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The purpose of the study is demonstration of the possibility of identifi-
cation of boundary conditions in an ill-posed problem. The problem is
understood as determination of four constants necessary for a descrip-
tion of functions of forced vibration amplitudes from three equations. To
this end, the Singular Value Decomposition (SVD) algorithm is used.
After determining the amplitudes of forced vibration, elasticity coeffi-
cients of supports can be calculated from the equations describing the
boundary conditions.
Verification of the obtained mathematical model (elastically supported
Bernoulli-Euler’s beam) was done by comparing natural frequencies ob-
tained from analytical and numerical models, and analysing the cor-
relation of forced vibration amplitude vectors for different excitation
frequencies.
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1. Introduction

Analysis of dynamic processes of real objects can be expensive, time-
consuming and, in certain cases, impossible, whereas experiments can be easily
carried out on models which can be used to simulate dynamic responses. For
this purpose, physical and mathematical models of an object should be built
and followed by estimation of model parameters and verification. This process
is called the identification of mechanical systems (Giergiel and Uhl, 1990).
The bibliography includes many definitions of the identification, such as

one given by Bellman (1965), which corresponds best to the analysed problem
of identification of boundary conditions:
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”The identification is a process, in which based on certain given
information on the system structure and certain information on
inputs, outputs and operation of the object the missing information
on the structure, inputs and outputs can be obtained.”

Here, the analysed system is a beam, described by Bernoulli-Euler’s model
with unknown boundary conditions, modelled by elastic supports. The mathe-
matical model of the boundary conditions is described by equations coupling
respectively the bending moment and angle of rotation of the cross-section as
well as the lateral force and amplitude of vibrations in cross sections, in which
the beam is supported.
In order to determine support elasticities, an inverse model of the beam has

been created. The definition of the inverse model was given by Engel (Engel
and Engel, 2005):

”Inverse modelling is done using the current results of several me-
asurements of visible parameters in order to infer about actual
values of the model parameters.”

In the paper, the inverse model is understood as determination of functions
of amplitudes of forced vibration based on measurements of amplitudes in
several points, and then as calculation of support elasticities from equations
describing boundary conditions.
The function of vibration amplitudes caused by a given force is described by

an equation containing four sought constants. The simplest method of finding
the constants is to measure the amplitudes of vibrations caused by a force of a
known amplitude and frequency in four points. In order to minimize measuring
errors, measurements should be taken in a larger number of points, after which
one of standard statistical methods, e.g. regression analysis, can be used. The
biggest problem is encountered when the available number of measurement
values is lower than the number of constants to be determined the so-called
under-determined problem, see Lanczos (1961). This paper concerns such a
problem of identification in an ill-posed problem. In such cases, four constants
from three equations can be determined by using decomposition of the main
matrix by the Singular Value Decomposition (SVD) algorithm (Golub and
Van Loan, 1989).
Decomposition by the SVD algorithm is also used in diagnostics of over-

determined systems (with excess information about the system) (Cempel and
Tobaszewski, 2005; Cholewa and Kiciński, 1997, 2001; Żółtowski and Cem-
pel, 2004), or for determination of inverse models, e.g. in order to find power
of acoustic wave sources (Engel, 2004; Engel et al., 2002; Moorhouse, 2003;
Stryczniewicz, 2004).
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2. The inverse model of a beam

In order to identify boundary conditions of a beam, an inverse model was
used. In the paper, it is understood as determination of functions of forced
vibration amplitudes based on measurements of vibration amplitudes in several
points, and then on calculation of support elasticities from relations describing
the boundary conditions.
The model of the beam on elastic supports is shown in Fig. 1.

Fig. 1. A beam with general boundary conditions

The differential equation of motion has form

EI
∂4y(x, t)
∂x4

+ ρA
∂2y(x, t)
∂t2

= q(x, t) (2.1)

The function of load distribution is

q(x, t) = Fδ(x, xf )eiωwt

Equation (2.1) can be solved by separating the variables, i.e.: y(x, t) =
= X(x)T (t).
In the steady-state, the ”time” equation may be expressed as

T (t) = eiωwt

In this case, the differential equation of ”space” variable takes form

X(4)(x)− λ4X(x) =
F

EI
δ(x, xf ) (2.2)

where

λ4 = ω2w
ρA

EI
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and its solution is function (2.3)

X(x) = P coshλx+Q sinhλx+R cos λx+ S sinλx+
(2.3)

+
F

2EI λ3
[

sinhλ(x− xf )− sinλ(x− xf )
]

H(x, xf )

where
EI – bending stiffness
A – cross-section area
ρ – material density
δ(x, xf ) – Dirac delta function
H(x, xf ) – Heaviside step function at x = xf .

