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Université Cadi Ayyad, ENSA Safi, Maroc

e-mail: y.ouafik@uca.ma

MIRCEA SOFONEA
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We consider a mathematical model which describes the dynamic evolution of a viscoelastic
body in frictional contact with an obstacle. The contact is modelled with normal damped
response and unilateral constraint for the velocity field, associated to a version of Coulomb’s
law of dry friction. Our aim is to present a detailed description of the numerical modelling
of the problem. To this end, we use a penalty method to approximate the constraint. Then,
we provide numerical simulations in the study of a two-dimensional example and compare
the penalty model with the original one.
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1. Introduction

Contact problems involving deformable bodies arise in many industrial processes as well as in
everyday life. For this reason, they have been widely studied in the recent years, with various con-
stitutive laws and boundary conditions, including the normal compliance condition. The studies
concern both the mechanical, the mathematical and numerical modelling of the corresponding
boundary value problems. References in the field include Oden and Martins (1985), Han et al.
(2001, 2016), Han and Sofonea (2002), Laursen (2002), Hlaváček et al. (1988), Barboteu et al.
(2015, 2016a,b), Barboteu and Danan (2016), among others. The so-called normal damped re-
sponse condition represents a version of the normal compliance condition, expressed in terms
of velocity. Such a condition seems to be appropriate when contact surfaces are lubricated, as
mentioned in (Barboteu and Danan, 2016; Barboteu et al., 2016b; Han et al., 2016; Shillor et
al., 2004).
In this current paper, we consider a mathematical model which describes dynamic frictional

contact between a body and a deformable foundation. We describe the material behavior with
the Kelvin-Voigt viscoelastic constitutive law. The frictional contact is modelled with a normal
damped response condition with unilateral constraint for the velocity field associated to a version
of Coulomb’s law of dry friction. These non standard contact conditions could model the contact
with the deformable foundation covered by a lubricant, say oil, as already mentionned.
The current work represents a continuation of (Barboteu et al., 2015, 2016a,b). Its aim is

to provide the numerical modelling of the dynamic frictional contact problem supported by
numerical simulations. We present a ful discretization of the problem and we describe details
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of the numerical algorithm we use. The main novelty of our work arises from the fact that
we study two problems: an original problem constructed by considering a combination of the
normal damped response law with unilateral constraint condition in velocity, and a penalty one
constructed with the normal damped response law without a constraint. In this paper, we provide
a reliable comparison between numerical solutions of the approximate frictional contact problem
and the original one. Finally, we present numerical simulations which validate our approximation
method and give information on the mechanical behaviour of the solution.

The paper is organized as follows. In Section 2, we present the original model and provide its
variational formulation. Then we introduce the penalty problem and its variational formulation.
In Section 3, we introduce a hybrid variational formulation of the two above mentioned pro-
blems. A fully discrete scheme is presented in Section 4, based on the finite element method to
approximate the spatial variable and the Euler scheme to discretize the time derivatives. Finally,
in Section 5, we present numerical simulations in the study of a two-dimensional test problem.

2. The model and its penalty version

We start by presenting the notation and the preliminary material we need in the rest of the
paper. Denote by S

d the space of second order symmetric tensors on R
d and by “·” and ‖ · ‖

the inner product and the Euclidean norms on the spaces Rd and Sd, respectively. Let Ω ⊂ R
d,

d = 1, 2, 3 be the domain occupied by a viscoelastic body in the reference configuration, with
a smooth boundary Γ = ∂Ω. We denote by ν the unit outer normal vector to Γ and assume
that Γ is decomposed into three measurable parts Γ1, Γ2, Γ3, such that meas(Γ1) > 0. Let [0, T ]
be the time interval of interest, with T > 0. We denote by x ∈ Ω and t ∈ [0, T ] the spatial
and the time variable, respectively, and, for simplicity, we do not indicate the dependence of
the functions on x and t. Moreover, a dot above a variable will represent the derivative with
respect to time. Finally, we denote by u the displacement field, by σ the stress tensor, and
ε(u) = (εij(u))

d
i,j=1 – the linearized strain field, i.e.

