system N with respect to the pole R is the sum of
bimoments of all bicouples if the plane of the ”second” couple goes through R

Bω(N) =
n∑

i−1

[P i, ri,ρi]

It is obvious that if the transformation α̃ or β is applied to the system N,
the resultant system has the same bimoment. Thus, it is possible to formulate
the following theorem:

The bimoment of the system N is an invariant with respect to
elementary transformations.

3.2. The basic theorem on kinematic equivalence of systems

For two systems of forces A and B applied to a material flat broken line
with rigid elements joined in a rigid manner in their plane and infinitely limp
in the perpendicular direction

A =

[
P 1 P 2 . . . . . . P n
Q1 Q2 . . . . . . Qn

]
B =

[
S1 S2 . . . . . . Sm
R1 R2 . . . . . . Rm

]
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to be kinematically equivalent, it is necessary and sufficient for them to have
equal sums, moments with respect to the same pole and bimoments

S(A) = S(B)

MQ(A) =MQ(B)

Bω(A) = Bω(B)

First, the necessary condition of this theorem shall be shown.
If it is assumed that A ≡ B, then the equivalence of sums, moments and

bimoments of both systems follows directly from the fact that the sum and
the moment with respect to a selected pole and the bimoment are invariants
with respect to elementary transformations.
The sufficient condition shall be shown in two steps.

(i) Firstly, we shall show that for two systems A and B to be equivalent, it
is necessary and sufficient for their difference to be a system equivalent
to a zero system, i.e.

A−B ≡ 0⇒

[
P 1 . . . P n −S1 . . . −Sm
Q1 . . . Qv R1 . . . Rm

]
≡ 0

We shall assume first that A ≡ B. If so, then the application of the
elementary transformations transforming A into B applied to the above
system leads to

A−B =

[
S1 . . . Sm −S1 . . . −Sm
R1 . . . Rm R1 . . . Rm

]
=

=

[
S1 − S1 . . . Sm − Sm
R1 . . . Rm

]
=

[
0 . . . 0
R1 . . . Rm

]
= 0

We found out that if two systems are equivalent, then their difference is
equivalent to a zero system.

Let us now assume that A − B ≡ 0 and add B to both sides of the
system. We get

[(A−B+B] ≡ [0+B] ≡ [A+ 0]⇒ A ≡ B

(ii) Let us assume the origin of the natural coordinate s to be located at the
end of the line O1 (Fig. 5). Let us reduce the system of forces applied the
ith section of the line li to the point Oi which constitutes the beginning
of the section.
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Fig. 5.

We shall use here the theorem on the reduction of a system of forces
applied to a rigid bordy. At the point Oi, we anchor the sum Si of all
forces applied to this section and the pair

[
Ri −Ri
Ai2 Ai1

]

with the moment M i = ri × Ri, where ri = Ai1Ai2, equal to the
moment of all forces applied to this section with respect to the point Oi.
As we are considering a system of forces normal to the plane of line π,
the pair is located in the plane perpendicular to π, where the section li is
located. Let us ascribe the force S i to the point at the end of the section
li−1 of the spanning tree and reduce the system containing this force and
the remaining forces applied to the section down to the point Oi−1 by
anchoring there the sum Si + Si−1 and the couple with the moment
M i−1 calculated with respect to the pole Oi−1 of all forces applied to
the equivalent section with the sum S i−1. By following this procedure
up to the first section of the line, we obtain the force S =

∑n
i−1 Sn = 0

at the point O1, according to our assumptions and the relevant couples
for each section. Let us join n non-material rigid sections to the material
line at the point O1, so that particular sections are parallel to successive
sections of the material line. Let us consider the section parallel to li
(the dotted line in Fig. 5) and apply the following system of forces to the
section [

Ri −Ri −R1 R1
A′i1 A

′

i1 A′i2 A′i2

]

where A′i1A
′

i2 = ri = Ai1Ai2.
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It should be noted that the system

[
Ri −Ri −Ri Ri
Ai2 Ai1 A′i2 A

′

i1

]

defines a bicouple with the bimoment

Bωi = [Ri, ri,ρi]

where ρi = A
′

i1Ai2, while the system

[
Ri −Ri
A′i2 A

′

i1

]

defines a couple in the plane going through the point O1.