Relation (2.3) describes the function (vector) of amplitudes of steady-state
vibrations caused by a force with the amplitude F and frequency ωw applied
to the beam at the point with the coordinate x = xf . The constants P , Q,
R, S can be determined based on the measurement of vibration amplitudes in
several points of the beam. The procedure of determination of the constants
is shortly described in the next section of the paper.
After establishing the integration constants P , Q, R, S, the sought values

of support elasticity coefficients can be calculated from equations describing
the boundary conditions. For the position x = 0

EI X ′′′(0) = −kT0X(0) −EI X ′′(0) = −kR0X ′(0) (2.4)

hence, the lateral elasticity coefficient is

kT0 = EI λ3
S −Q

P +R
(2.5)

and the rotational elasticity coefficient

kR0 = EI λ
P −R

Q+ S
(2.6)

The boundary conditions at x = l are described by

EI X ′′′(l) = kT lX(l) EI X ′′(l) = −kRlX
′(l) (2.7)

hence, the lateral elasticity coefficient is

kT l = EI λ
3P sinhλl +Q cosh λl −R sinλl − S cosλl − f1
P coshλl +Q sinhλl +R cosλl + S sinλl − f2

(2.8)
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where

f1 =
F

2EI λ3
[cosh λ(l − xf ) + cos λ(l − xf )]

f2 =
F

2EI λ3
[sinhλ(l − xf )− sinλ(l − xf )]

and the rotational one

kRl = −EI λ
P cosh λl +Q sinhλl −R cos λl − S sinλl − f3
P sinhλl +Q coshλl −R sinλl + S cos λl − f4

(2.9)

where

f3 =
F

2EI λ2
[sinhλ(l − xf ) + sinλ(l − xf )]

f4 =
F

2EI λ2
[cosh λ(l − xf )− cos λ(l − xf )]

The model has been developed on the assumption that the support ela-
sticities are constant, i.e. they do not depend on the amplitude or vibration
frequency.

3. The method of determination of the integration constants

The simplest method of finding the constants P , Q, R, S is to measure
vibration amplitudes caused by a force of a known amplitude and frequency
at four points. In that case, the four constants can be determined from fo-
ur equations (2.3) describing the vibration amplitudes at the four measuring
points.
In order to minimize measuring errors, the measurements should be taken

at a larger number of points, and then one of statistical methods, e.g. regression
analysis, can be used (equation (2.3) is a linear equation due to P , Q, R, S
constants).
In many cases of diagnostics or identification, it is not possible to obtain

full information on the analysed object. In the case analysed here, the ”in-
complete information” is to be understood that the measurements of vibration
amplitudes were taken only in three measuring points.
By assuming that the measuring points are points with the coordinates

x = a, x = b and x = c (values of the forced vibration amplitudes in these
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points are marked respectively as X(a), X(b), X(c)), we obtain three algebraic
equations in form (2.3), which can be written in matrix form

MC = B

hence






coshλa sinhλa cos λa sinλa
coshλb sinhλb cos λb sinλb
coshλc sinhλc cos λc sinλc

















P
Q
R
S











=







b1
b2
b3






(3.1)

where

b1 = X(a) −
F

2EI λ3
[sinhλ(a− xf )− sinλ(a− xf )]H(a, xf )

b2 = X(b) −
F

2EI λ3
[sinhλ(b− xf )− sinλ(b− xf )]H(b, xf )

b3 = X(c) −
F

2EI λ3
[sinhλ(c− xf )− sinλ(c− xf )]H(c, xf )

Equation (2.10) is a matrix equation a solution to which can be obtained by
inversion of the main matrix, i.e. determination of the matrix M−1. In the case
of a rectangular matrix, the inverse matrix can be calculated by decomposing
the main matrix according to the Singular Value Decomposition algorithm
(Golub and Van Loan, 1989)

M = UWV>

where
U – square matrix of the 3× 3 rank, having 3 orthogonal columns

corresponding to 3 singular values given in the matrix W, such
that U>U = 1

W – pseudo-diagonal matrix of the rank 3× 4, having non-negative
singular values of the matrix M on its diagonal