εij(u) =
1

2

(∂ui
∂xj
+
∂uj
∂xi

)

The body is assumed to be viscoelastic and, therefore, we use the constitutive law

σ = Aε(u̇) + Bε(u) in Ω × (0, T ) (2.1)

already used in (Duvaut and Lions, 1976), for instance. Here A and B are the fourth-order
viscosity and elastic tensors, respectively. Since the process is dynamic, the balance equation of
the stress field is given by

Divσ + f0 = ρü in Ω × (0, T ) (2.2)

Here, f0 is density of the body forces and ρ stands for density of the material, assu-
med to be constant for simplicity. Moreover, Div represent the divergence operator, i.e.
Div (σ) = (σij,j).

On Γ1, the body is clamped and, therefore,

u = 0 on Γ1 × (0, T ) (2.3)

Moreover, we assume that a surface force of density f2 acts on Γ2, i.e.

σν = f2 on Γ2 × (0, T ) (2.4)
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The part Γ3 of the boundary represents the potential contact surface and is assumed to be
given. There, the body can arrive in contact with a piston or a device, the so-called foundation.
Considering the case of an evolutive (say growing) contact surface leads to various mathematical
difficulties and, therefore, is left open. The boundary conditions on Γ3 are derived from the
following assumptions.

— The obstacle prevents motion of the body in such a way that the normal velocity is restricted
by an unilateral constraint, i.e.

u̇ν ¬ g (2.5)

where u̇ν = u̇ · ν denotes the normal component of u̇ on Γ and g > 0 represents a given bound.
Here, we assume the non homogeneous case and, therefore, g is a function which could depend
on the spatial variable x ∈ Γ3.

— When the body moves in the opposite direction of the obstacle then the reaction of the
obstacle vanishes. Therefore,

u̇ν < 0 =⇒ σν = 0 στ = 0 (2.6)

where σν and στ denote the normal and the tangential components of the stress on Γ , i.e.
σν = (σν) · ν and στ = σν − σνν.

— When the body moves towards the obstacle, the contact is described with the normal damped
response condition associated to Coulomb’s law of dry friction as far as the normal velocity does
not reach the bound g. Therefore,

0 ¬ u̇ν < g =⇒ − σν = p(u̇ν) ‖στ‖ ¬ µ|σν |

− στ = µ|σν |
u̇τ

‖u̇τ‖
if u̇τ 6= 0

(2.7)

Here, p represents a positive function such that p(r) = 0 for r ¬ 0 and µ denotes the coefficient
of friction. Details on the normal damped response contact condition associated to Coulomb’s
law of dry friction can be found in (Han and Sofonea, 2002; Shillor et al., 2004; Sofonea and
Matei, 2012), for instance.

— When the normal velocity reaches the bound g, then the normal stress is larger than p(g)
and, moreover, friction follows the Tresca law with the friction bound Fb. Therefore,

u̇ν = g =⇒ − σν  p(g) ‖στ‖ ¬ Fb

− στ = Fb
u̇τ

‖u̇τ‖
if u̇τ 6= 0

(2.8)

— To accommodate conditions (2.7) and (2.8), we assume the compatibility condition

Fb = µp(g) (2.9)

which guarantees continuity of the friction bound. Note that conditions (2.7) and (2.8) show a
natural transition from the Coulomb law (which is valid as far as 0 ¬ u̇ν < g) to the Tresca
friction law (which is valid when u̇ν = g).

A careful examination of conditions (2.5)-(2.9) reveals that they can be written, equivalently,
as follows

u̇ν ¬ g σν + p(u̇ν) ¬ 0 (u̇ν − g)(σν + p(u̇ν)) = 0

‖στ‖ ¬ µ|σν | − στ = µ|σν |
u̇τ

‖u̇τ‖
if u̇τ 6= 0

(2.10)
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Moreover, conditions (2.10) are equivalent to

− σν(t) ∈ p(u̇ν(t)) + ∂I(−∞,g](u̇ν(t)) on Γ3 × (0, T )

− στ (t) ∈ µp(u̇ν(t))∂‖u̇τ (t)‖ on Γ3 × (0, T )
(2.11)

respectively. Here ∂ represents the subdifferential operator in the sense of convex analysis and
IA denotes the indicator function of the set A ⊂ R. Subdifferential inclusions (2.11) will be
considered for the numerical modelling we introduce in Section 3.

Finally, we prescribe the initial displacement and the initial velocity, i.e.

u(0) = u0 u̇(0) = u1 in Ω (2.12)

where u0 and u1 are given functions defined on Ω.

We now gather relations (2.1)-(2.4), (2.10) and (2.12) to obtain the following formulation of
the dynamic frictional contact problem we consider in this paper.

