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The problem of identification of aircraft aerodynamic characteristics per-
formed by means of recording current flight parameters is presented in
the paper. Basic concepts of fast identification algorithms; e.g. Non-
Linear Filtering (NF) (based on the Lipcer and Sziriajev theory) and
Estimation Before Modelling (EBM) are presented as well. Tips on how
to implement the EBM and NF methods in practice are shown. Presented
numerical results seem to be very interesting.
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1. Introduction

An aircraft is a complex dynamic system that moves in real atmosphere and
executes dynamic controlled manoeuvres. Aerodynamic loads acting upon the
aircraft as well as surrounding atmosphere (environmental conditions) exert
fundamental influence on its behaviour and dynamic properties. One of the
effective ways of determination of aerodynamic coefficients appearing in the
formulae for aerodynamic forces and moments in the aircraft flight is the
identification.
Aerodynamic characteristics of an aircraft change according to velocity

and flight altitude variations. It is, therefore, necessary to apply identification
methods which could follow up those variations. The contemporary problem
of system identification (assume shape as flying object), can be divided into
three main parts (Fig. 1):

• Measurement equipment – a subsystem logging measurement data and
recording them through appropriate on-board and on-ground equipment
with respect to their ”quality” – knowledge of measurement errors.
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• Flight test techniques – a subsystem selecting adequate test flight pro-
grams of the flying object. Input signals are optimized in terms of their
spectrum so that parameters of the object could be estimated.

• Flight data analyzer – a subsystem based on a mathematical model
of the flying object and estimation criteria to find a solution to the
given computational identification algorithm from initial conditions or
specified a priori estimates of unknown parameters and to minimize the
error system response of the best estimate parameter.

Fig. 1. Correlation in the process of identification of aerodynamic characteristics

Identification of aerodynamic characteristics of a flying object (with control
and stability derivates) depends on numerical solution of values based on test
flights. In preparation of an identification method to practical use, we must
assume its applicability in a step by step manner (Giergiel and Uhl, 1990). We
divide the development of the method into three phases (Fig. 2):

• Phase 1 – depends on numerical simulation of a tested object aimed
at the identification of flight regimes, for example the problem of high
angles of attack.

• Phase 2 – depends on an identification algorithm determining the influ-
ence of object control and measurement errors on recorded data proces-
sing.
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• Phase 3 – depends on practical use of Phase 1 and 2 which are applied
to data processing recorded during flight tests.

Fig. 2. Phases of practical identification of aerodynamic characteristics of a flying
object (Giergiel and Uhl, 1990; Goszczyński, 2000)

In the second phase, a selection of critical elements for the identification
process are used for estimation of parameters verification of the formulated
mathematical model.

Requirements of the above phases indicate fundamental need for aerody-
namic tunnel tests and knowledge of the flying object physics.

As a matter of fact an aerodynamic model of a flying object in the de-
terministic sense must reflect particularly strongly nonlinear components of
aerodynamic forces and moments.
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2. Mathematical models

An aircraft is defined as a flying object (FO) considered in a flight configu-
ration as a rigid body with movable control surfaces. A mathematical model
of FO is defined in the FO body-fixed co-ordinate system (Hamel and Jatega-
onkar, 1996; Main and Iliff, 1985; Maryniak, 1985), see Fig. 3.

Fig. 3. Assumed FO co-ordinate systems and displacements of control surfaces

Within the framework of analytical mechanics, we arrive at the following
equations of motion (Goszczyński, 2000; Goszczyński et al., 2000; Maryniak,
1985; Sibilski, 1998)

ẋd = B
−1(VωBxd + FM ) (2.1)

where

xd – dynamical part of the state vector

xd = [U, V,W,P,Q,R]
> (2.2)

B – matrix of inertia
Vω – matrix of linear and angular velocities
FM – vector of external forces and moments

FM =

[
F

M

]
= [Fx, Fy, Fz ,Mx,My,Mz ]

> (2.3)
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and the kinematic relations

ẋk = T(xk)xd (2.4)

where T denotes the transformation matrix from the FO body-fixed axes to
the earth-fixed co-ordinate system

xk = [Φ,Θ, Ψ, x1, y1, z1]
>

and the vector FM is represented as a sum of gravity, thrust and aerodynamic
forces and moments

FM = F
G
M + F

T
M + F

A
M (2.5)

We assume that the gravity and thrust forces and moments are known, while
the aerodynamic forces and moments

FAM = [Px, Py, Pz , L,M,N ]
> (2.6)

have to be estimated basing on recorded digital signals of FO motion with
filtering and smoothing techniques used. These estimates are unknown poly-
nomials of the state variables, control function and Mach number. Their forms
and coefficients are to be identified (Goszczyński et al., 2000).