W =







w1,1 0 0 0
0 w2,2 0 0
0 0 w3,3 0







V – square matrix of thee rank 4×4, having 4 orthogonal columns,
such that V>V = 1

Thus, the matrix M−1 can be calculated

M
−1 = (UWV>)−1 = (V>)−1W−1U−1 = VW−1U>
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and sought constant vector can be determined based on matrix obtained as
result of decomposition

C = VW−1U>B

where

W
−1 =

















1
w1,1

0 0 0

0
1
w2,2

0 0

0 0
1
w3,3

0

















After computing the integration constants P , Q, R, S, the sought values
of the support elasticities can be calculated from relations (2.5), (2.6), (2.8)
and (2.9).

4. Comparative criteria for the models

Verification of the model based on data obtained from an experiment is
one of the main problems of the identification. The model obtained from the
identification of the system with ”incomplete information” (under-determined
problem) is an approximation of the real system. The verification stage of the
identification involves checking of the obtained approximation for sufficiency
of the objective for which the model was created.
The identification objective adopted in the paper is the determination of

amplitude vectors of steady state vibrations caused by a force of any frequency
below the second eigenfrequency.
The first basic criterion for comparison of the mechanical models is the

comparison of their natural frequency (Uhl, 1997). Due to limitations of exci-
tation frequency, the first two free vibration frequencies will be compared here.
The second criterion used in the analysis of the correlation between the

models is the visual comparison of amplitude vectors of vibrations caused by
forces of different excitation frequencies. Very commonly, a diagram in the
Cartesian coordinate system is created, where amplitudes obtained from the
experimental model are placed on the x axis, and the same amplitudes from
the analytical model are placed on the y axis. If the models are coincident, the
corresponding points should be located on the straight line inclined by an angle
of 45◦. The mathematical notation of this type of comparison (described and
used in modal analysis for finding the correlation between the eigenvectors) is
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done using the MAC (Modal Assurance Criterion) (Uhl, 1997) coefficient

MAC(x,y) =
|x∗>Wgy|

2

(y∗>Wgy)(x∗>Wgx)

where x∗, x and y∗, y are two vectors of forced vibration amplitudes obtained
from the analytical and experimental model; Wg is a weight matrix indicating
which coordinates of the vector are the most important during the comparison.
The analysis is performed on the assumption that the matrix Wg is a unit
matrix. i.e. amplitudes in all points of the beam are identically important.

5. Numerical examples

The subject of the analysis is an elastically supported beam shown in
Fig. 1 with the following material data: Young’s modulus E = 2.1 · 1011 Pa;
material density ρ = 7860 kg/m3 and geometric data: cross-section b × h =
0.03 × 0.03m; beam length l = 1.3m.
The ”experimental” data required for the identification and verification

come from vibration analysis using the finite element method. For this purpose,
amplitudes were computed for vibrations excited by a force of the amplitude
F = 100N applied to the beam at the point with a coordinate xf = 0.9m and
frequency ω = 2πf (for different frequencies f).
The elasticity constants of supports were determined based on the measu-

rement (obtained from FEM analysis) of the vibration amplitudes at three
points, where two of them are located at the beam ends (a = 0, c = l). After
determining the elasticity coefficients and decomposing the main matrix ac-
cording to the Singular Value Decomposition algorithm, the analytical model
was verified against the criteria specified above.
The free vibration frequencies were compared by finding deviation defined

by the following formula

δi =
|ωie − ωia|

ωie
· 100% i = 1, 2 (5.1)

where ωie denotes the ith natural frequency obtained from the experimental
model (from FEM analysis here), ωia – ith natural frequency obtained from the
analytical model, where i = 1, 2 due to limitations of the excitation frequency
(below the second eigenfrequency), i.e. only the first two natural frequencies
will be compared.



Identification of beam boundary conditions... 99

Figure 2 shows the above defined deviation in the determination of the first
and second natural frequency as a function of location of the third measure-
ment point (other two points at the beam ends) for the excitation frequency
ω = 2π · 25 = 157.1 rad/s.

Fig. 2. Deviation in the determination of the first two natural frequencies as a
function of location of the third sensor; ω = 157.1 rad/s

Natural frequencies from FEM analysis are: ω1 = 262.1 rad/s and ω2 =
1039.4rad/s.
Figure 3 shows the above defined deviation in the determination of the

first and second natural frequency as a function of location of the third me-
asurement point for the excitation frequency ω = 2π ·50 = 314.2 rad/s (higher
than the first eigenfrequency).