Problem P . Find a displacement field u : Ω×(0, T )→ R
d and a stress field σ : Ω×(0, T )→ S

d

such that

σ = Aε(u̇) + Bε(u) in Ω × (0, T ) (2.13)

Divσ + f0 = ρü in Ω × (0, T ) (2.14)

u = 0 on Γ1 × (0, T ) (2.15)

σν = f2 on Γ2 × (0, T ) (2.16)

u̇ν ¬ g σν + p(u̇ν) ¬ 0 (u̇ν − g)(σν + p(u̇ν)) = 0 on Γ3 × (0, T ) (2.17)

‖στ‖ ¬ µp(u̇ν) − στ = µp(u̇ν)
u̇τ

‖u̇τ‖
if u̇τ 6= 0 on Γ3 × (0, T ) (2.18)

u(0) = u0 u̇(0) = u1 in Ω (2.19)

We now turn to the variational formulation of Problem P which is the starting point for the
numerical modelling based on the finite element discretization. To this end, we use the notaion
H = [L2(Ω)]d and we introduce the spaces

V = {v ∈ [H1(Ω)]d; v = 0 on Γ1}

Q = {τ = (τij)
d
i,j=1 ∈ [L

2(Ω)]d×d; τij = τji, i, j = 1, . . . , d}

The spaces H, V and Q are real Hilbert spaces endowed with the canonical inner products given
by

(θ,η)H =

∫

Ω

θ · η dx (u,v)V =

∫

Ω

ε(u) · ε(v) dx (σ, τ )Q =

∫

Ω

σ · τ dx

On the density of volume forces and surface tractions, we assume that

f0 ∈ C([0, T ];H) f2 ∈ C([0, T ]; [L
2(Γ2)]

d) (2.20)

and, using the Riesz representation theorem, we define the linear function f : [0, T ]→ V by the
equality

(f(t),w)V =

∫

Ω

f0(t) ·w dx+

∫

Γ2

f2(t) ·w dΓ ∀w ∈ V (2.21)
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Note that assumption (2.20) implies that f ∈ C([0, T ];V ). Here and below notation C([0, T ];X)
represents the space of continuous functions defined on [0, T ] with values to X.

Next, we denote by j : U × U → R the function given by

j(u,w) =

∫

Γ3

µp(uν)‖wτ‖ dΓ ∀u,w ∈ U (2.22)

where, U := {w ∈ V : wν ¬ g a.e. on Γ3} and wν = w · ν and wτ = w −wνν, for all w ∈ V .

Now, using standard arguments based on the Green formula, we obtain the following varia-
tional formulation of Problem P .

Problem PV . Find a displacement field u : [0, T ] → V such that u̇(t) ∈ U for all t ∈ [0, T ],
u(0) = u0, u̇(0) = u1 and the inequality below holds, for all t ∈ (0, T ):

(
ρü(t),w − u̇(t)

)

H
+
(
Aε(u̇(t)), ε(w)− ε(u̇(t))

)

Q

+
(
Bε(u(t)), ε(w)− ε(u̇(t))

)

Q
+
(
p(u̇ν(t)), wν − u̇ν(t)

)

L2(Γ3)
+ j
(
u̇(t),w

)

− j
(
u̇(t), u̇(t)

)

(
f(t),w − u̇(t)

)

V
∀w ∈ U

(2.23)

Our goal in what follows is to provide a penalty method in order to remove the unilateral
constraint u̇ν ¬ g in (2.17). The penalty form of the Problem P leads to a simpler numerical
model which provides a reliable approximation of the solution of the initial problem. Following
arguments similar to those in (Chouly and Hid, 2013; Kikuchi and Song, 1981), the penalty
contact problem we consider is the following.