2.1. A particular mathematical model of an aircraft

In a simplified case, we can analyze a rigid and symmetrical aircraft mo-
ving through atmosphere which moves with a uniform speed over a flat earth
(Maryniak, 1985). Using the body-fixed reference frame Oxyz with the origin
in the centre of gravity, are obtains equations of motion (2.3) as presented
below

X = m(U̇ +QW −RV ) +mg sinΘ

Y = m(V̇ +RU − PW )−mg cosΘ sinΦ (2.7)

Z = m(Ẇ + PV −QU)−mg cosΘ cosΦ

L = IxṖ − (Iy − Iz)QR− Ixz(Ṙ+ PQ) +

−IT iωT i(R sinϕTzi +Q cosϕTzi sinϕTyi)

M = IyQ̇− (Iz − Ix)RP − Izx(R
2 − P 2) +

+IT iωT i(R cosϕTzi cosϕTyi + P cosϕTzi sinϕTyi) (2.8)

N = IzṘ− (Ix − Iy)PQ− Izx(Ṗ −QR) +

−IT iωT i(Q cosϕTzi cosϕTyi − P sinϕTzi)
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Equations (2.7) and (2.8) take the form of first order differential equations
for, respectively for translational velocities, angular velocities and attitude
angles in the body-fixed reference frame Oxyz. The forces X, Y , Z represent
components of the total aerodynamic force, including aerodynamic effects of
propulsion systems. L, M , N denote the total aerodynamic moments (inclu-
ding any aerodynamic effects of the propulsion system) about the body axes
Oxyz. Both components (2.7) and (2.8) define a form of an aerodynamic vector
(2.6).

Completing equations (2.7) and (2.8) with kinematic relations (2.4) and
components of the total aerodynamic force and moment (known also as the
aerodynamic model) leads to the full set of aircraft dynamic equations of mo-
tion.

It is worth noting here that the ”physical” input variables such as displ-
cements of control surfaces and engine thrust (or power changes) also serve
as inputs to the above set of differential equations as they should appear as
independent variables in the aerodynamic model of the flying object.

In the written above kinematic model of an aircraft, the measured varia-
bles, i.e. specific aerodynamic forces and body rotation rates appear as forcing
functions.

The specific force is defined here as an external non-gravitational field
force per mass unit. The specific forces are variables measured by ”ideal”
accelerometers in the body’s centre of gravity, irrespective of whether the body
is influenced by the gravitational field or not (Mulder et al., 1994; Stalford,
1979). In flight tests, such ideal accelerometers would measure the specific
aerodynamic forces according to

X = Axm Y = Aym Z = Azm (2.9)

in which Ax, Ay, Az denote the specific aerodynamic forces along the body
reference axes Oxyz.

Substitution of (2.9) into (2.7) and division by m leads to the following
expressions

U̇ = Ax − g sinΘ −QW +RV

V̇ = Ay + g cosΘ sinΦ−RU + PW (2.10)

Ẇ = Az + g cosΘ cosΦ− PV +QU

As the mass has been eliminated, equations (2.10) represent a set of what
might be called kinematical relations. The two sets of equations, (2.9) and
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(2.10), may be solved numerically if the specific forces Ax, Ay, Az and the
angular rates P , Q, R are taken as input variables.

We can interpret (2.4), (2.10) as to represent the dynamical system and
define the state vector

xa = [U, V,W,Φ,Θ, Ψ, x1, y1, z1]
> (2.11)

as well as the input vector

u = [Ax, Ay, Az, P,Q,R]
> (2.12)

The equation of the system state may be written as

ẋa = f(xd,u) (2.13)

where f denotes a non-linear vector function of xa and u.

While the accelerometers and gyroscopes serve to measure components of
the input vector, the barometric and other sensors may be used to measure
components of the observation vector.

2.2. The aerodynamic model of a flying object

Aerodynamic models are defined as mathematical models of aerodynamic
forces and moments in the body-fixed Oxyz or wind-fixed Axayaza reference
frames.

Development of aerodynamic models from dynamic flight test data requires
an initial ”guess” of the mathematical structure of the model. The initial guess
is referred as an a priori model, indicating that no flight data was used to build
the model. A priori models can be based on physical knowledge, semi-empirical
databases, results found from Computational Fluid Dynamics (CFD) or Wind
Tunnel measurements.