Fig. 3. Deviation in the determination of the first two natural frequencies as a
function of location of the third sensor; ω = 314.2 rad/s



100 L.Majkut

According to the analysis of the results shown in Figs 2 and 3, smaller
identification errors are made when the system is loaded by a frequency lower
than the first frequency of free vibration. In such a case, location of the central
sensor (other two are located on the beam ends) has no significant effect on
uncertainty of the determination of the first two eigenfrequencies (deviations
δ1 and δ2 below 5%).
In the case of identification with excitation by a force of a frequency higher

than the first natural frequency, it is essential (due to the identification error)
to find the ”appropriate” position of the measuring element (deviation of the
frequency determination varies from 0 to 33%).
Afterwords, we will determine the correlation coefficients for the vectors

of amplitudes of forced vibration obtained from the experiment X e and the
analytical model Xa

MAC(Xa,Xe) =
|X>aXe|

2

(X>aXa)(X
>

e Xe)

Table 1 summarizes the MAC coefficients computed by comparing the
forced vibration vectors obtained for 7 different frequencies of the excitation
force. The boundary conditions necessary to calculate the vectors of vibrations
from the analytical model are obtained from the identification measurements
with the excitation frequency ω = 2π · 25 = 157.1rad/s and ω = 2π · 50 =
= 314.2rad/s.

Table 1. Correlation coefficients MAC for vibration amplitude vectors
obtained from the analytical and experimental models

Identification Verification for ω = 2πf
with ω = 2πf f = 10 f = 25 f = 50 f = 75 f = 100 f = 125 f = 150
f = 25Hz 0.9983 0.9982 0.9975 0.9989 0.9930 0.9965 0.9953
f = 50Hz 0.9998 0.9997 0.9976 0.9992 0.9992 0.9907 0.9811

The identification and verification measurements were performed for the
case in which the central measuring point was in the beam center (b = l/2).
The verification results for the analytical model indicate the correct identi-

fication of the boundary conditions of the beam, at least in the assumed band
of thr excitation frequency (below the second eigenfrequency).
Another example of identification in the ill-posed problem can be a system

shown in Fig. 4 characterised by the following parameters: Young’s modulus
E = 2.1 · 1011 Pa; material density ρ = 7860 kg/m3; cross-section dimensions
b× h = 0.03 × 0.03m; beam length l = 1.3m.
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Fig. 4. A cantilever beam with an elastic support

The purpose of the identification measurements is the determination of the
lateral elasticity coefficient kT l by measuring forced vibration amplitudes. As
thr identification quantities, two boundary conditions for the beam left end

X(0) = 0 X ′(0) = 0

and forced vibration amplitudes in one point of the beam have been adopted.
Using the above mentioned procedure (SVD), we can determine the inte-

gration constants P , Q, R, S, which describe the amplitude of forced vibra-
tions (2.3). Having determined the integration constants, the sought value of
the elastic coefficient is calculated from the relation

kT l = EI λ3
P sinhλl +Q cosh λl −R sinλl − S cosλl − f1
P coshλl +Q sinhλl +R cosλl + S sinλl − f2

(5.2)

where

f1 =
F

2EI λ3
[cosh λ(l − xf ) + cos λ(l − xf )]

f2 =
F

2EI λ3
[sinhλ(l − xf )− sinλ(l − xf )]

Figure 5 shows the above defined deviation, (5.1), in the determination of
the first and second natural vibration frequency as a function of location of
the measurement point (x = a) for the excitation frequency ω = 2π · 20 =
= 125.7 rad/s (below the first eigenfrequency).
The natural frequencies found by FEM analysis are: ω1 = 214.0 rad/s and

ω2 = 622.9rad/s.
Figure 6 shows the deviation in the determination of the first and second

natural frequency as a function of location of the measurement point (x = a)
for excitation frequency ω = 2π · 60 = 377.0 rad/s (above the first eigenfrequ-
ency).
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Fig. 5. Deviation in the determination of the first two natural frequencies as a
function of the sensor location; ω = 125.7 rad/s

Fig. 6. Deviation in the determination of the first two natural frequencies as a
function of the sensor location; ω = 377.0 rad/s

Similarly as in the previous example, smaller identification errors are made
when the system is loaded by a frequency lower than the first eigenfrequency of
the system. However, it is essential to find such a position of the sensor, which
will ensure the minimal identification error (deviation varies from 0 to 20%).