Problem Pε. Find a displacement field uε : Ω× (0, T )→ R
d and a stress field σε : Ω× (0, T )→

S
d such that

σε = Aε(u̇ε) + Bε(uε) in Ω × (0, T ) (2.24)

Divσε + f0 = ρüε in Ω × (0, T ) (2.25)

uε = 0 on Γ1 × (0, T ) (2.26)

σεν = f2 on Γ2 × (0, T ) (2.27)

−σεν =
1

ε
(u̇εν − g)+ + p(u̇εν ) on Γ3 × (0, T ) (2.28)

‖σετ ‖ ¬ µp(u̇εν ) − σετ = µp(u̇εν )
u̇ετ
‖u̇ετ ‖

if u̇ετ 6= 0 on Γ3 × (0, T ) (2.29)

uε(0) = u0 u̇ε(0) = u1 in Ω (2.30)

Here and below, ε represents the penalty parameter assumed to be very small, while u̇εν and σεν
represent the normal components of the functions u̇ε and σε, respectively. Moreover, σετ repre-
sents the tangential part of the function σε. Note that Problem Pε is constructed by using similar
ingredients to those used in Problem P . The differences arise in the fact that here we replace
contact condition (2.17) with its penalty version (2.28) and, therefore, Problem Pε represents a
contact problem with the normal damped response, without a unilateral constraint.

Next, using the notation in equations (2.21) and (2.22) and a similar argument to that used
in the case of Problem P , we obtain the following variational formulation of Problem Pε.
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Problem P εV . Find a displacement field uε : [0, T ]→ V such that uε(0) = u0, u̇ε(0) = u1 and
the inequality below holds, for all t ∈ (0, T ):

(
ρüε(t),w − u̇ε(t)

)

H
+
(
Aε(u̇ε(t)), ε(w)− ε(u̇ε(t))

)

Q

+
(
Bε(uε(t)), ε(w)− ε(u̇ε(t))

)

Q
+
1

ε

(
(u̇εν (t)− g), wν − u̇εν (t)

)

L2(Γ3)

+
(
p(u̇εν (t)), wν − u̇εν (t)

)

L2(Γ3)
+ j
(
u̇ε(t),w

)

− j
(
u̇ε(t), u̇ε(t)

)

(
f(t),w − u̇ε(t)

)

V
∀w ∈ V

(2.31)

Note that Problem PV represents a second order evolutionary quasivariational inequality
with unilateral constraints. In contrast, Problem P εV represents a second order evolutionary
quasivariational inequality without unilateral constraints.

3. Hybrid variational formulation

We now turn to a hybrid variational formulation of the model which is more appropriate for
the numerical modelling. To this end, consider the trace spaces Xν = {vν |Γ3 : v ∈ V } and
Xτ = {vτ |Γ3 : v ∈ V } equipped with their usual norms. Denote by X

∗
ν and X

∗
τ the duals of the

spaces Xν and Xτ , respectively. Moreover, let 〈·, ·〉X∗ν×Xν and 〈·, ·〉X∗τ×Xτ be the corresponding
duality pairing mappings.

For the contact conditions, we introduce a function ϕν : Xν → (−∞,+∞] and an operator
L : Xν → X

∗
ν defined by

ϕν(uν) =

∫

Γ3

IR−(uν − g) da ∀uν ∈ Xν

〈Luν , wν〉X∗ν×Xν =

∫

Γ3

p(uν)wν da ∀uν, wν ∈ Xν

We note that for all t ∈ [0, T ], condition (2.11)1 leads to the subdifferential inclusion

−σν(t) ∈ ∂ϕν(u̇ν(t)) + Lu̇ν(t) in X∗ν (3.1)

where ∂ϕ denotes the subdifferential of ϕ.

For the friction law, we introduce a function ϕτ : Xτ → (−∞,+∞] defined by

ϕτ (uτ ) =

∫

Γ3

‖uτ‖ da ∀uτ ∈ Xτ

We also note that for all t ∈ [0, T ], condition (2.11)2 leads to the subdifferential inclusion

−στ (t) ∈ µp(u̇ν(t))∂ϕτ (u̇τ (t)) in X∗τ (3.2)

Inclusions (3.1) and (3.2) suggest introduction of the new unknowns λν and λτ , the so-
-called Lagrange multipliers, related to the contact and friction stresses on the contact surface,
respectively. In our formulation, λν corresponds to −σν and λτ coresponds to −στ . Thus,
proceeding in a standard way and using inclusions (3.1) and (3.2), we obtain the following
hybrid variational formulation of Problem P in terms of three unknown fields.
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Problem P̃V . Find a displacement field u : [0, T ] → V with u(0) = u0, u̇(0) = u1, a normal
stress λν : [0, T ] → X

∗
ν and a tangential stress λτ : [0, T ] → X

∗
τ such that the inequality below

holds, for all t ∈ (0, T ):

(
ρü(t),w

)

H
+
(
Aε(u̇(t)), ε(w)

)

Q
+
(
Bε(u(t)), ε(w)

)

Q
(3.3)

+
〈
λν(t), wν

〉

X∗ν×Xν
+
〈
λτ (t),wτ

〉

X∗τ×Xτ
=
(
f(t),w

)

V
∀w ∈ V

−λν(t) ∈ ∂ϕν(u̇ν(t)) + Lu̇ν(t) in X∗ν (3.4)

−λτ (t) ∈ µp(u̇ν(t))∂ϕτ (u̇τ (t)) in X∗τ (3.5)

The hybrid variational formulation of Problem P εV can be obtained in a similar way and is
as follows.