A generalized aerodynamic force (2.6) may be written as follows (Main
and Iliff, 1985, 1986; Mulder et al., 1994)

PA = PS(α, β) +
∑

n

P δnA (α, β)δn + P
p
A(α, β)P + P

q
A(α, β)Q+ P

r
A(α, β)R +

+P pqA (α, β)PQ + P
p2

A (α, β)P
2 + P prA (α, β)PR + P

q2

A (α, β)Q
2 + (2.14)

+P qrA (α, β)QR + P
r2

A (α, β)R
2

where PS(α, β) is a part of the aerodynamic force depending on the angle of

attack and angle of sideslip, P pA, P
q
A, P

r
A, P

pq
A , P

p2

A , P
pr
A , P

q2

A , P
qr
A , P

r2

A are
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parts of the aerodynamic force in function of the roll, pitch and yaw rate,
P δnA are parts of the aerodynamic force depending on aileron, elevator and
rudder (δn) deflections.
As estimated parameters are likely to be compared with results determined

from wind tunnel experiments (or CFD), a standard way of system modelling
through Taylor series of dimensionless aerodynamic coefficients (Maryniak,
1985) should be used

CD = CD0 + CDαα+ CDα2α
2 + CDq

qca
V
+ CDδeδe

CY = CY 0 + CY ββ + CY p
Pb

2V
+ CY r

Rb

2V
+ CY δaδa + CY δrδr

CL = CL0 + CLαα+ CLu
u

V
+ CLq

qca
V
+ CLδeδe

(2.15)

Cl = Cl0 + Clββ + Clp
Pb

2V
+ Clr

Rb

2V
+ Clδaδa + Clδrδr

Cm = Cm0 + Cmαα+ Cmq
qca
V
+ Cmδeδe

Cn = Cn0 + Cnββ +Cnp
Pb

2V
+ Cnr

Rb

2V
+ Cnδaδa + Cnδrδr

where α and β denote the angle of attack and sideslip, P , Q, R are the roll,
pitch and yaw rates, δa, δe, δr are aileron, elevator and rudder deflections,
CD, . . . , Cn are dimensionless aerodynamic coefficients, CDα, CLα, . . . are ae-
rodynamic parameters which denote partial derivatives ∂CD/∂α, ∂CL/∂α, . . ..

3. Identification algorithms

3.1. Non-Linear Filtering (FN) method

The FN theory formulated by Lipcer and Sziriajev (Anderson and Moore,
1984; Lipcer and Sziriajev, 1981; Ocone, 1981) consists in finding a pair of
stochastic processes in a non-linear form of Stochastic Differential Equations
(SDE)

dxt = [a(t, y) + b(t, y)xt]dt+ c(t, y)dut xt=0 = x0

dyt = [A(t, y) +B(t, y)xt]dt+ C(t, y)dwt yt=0 = y0
(3.1)

where only the process yt is observed, whereas ut and wt are independent
Wiener processes.



Practical aspects of identification... 39

Finding a solution to the filtering problem is possible on the following
assumptions:

a) The right-hand side of SDE (3.1)2 depends linearly on the Unknown
Parameters Vector (UPV), which is independent of stochastic excitations
(this vector describes the FO in flight, while stochastic terms represent
external disturbances).

b) The a priori distribution of the UPV is normal. Unknown parameters
have often physical or technical meaning, thus we can determine their li-
miting values. However, if it is impossible to determine the range of those
parameters, it is reasonable to make the aforementioned assumption.

c) The UPV is stochastically independent of the Wiener process wt.

d) There exists an inverse to the matrix [C>(t, y)C(t, y)]−1, i.e. the stocha-
stic disturbances must affect the FO adequately.

e) The right-hand side of Eq. (3.1)2 has a strong solution, which imposes
the requirement for existence and uniqueness of the classic solution to the
ordinary differential equation resulting from Eq. (2.10) when neglecting
the noises.

On the above assumptions, it can be proved that the conditional expected
value is the best mean square estimator of the non-observed stochastic process
(SP) x when observing the process y in the time interval [0, t]. The optimal
estimator and minimal error are given by a finite system, i.e.

• Filtration tasks have finite dimensions and, therefore, can be realised
technically.

• The optimal estimator is directly represented by dynamics of the pro-
cesses x and y.

• The optimal estimation at the instant t+dt results from the optimal es-
timation at the instant t, supplied with a new observation in the interval
[t, t+ dt], which allows for construction of a recursive filter.

• The solution is of the on-line type.