Following the same procedure, i.e. crating a similar transformation on
each line li, we obtain n bicouples and n couples located in planes
going through the point O1, whose vectors of moments are located in
the plane π. The sum of these vectors is, as assumed, equal to

n∑

i−1

ri ×Ri = 0

Thus, the remaining system of forces consists only of bicouples with the
sum of bimoments equal to zero, as assumed. Therefore

Bω =
n∑

i−1

Bωi =
n∑

i−1

[Ri, ri,ρi] = 0

As ri 6= 0 and ρi 6= 0, Ri = 0 must be for i = 1, 2, . . . , n. This proves
that if a system of forces has a sum, moment and bimoment being equal
to zero, it is a system equivalent to the zero system.

4. System reduction

The theorem on transferring a force to another point

The theorem on ”transferring” a force vector applied to a point of a rigid
body to another point Q of the body states:
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”any vector of a system can be transferred to any point Q, whi-
le adding to the system a couple with the moment equal to the
moment of the vector with respect to the pole Q”,

and it remains valid for the line in question as well. It should be remembered,
however, that the assumed notion of the couple defines it as a system of two
opposite forces that are not located on the same line and whose application
points are located on the same section. In other words, to take advantage of
this theorem, we can transfer a force, but only to the points of the same section
where the force is applied.

The theorem on transferring a couple onto another parallel plane

The sections containing points Q1, Q2, points of application of the pair
of forces P ,−P belonging to the plane α and points R1, R2 belonging to
a material or rigid non-material line belonging to the parallel plane β are
mutually parallel (Fig. 6). Let us apply the following systems to the points R1
and R2, respectively

[
P −P
R1 R1

]
and

[
−P P

R2 R2

]

Fig. 6.

It should be noted that the system

[
P −P
R1 R2

]

has the same moment vector as that applied to the plane α. In terms of the
adopted definition, these are not equivalent couples, although they have the
same moment vectors because they are applied to different sections of the line.
It can only be said that the couple applied to the section R1, R2, located in
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the plane β is a couple applied to the points Q1, Q2, ”shifted” to a parallel
plane. The remaining components, apart from the shifted couple, constitute a
bicouple [

P −P −P P

Q1 Q2 R1 R2

]

Thus, the following theorem has been:

When transferring a couple from one plane to a parallel plane, one
has to add to the transferred couple a bicouple consisting of two
opposite couples located in both planes in question.

Reduction of a system with respect to the selected pole

The process shall not lose its general character if the reduction is shown
on a material line consisting of three elements located in the plane XY of the
global reference system (Fig. 7a). Let us assume first that the system consists
of a single force P 3 anchored at the edge l3 at the point Q3.

Fig. 7.

The reduction of this system with respect to the pole B shall begin with
a transfer of the force P 3 to the point O3 constituting the beginning of the
edge where the force is applied. To achieve this, we apply two forces −P 3 and
P 3 to the point O3 (Fig. 7b). We obtain a new system – the following sum

[
P 3
O3

]
+

[
−P 3 P 3
O3 Q3

]

i.e. the sum of the force P 3 anchored at O3 and a couple applied to the
edge l3, located in the plane α perpendicular to XY , with the moment
M3 = O3Q3 × P 3 located in the plane XY .

The next step of reduction consists in adding the non-material rigid section
at the point B, parallel to l3, and applying two forces −P 3 and P 3 to the
point B and the forces P 3 and −P 3 to the point Q

∗

3 (BQ
∗

3 = O3Q3). The
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system shown in Fig. 8a may be described as a sum of the following three
systems [

P 3
O3

]
+

[
−P 3 P 3
B Q∗3

]
+

[
−P 3 P 3 P 3 −P 3
O3 Q3 B Q∗3

]

in which:

– the vector P 3 is anchored at O3,

– the couple applied to the edge l∗3 with the moment M 3 = O3Q3 × P 3,

– and a bicouple with the bimoment

Bω3 = [P 3, O3Q3, BQ3]

Fig. 8.

Figure 8a shall become more legible if the couple located in the plane α
and belonging to the bicouple is replaced by its representative in the form of
a directed arc, and the same is done with the second bicouple in the plane α∗

(the arc with the opposite direction), while the couple applied to the line l∗3
– that can be treated as transferred from the plane α to α∗ – is replaced
with the vector M 3

3 as it is shown in Fig. 8b. Further on, we shall use such
quantities wherever it is not doubtful to do so.