Problem P̃ εV . Find a displacement field uε : [0, T ] → V with uε(0) = u0, u̇ε(0) = u1 and a
tangential stress field λε : [0, T ]→ X

∗
τ such that the inequality below holds, for all t ∈ (0, T ):

(
ρüε(t),w

)

H
+
(
Aε(u̇ε(t)), ε(w)

)

Q
+
(
Bε(uε(t)), ε(w)

)

Q
(3.6)

+
〈1
ε
(u̇εν (t)− g)+ + p(u̇εν ), wν

〉

X∗ν×Xν
+
〈
λε(t),wτ

〉

X∗τ×Xτ
=
(
f(t),w

)

V
∀w ∈ V

λε(t) ∈ µp(u̇εν (t))∂ϕτ (u̇ετ (t)) in X∗τ (3.7)

Note that Problem P̃V is formulated in terms of three unknown fields. In contrast, due to
the penalty term, Problem P̃ εV is formulated in terms of two unknown fields.

4. Numerical approximation and solution algorithm

4.1. Numerical approximation

We now present a fully discrete approximation of Problems P̃V and P̃
ε
V . First, in order to

approximate the spatial variable, we assume that Ω is a polygonal domain and we consider a
regular triangulation of Ω, denoted by T h, compatible with the boundary decomposition Γ1,
Γ2 and Γ3. Here and below, h > 0 denotes the spatial discretization parameter. Consider the
discrete variational space

V h =
{
vh ∈ [C(Ω)]d; vh|Ttr

∈ [P1(Ttr)]
d ∀Ttr ∈ T

h, vh = 0 at the nodes on Γ1
}

where P1(T ) represents the space of polynomials of the global degree less or equal to one in Ttr,
and let Uh = U ∩ V h. We note that Uh can be obtained as

Uh = {vh ∈ V h; vhν ¬ g a.e. on Γ3}

The constraint condition vhν ¬ g on the boundary Γ3 is satisfied at the nodes, i.e. v
h
ν ¬ g

I ,
where gI is the linear interpolation of the function g. To discretize the time derivatives, we
use a uniform partition of [0, T ], denoted by 0 = t0 < t1 < . . . < tN = T , and let k be the
time step size, k = T/N . In what follows, we denote fn = f(tn), un = u(tn). For a sequence
uhk = {uhkn }

N
n=0, we use the notation δnu

hk
n = (u

hk
n − u

hk
n−1)/k, n = 1, . . . , N , for the backward

divided differences, as well as the additional notation δuhk = {δnu
hk
n }
N
n=0.
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We now consider the spaces Xhν = {v
h
ν |Γ3
: vh ∈ V h} and Xhτ = {v

h
τ |Γ3
: vh ∈ V h} equipped

with their usual norm. We also consider the discrete space of piecewise constants Y hν ⊂ L
2(Γ3)

and Y hτ ⊂ L
2(Γ3)

d related to the discretization of the normal and tangential stress, respectively.
Then, conditions (3.1) and (3.2) lead to the following discrete subdifferential inclusions at the
time tn

λhkνn ∈ ∂ϕνδu
hk
νn
) + Lδuhkνn in Y hν

λhkτn ∈ µp(δu
hk
νn )∂ϕτ (δu

hk
τn ) in Y hτ

(4.1)

More details about this discretization step can be found in (Khenous et al., 2006).

Let uh0 ∈ V
h and uh1 ∈ V

h be finite element approximations of u0 and u1, respectively. Using
the previous notation and the backward Euler finite difference δvn = (vn − vn−1)/k, the fully
discrete approximation of the Problem P̃V at the time tn is the following.