• When using fast computer systems, it is possible to reach the real-time
solution.

So as to properly formulate the parameter estimation in terms of the filte-
ring problem, the stochastic process x should be stationary and represented
by the same UPV. That directly leads to formulation of a filtering problem in
a specific form (Goszczyński, 2000).
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3.1.1. Requirements imposed on the state and output (measurement) vectors

For the UPV estimation purposes by means of the NF method, the equ-
ation of motion of the FO in flight should be represented in terms of the me-
asurement vector, since this is the only information about the real FO motion
we are provided with. Equation (3.1)2 should therefore satisfy the following
conditions:

• Noises encountered in the course of the state vector measurement are
negligible when compared to the external stochastic disturbances affec-
ting the FO in flight. If the noises arise also in the measurement process,
the estimation task of both the state vector and UPV are infinite multi-
dimensional (Goszczyński, 2000).

• The relation between the state and measurement vectors has the follo-
wing linear form

y = Hx (3.2)

where H is a constant or time-dependent matrix and

det(H>H) 6= 0 (3.3)

Thus, we can rewrite Eq. (3.2) as follows

x = (H>H)−1H>y (3.4)

By virtue of Eq. (3.4), equation of motion (2.3), representing evolution of the
process x, may be presented in terms of the measurement vector.

3.1.2. Application

The model of a controlled aircraft in 3D-flight (2.3) within the framework
of non-linear filtering theory (FN) can be represented in the form

ẋd = B
−1g(xd, t) +B

−1f(xd, t) (3.5)

where
B – inertial matrix
g – gravity and thrust forces vector
f – aerodynamic forces vector.

The vector of aerodynamic forces has the following linear form with respect
to the unknown parameters

FAM = f(xd, t) = X(xd, t)p (3.6)
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It determines the structure of both the vector p, and matrix X(xd, t), unknown
at the moment.

Having the matrix X(xd, t) determined, after substitution of Eq. (3.6) into
Eq. (3.5), and introducing the formulae for external stochastic disturbances in
flight, we arrive at the stochastic equation of motion

dxdt = [B
−1g(xdt , t) +B

−1
X(xdt , t)p] dt+D dωt (3.7)

which we consider as the observation equation (in the NF theory sense), where
ωt  0 is the 6DWiener process representing the influence of stochastic factors
on the aerodynamic forces and moments.

Fig. 4. Identification of the lift coefficient CL (FN)

3.2. Estimation Before Modeling (EBM)

The EBM consists of the following two-steps (Goszczyński et al., 2000)[7]:

Step 1 – estimation of the state vector using a filter;

Step 2 – modelling itself, e.g. by means of the regression method

ẑ = Ap̂+ ε̂ (3.8)

where
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Fig. 5. Identification of the pitching moment coefficient Cm (FN)

ẑ – estimation of the output vector (resulting from the filter)
A – estimation matrix of the vector x (cf. the observation ma-

trix X in Mańczak and Nahorski (1983))
ε̂ – vector of errors with zero mean values and a constant cova-

riance matrix.

The problem of the model parameters identification is schematically pre-
sented in Fig. 6. The EBM method is one of the equation error methods, with
its name adequately representing the order of operations to be performed
(Goszczyński et al., 2000).

Fig. 6. Overwiew of the Estimation Before Modelling technique (Stalford, 1979)
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Fig. 7. Concept of the EBM method (Goszczyński et al., 2000)

A crucial role in the EBM plays the aerodynamic modelling in terms of the
state equation, for the requirements of Kalman’s filter theory to be met. To
this end, each component of the vector of aerodynamic forces and moments is
represented in the form of the Gauss-Markov process (i = 1, . . . , 6)

ẋdi(t) = Ki(t)xdi(t) +Giζi(t) xdi(0) = xdi0 (3.9)

where
ζi(t) – white (gaussian) noise
Gi – output matrix
xdi – state vector
Ki – state matrix in the form

Ki =



0 1 0
0 0 1
0 0 0


 (3.10)

The state estimates obtained in the first step of the EBM method are the
input data for the second step. Therefore, the identification problem is addres-
sed in a completely different way, in contrast to a typical identification process
of parameters. In the EBM method, a structural identification is performed as
well.

Selection of the aerodynamic model structure is of crucial importance.
Usually, the linear regression technique is used, in which n parameters (N 
n) are determined from N measurements, and a simple parametrical model
in the following form (corresponding to Eq. (3.5)) is assumed

yi = Xipi + ei i = 1, . . . , 6 (3.11)

where
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yi – vector of aerodynamic forces or moments of the Nth order
Xi – matrix of independent variables of the (N × n)th order
pi – - vector of unknown parameters of the nth order
ei – - error vector of the Nth order.