Table 2 summarizes the MAC coefficients computed by comparison of the
forced vibration vectors obtained for 7 different frequencies of the excitation
force. The boundary conditions necessary to calculate the vibration vectors
from the analytical model are obtained from the identification measurements
with the excitation frequency ω = 2π · 20 = 125.7 rad/s and ω = 2π · 60 =
= 377.0 rad/s.
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Table 2. Correlation coefficients MAC for vibration amplitude vectors
obtained from analytical and experimental models

Identification Verification for ω = 2πf
with ω = 2πf f = 10 f = 20 f = 40 f = 50 f = 60 f = 80 f = 90
f = 20Hz 1.0 1.0 1.0 1.0 1.0 1.0 0.9999
f = 60Hz 0.956 0.9538 0.9441 0.935 0.9213 0.8731 0.8713

Verification results for the analytical model indicate correct identification
of the boundary conditions of the beam (it is assumed that good coincidence of
vectors is for MAC > 0.8 (Uhl, 1997). In all calculations, it has been adopted
that the measuring point is located in the beam center.

6. Conclusions

The purpose of the study was to demonstrate the possibility of identifi-
cation of beam boundary conditions in an ill-posed problem. In the analysed
cases, the problem was to be understood as determination of four constants
necessary for description of functions of forced vibration amplitudes from three
equations. In the first case, these equations described amplitudes of vibrations
in points where measuring elements (sensors) were located, or in the second ca-
se, two equations were available for the description of the boundary conditions
and vibration amplitude at the measuring point.
Verification of the obtained mathematical model (elastically supported

Bernoulli-Euler’s beam) was done by comparing natural frequencies obtained
from the analytical model and the numerical experiment, and analysing the
correlation of forced vibration amplitude vectors for different excitation fre-
quencies.
In both analysed cases, the deviation in the determination of the first and

second free vibration frequency was computed as a function of location of one
measuring element. Identification of boundary conditions was done for two
frequencies of the excitation force: below and above the first eigenfrequency.
According to the results of analysis presented in Figs 2, 3, 5 and 6, smaller

identification errors are made when the system is loaded by a frequency lower
than the first eigenfrequency. However, it is essential to find such a position
of the measuring element, which will ensure the minimal identification error.
Another criterion used in the analysis for studying the correlation between

the models (described and used in modal analysis for finding the correlation



104 L.Majkut

between eigenvectors) is the MAC (Modal Assurance Criterion) coefficient.
MAC coefficients for vectors of forced vibration obtained from the experiment
and the analytical model have been summarized in Tables 1 and 2. All MAC
coefficients are greater than 0.8, above which, good coincidence of vectors is
assumed.
The MAC coefficient defines only the similarity of forms between vectors

– its value is not affected by vibration amplitudes, i.e. multiple vectors (e.g.
amplitudes of vibrations obtained from the experiment can be n-times greater
than those obtained from the analytical model in each cross-section of the
beam) have the same shape (i.e. MAC = 1).
Therefore, it is only necessary to analyse the vibration amplitude of any sin-

gle cross-section of the beam. The amplification factor (for a given excitation
frequency) depends on the location of resonant frequencies. So selection of the
position of measuring sensors which ensures the minimal error of determina-
tion of the natural frequency, also ensures the minimal error of determination
of the amplitudes of forced vibrations.
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Identyfikacja warunków brzegowych belki w układach o niepełnej

informacji

Streszczenie

Praca dotyczy identyfikacji warunków brzegowych belki w przypadkach, w któ-
rych nie ma możliwości uzyskania pełnej informacji o układzie. Niepełna informacja
wynika, w rozważanym w pracy przypadku, z problemu wyznaczenia czterech sta-
łych całkowania, niezbędnych do opisania funkcji amplitud drgań wymuszonych belki,
z trzech równań. Do tego celu wykorzystano algorytm rozkładu macierzy względem
wartości szczegónych (Singular Value Decomposition).
Po wyznaczeniu stałych całkowania i funkcji amplitud drgań wymuszonych, uogól-

nione współczynniki sprężystości podparcia wyznaczono z równań opisujących warun-
ki brzegowe.
Weryfikacji tak uzyskanego modelu matematycznego dokonano poprzez porówna-

nie częstości drgań własnych i wyznaczenie wspólczynników korelacji wektorów drgań
wymuszonych.
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