Problem P̃ hkV . Find a velocity field v
hk = {vhkn }

N
n=0 ⊂ V

h, a normal stress λhkνn = {λ
hk
νn}
N
n=0

⊂ Y hν and a tangential stress λ
hk
τn = {λ

hk
τn }
N
n=0 ⊂ Y

h
τ such that, for all n = 1, . . . , N

(ρ
k
(vhkn − v

hk
n−1),w

h
)

H
+
(
Aε(vhkn ), ε(w

h)
)

Q
+
(
Bε(uhkn ), ε(w

h)
)

Q
(4.2)

+

∫

Γ3

λhkνnw
hk
ν da+

∫

Γ3

λhkτn ·w
hk
τ da =

(
fhkn ,w

h
)

V
∀wh ∈ V h

λhkνn ∈ ∂ϕν(v
hk
νn
) + Lvhkνn in Y hν (4.3)

λhkτn ∈ µp(v
hk
νn
)∂ϕτ (v

hk
τn
) in Y hτ (4.4)

Here, uhk0 = u
h
0 , v

hk
0 = u

h
1 and u

hk
n = u

hk
0 +

∑n
j=1 kv

hk
j .

In a similar way, the discrete version of the penalty Problem P̃ εV can be formulated as follows.

Problem P̃ hkV ε. Find a velocity field v
hk
ε = {vhkεn }

N
n=0 ⊂ V

h and a friction stress field

λhkε = {λ
hk
εn}
N
n=0 ⊂ Y

h
τ such that, for all n = 1, . . . , N

(ρ
k
(vhkεn − v

hk
ε(n−1)

),wh
)

H
+
(
Aε(vhkεn ), ε(w

h)
)

Q
+
(
Bε(uhkεn ), ε(v

h)
)

Q

+
1

ε

∫

Γ3

(vhkενn − g)+w
h
ν da+

∫

Γ3

p(vhkενn)w
h
ν da (4.5)

+

∫

Γ3

λhkεn ·w
hk
τ da =

(
fhkn ,w

h
)

V
∀wh ∈ V h

λhkεn ∈ µp(v
hk
ενn
)∂ϕτ (v

hk
ετn
) in Y hτ (4.6)

Here, uhkε0 = u
h
0 , v

hk
ε0
= uh1 and u

hk
εn
= uhkε0 +

∑n
j=1 kv

hk
εj
.

4.2. The solution algorithm

The algorithm we use to solve the discrete frictional contact Problems P̃ hkV and P̃
hk
V ε is based

on a combination of the augmented Lagrangian method for the unilateral conditions in velocity
and the penalty method for the normal damped response condition. For friction law (4.1)2,
we also use an augmented Lagrangian approach, see (Alart et al., 1991; Khenous et al., 2006;
Wriggers, 2002). To this end, we introduce the notation λ = λνν + λτ , where λν = λ · ν and
λτ = λ−λνν. We now introduce the expressions of the functions w

h, uh and δuh by considering
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their values at the i-th node of T h and the basis functions αi of the space V h for i = 1, . . . , Nhtot,
i.e.

wh =

Nhtot∑

i=1

wiαi uh =

Nhtot∑

i=1

uiαi δuh =

Nhtot∑

i=1

δuiαi

Here and below, Nhtot represents the total number of nodes of T
h, and NhΓ3 denotes the total

number of nodes of T h lying on Γ3.
The augmented Lagrangian approach shows us that the Problem P̃ hkV can be governed by

the system of nonlinear equations

R(δvn,vn,un,λn) = M̃(δvn) + Ã(vn) + G̃(un) + F(vn,λn) = 0 (4.7)

where the functions M̃, Ã, G̃ and F are defined below. Here, the vectors δvn ∈ R
d×Nhtot,

vn ∈ R
d×Nhtot, un ∈ R

d×Nhtot and λn ∈ R
d×Nh

Γ3 represent the generalized velocity, the displace-
ment and the Lagrange multiplier vectors defined by

δvn = {δv
i
n}
Nhtot
i=1 vn = {v

i
n}
Nhtot
i=1 un = {u

i
n}
Nhtot
i=1

λn = {λ
i
n}
Nh
Γ3
i=1 for all n = 1, . . . , N

where δvin, v
i
n and u

i
n denote values of the functions δv

hk
n , v

hk
n and u

hk
n at the i-th nodes of T

h.
Moreover, λin represents the value of λ

hk
n at the i-th node of the discretized contact interface.