Applying the least square method, by virtue of Eq. (3.3) (the rela-
tion between the state and measurement vectors is linear) we arrive at the
equation

p̂i = (X
>

i Xi)
−1
X
>

i yi (3.12)

representing explicitly the identification process.

Usually, at high angles of attack, aerodynamic characteristics are strongly
non-linear depending on the state and control vectors (2.3) in an unknown
way. The function Xi(xd, t) is represented in the form of splines or polynomials
with unknown coefficients pi. Basing on the dynamical limitations imposed
on all degrees of freedom (flight modelling), it is possible to estimate xdi0 and
the coefficients pi, which completes the first step of the EBM identification
method – the state estimation.

3.2.1. State estimation

In the first step, realised by means of the filtering technique, the extended
Kalman filter is applied (Goszczyński, 2000; Goszczyński et al., 2000). The
loading introduced this way can be reduced by means of linear smoothing,
e.g. by employing the modified Bryson-Frazier filter. An alternative approach
consists in application of the smoothing with a constant delay, which may
occur to be simpler and less time-consuming, giving at the same time both
the smoothing and estimation of the state variable derivatives.

3.2.2. Estimation of parameters

The second step of the EBM method is reasonably called ”modelling”. This
approach gives an insight into mechanical models of flight being currently in
use (Goszczyński et al., 2000). Whenever an identification is to be made within
the area of substantial changes in values of physical quantities, which of course
strongly affect values of parameters, it must be preceded by a proper selec-
tion of subdomains. In each subdomain, a separate identification is realised
(Batterson and Klein, 1989).
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The selection of the model structure consists in multiple application of the
linear regression technique (3.5) (Goszczyński et al., 2000). It results from the
step-by-step introduction and removal of independent variables. An indepen-
dent variable, which might be the best single variable at the previous step,
could be needless in the next step, which can be checked by using the Fisher-
Snedecor test (test F) (Draper and Smith, 1973).

The EBM method can be most efficient for determination of aerodynamic
characteristics at high angles of attack (Mulder et al., 1994; Stalford, 1979,
1981; Stalford et al., 1977). Several advantages should be mentioned (Sibilski,
1998):

• A priori estimation of aerodynamic characteristics before modelling al-
lows for more accurate determination of input data at the modelling
step.

• Estimation and identification of aerodynamic derivatives do not require
construction of models depending on state parameters.

• Simultaneous reconstruction of many manoeuvres leads to better preci-
sion in the identification of aerodynamic derivatives.

The most advantageous feature of the EBMmethod consists in the fact that
the model structure is constructed basing on the measurement of dynamical
parameters of the aircraft.

Fig. 8. History of the sideslip angle β (EBM)
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Fig. 9. History of the pitch angle Θ (EBM)

Fig. 10. History of the pitch angular velocity Q (EBM)

Fig. 11. Estimation history of the aerodynamic drag coefficient CD = f(t) (EBM)
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Fig. 12. Estimation history of the aerodynamic lift coefficient CL = f(t) (EBM)

Fig. 13. Estimation of the aerodynamic lift coefficient CL = f(α) (EBM)

4. Conclusions

The results of numerical tests of the presented methods are promi-
sing. A good convergence of the numerical algorithms and low sensiti-
vity to initial errors has been found. These features are hopeful, parti-
cularly for aerodynamic characteristics the values of which can be pre-
cisely a priori estimated. Investigations of the application of the pre-
sented methods to the problem of a six-degree-of-freedom aircraft are
being conducted (Goszczyński et al., 2000) based on real flight data
records.
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Praktyczne uwagi w identyfikacji charakterystyk aerodynamicznych

Streszczenie

W pracy przedstawiono metodę estymacji przed modelowaniem (EBM), znaną
również pod nazwą metody dwu etapowej identyfikacji charakterystyk aerodynamicz-
nych (i ich pochodnych). Przedstawiona technika jest szczególnie przydatna do identy-
fikacji charakterystyk samolotu poruszającego się na dużych kątach natarcia i ślizgu.
W pracy przedstawiono podstawowe cechy i zależności metody. Uzyskane wyniki, wraz
z posiadaną wiedzą o zakończonych badaniach innych zespołów, pozwalają określić
przedstawioną technikę jako potencjalnie integralną część badań rozwojowych i oceny
każdego samolotu.
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