Now, we shall transfer the force P 3 in a similar way. It can be ascribed to
the edge l2 at the point O2, i.e. two forces −P 3 and P 3 are applied to the
point O2 (Fig. 9a). We obtain a new system that can be described as a set
of four systems: the force P 3 anchored at O2 and the couple −P 3 and P 3
anchored at O2 and O3, respectively, with the moment M 2 = l1 × P 3 (the
results of the last transformation), and the formerly discussed bicouple and

3A couple applied to a rigid element can be transferred along the section according
to the algebra of forces applied to a rigid body. Moreover, couples anchored in the
same section can be replaced with a single couple with moment equal to the sum of
moments of applied couples.
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couple M 3 applied to the point B. As a result of the reduction, all the four
systems are described as

[
P 3
O2

]
+

[
−P 3 P 3
B Q∗3

]
+

[
−P 3 P 3 P 3 −P 3
O3 Q3 B Q∗3

]
+

[
−P 3 P 3
O2 O3

]

Fig. 9.

Figure 9a can be presented in a more legible manner as shown in Fig. 9b,
i.e. the force P 3 anchored at O2, a couple with the moment vector M 3, a
bicouple located in the planes α and α∗ with the bimoment Bω3 and the
representative of the couple located in the plane going through l2 with the
moment M 2 = O2O3 × P 3.
In the next step of reduction, we add to the line the non-material section l∗2

(Fig. 10a) anchored at the point B and parallel to l2, defining in this way the
plane β∗, parallel to β. Then, the couple located in the plane β is transferred
to β∗ and drawn as a moment vector M 2 anchored at the point B, while a
bicouple is added and one of its couples, located in the plane β∗, is drawn in
the form of a representative with the value −M2 and the bimoment equal to
[P 3, O2O3, BO3].

Fig. 10.

The last step of the reduction consists in transferring the force P 3 anchored
at O2 to the point B, while adding a couple with the momentM 1 = BO2×P 3,
which is presented in Fig. 10b as the vector M 1 anchored at B. Let us re-
place all the moment vectors anchored at B with their sum, described as
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MB = M1 +M2 +M3. This sum can be described by a slightly different
formula

MB = BO2 × P 3 +O2O3 × P 3 +O3Q3 × P 3 =

= (BO2 +O2O3 +O3Q3)× P 3 = BQ3 ×P 3

In conclusion, as a result of the process of reducing the system of the force
P 3 anchored at Q3 to the point B, the following components are obtained at
that point (Fig. 11):

• vector of the force P 3,

• vector of the moment MB = BQ3×P 3, where BQ3 is a radius-vector,

• two bicouples located in the planes: (α, α∗) with the bimoment

Bω3 = [P 3, O3Q3, BQ3]

and (β, β∗) with the bimoment [P 3, O2O3, BO3].

Fig. 11.

Both the initial system and the system reduced to the pole B are kinema-
tically equivalent, as the reduction has been carried out exclusively by means
of the elementary transformation with respect to which the sums, moments
and bimoments are invariant.
If the initial system consists of numerous forces P i applied to points Qi of

the material line, an analogous procedure could be used. Thus, we are justified
to formulate the following theorem on the reduction of a system with respect
to any pole B, belonging to the material line or to a rigid non-material section,
joined to the material line without creating a loop:

Theorem: A system is kinematically equivalent to a system con-
sisting of a sum of that system, anchored at any selected pole B,
a pair with the moment equal to the moment of this system with
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respect to the pole, and bicouples located in parallel planes going
through particular material lines and through the pole B, which
are ascribed to the bimoment equal to the bimoment of all bico-
uples.

5. Concluding remark

It has already been stressed that all the theorems can be easily transferred
to a flat material line of any shape. For the broken line under consideration
it can be treated as an element of a sequence of approximate sums. The in-
troduction of notion of the sectorial coordinate into the analysis considerably
simplifies all the theorems.
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Algebra układów wektorów sił przyłożonych do płaskiej linii materialnej

Streszczenie

W pracy przedstawiono pewne twierdzenia dotyczące algebry układów wektorów
sił przyłożonych do płaskiej, sztywnej jedynie w swej płaszczyźnie, linii materialnej.
U podstaw rozważań leży modyfikacja jednego z dwóch aksjomatów równoważności
przyjmowanych w algebrze układów sił przyłożonych do bryły sztywnej. Problem jest
szczególnie ważny w teorii belek cienkościennych.
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