Next, the generalized acceleration term M̃(a) ∈ R
d×Nhtot ×R

d×Nh
Γ3 , the generalized viscous term

Ã(v) ∈ R
d×Nhtot×R

d×Nh
Γ3 and the generalized elastic term G̃(u) ∈ R

d×Nhtot×R
d×Nh

Γ3 are defined
by M̃(a) = (M(a),0d×Nh

Γ3

), Ã(v) = (A(v),0d×Nh
Γ3

) and G̃(u) = (G(u),0d×Nh
Γ3

). Here 0d×Nh
Γ3

is the zero element of R
d×Nh

Γ3 ; also, M(a) ∈ R
d×Nhtot, A(v) ∈ R

d×Nhtot and G(u) ∈ R
d×Nhtot

denote the acceleration term, the viscous term and the elastic term, respectively, given by

(M(a) ·w)
R
d×Nh

tot
= (ρah,wh)H ∀a,w ∈ R

d×Nhtot, ∀ah,wh ∈ V h

(A(v) ·w)
R
d×Nh

tot
= (Aε(vh), ε(wh))Q ∀v,w ∈ R

d×Nhtot, ∀vh,wh ∈ V h

(G(u) ·w)
R
d×Nh

tot
= (Bε(uh), ε(wh))Q − (fn,w

h)V ∀u,w ∈ R
d×Nhtot, ∀uh,wh ∈ V h

Above, a, v, u and w represent the generalized vectors of the components ai, vi, ui and wi,
for i = 1, . . . , Nhtot, respectively, and note that the volume and surface efforts are contained in
the term G(un). Finally, the frictional contact operator F(vn,λn) associated to the boundary
condition on the contact surface is given by

(
F(v,λ), (w,γ)

)

R
d×Nh

tot×R
d×Nh

Γ3

=

∫

Γ3

∇vPc([v
h
ν ]g) ·w

h da

+

∫

Γ3

∇v(l
r
ν(v
h,λh) + lrτ (v

h,λh)) ·wh da+

∫

Γ3

∇λ(l
r
ν(v
h,λh) + lrτ (v

h,λh)) · γh da

∀v,w ∈ R
d×Nhtot, ∀λ,γ ∈ R

d×Nh
Γ3 , ∀vh,wh ∈ V h, ∀λh,γh ∈ Y hν × Y

h
τ

Here Pc : R → R is a derivable function such that ∇vPc = p on (−∞, g], [·]g : R → R is the
function defined by

[s]g =

{
s if s ¬ g
g if s > g
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and ∇x represents the gradient operator with respect the variable x. Also l
r
ν and l

r
τ denote the

augmented Lagrangian functionals

lrν(v
h, λhν) = v

h
νλ
h
ν +
rν
2
(vhν − g)

2 −
1

2rν
dist2{λν + rν(v

h
ν − g),R

d
−},

lrτ (v
h,λhτ ) = v

h
τ · λ

h
τ +
rτ
2
|vhτ |

2 −
1

2rτ
dist2{λhτ + rτv

h
τ , C[µp(v

h
ν )]}

(4.8)

Here, rν and rτ are positive penalty coefficients, C[µp(v
h
ν )] represents the convex disk of

constant radius µp(vhν ) and dist{x,C} denotes the distance from x to the set C, i.e.,
dist{x,C} = infy∈C ||x− y||.

Note that, in the case of penalty contact condition (2.28), there is no need to use the Lagrange
method. Indeed, the penalty method can be used by considering λν = 0 in equation (4.8)1. Then,
augmented Lagrangian functional (4.8)1 takes a simpler expression

lrν(v
h, 0) =

rν
2
(vhν − g)

2 −
1

2rν
dist2{rν(v

h
ν − g),R

d
−}

in which rν can be replaced by the penalty parameter ε. Thus, the frictional contact operator
F(v,λ) associated with frictional contact conditions (2.28) and (2.29) is given by

(
F(v,λ), (w,γ)

)

R
d×Nh

tot×R
d×Nh

Γ3

=

∫

Γ3

∇vPc([v
h
ν ]g) ·w

h da

+
1

ε

∫

Γ3

(vhν − g)+w
h
ν da+

∫

Γ3

∇vl
r
τ (v
h,λh) ·wh da+

∫

Γ3

∇λl
r
τ (v
h,λh) · γh da

∀v,w ∈ R
d×Nhtot, ∀λ,γ ∈ R

d×Nh
Γ3 , ∀vh,wh ∈ V h, ∀λh,γh ∈ Y hν × Y

h
τ

The solution algorithm consists in a prediction-correction scheme based on a finite differences
method (the backward Euler difference method) and a linear iterations method (the Newton
method). The finite difference scheme we use is characterized by a first order time integration
scheme, both for the acceleration δvn and the velocity vn = δun. To solve nonlinear system (4.7),
at each time increment the variables (vn,λn) are treated simultaneously through the Newton
method. For this reason, we use in what follows the notation xn = (vn,λn). Inside the loop of
the increment of time indexed by n, the algorithm can be developed in three steps which are
the following.

For n = 0 until N , let u0, v0 and λ0 be given.

• The prediction step: This step provides the initial values u0n+1, v
0
n+1 and λ

0
n+1 by the

formulas

u0n+1 = un λ0n+1 = λn v0n+1 = 0 (4.9)

• The Newton linearization step: At the iteration i of the Newton method, we have

xi+1n+1 = x
i
n+1 −

(Cin+1
k
+Qin+1 + kK

i
n+1 +T

i
n+1

)−1
R
(vin+1 − vin

k
,vin+1,u

i
n+1,λ

i
n+1

)

where xi+1n+1 denotes the pair (v
i+1
n+1,λ

i+1
n+1); i and n represent respectively the Newton itera-

tion index and the time index, respectively; Cin+1 = DvM(δv
i
n+1) denotes the mass matrix,

Qin+1 = DvA(v
i
n+1) is the damping matrix, K

i
n+1 = DvG(u

i
n+1) represents the elastic matrix

and Tin+1 = Dv,λF(v
i
n+1,λ

i
n+1) is the contact tangent matrix. Also, DvM, DvA, DvG and
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Dv,λF denote the differentials of the functions M, A, G and F according to the variables v
and λ. This leads us to solve the resulting linear system

(Cin+1
k
+Qin+1 + kK

i
n+1 +T

i
n+1

)
∆xi = −R

(vin+1 − vin
k

,vin+1,u
i
n+1,λ

i
n+1

)
(4.10)

where ∆x = (∆vi,∆λi) with ∆vi = vi+1n+1 − v
i
n+1 and ∆λ

i = λi+1n+1 − λ
i
n+1.

• The correction step: Once system (4.10) is solved, we update xi+1n+1 and u
i+1
n+1 by

xi+1n+1 = x
i
n+1 +∆x

i ui+1n+1 = u
i
n+1 + k∆v

i

Note that formulation (4.7) has been implemented in the open-source finite element library
GetFEM++ (see http://getfem.org/).

5. Numerical simulations

To verify the performance and the accuracy of the numerical method described in the previous
Section, a number of numerical experiments have been performed on a well known test problem.
We describe in this Section the numerical results we obtained for Problems PV and PV ε in
dimension two. The physical setting is depicted in Fig. 1. There, the domain Ω = (0, 2) × (0, 1)

Fig. 1. Physical setting and finite element discretization for h = 1/33

is the cross section of a three-dimensional linearly viscoelastic body subjected to the action of
tractions in such a way that a plane stress hypothesis is assumed. On the part {0} × [0, 1], the
body is clamped and, therefore, the displacement field vanishes there; the horizontal component
of the displacement field vanishes on the part {2}× [0, 1]. Thus, Γ1 = ({0}× [0, 1])∪({2}× [0, 1]).
Vertical tractions act on the part Γ2 of the boundary. No body forces are assumed to act on
the viscoelastic body during the dynamic process. The body is in frictional contact with a rigid
obstacle on the part Γ3 = [0, 2] × {0} of the boundary. We recall that the contact follows the
normal damped response condition associated to Coulomb’s law of dry friction as far as the
normal velocity is less than the bound g and, when this bound is reached, it follows a unilateral
condition in velocity associated to the Tresca friction law.
The material response is governed by a viscoelastic linear constitutive law defined by the

elasticity tensor B and the viscosity tensor A given by

(Bτ )αβ =
Eν

1− κ2
(τ11 + τ22)δαβ +

E

1 + κ
ταβ

(Aτ )αβ = µ(τ11 + τ22)δαβ + ηταβ 1 ¬ α β ¬ 2

where E is Young’s modulus, κ is Poisson’s ratio of the material, µ, η are viscosity constants,
and δαβ denotes the Kronecker symbol.
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In computations, we have used the following data: T = 1 s, u0 = 0m, u̇0 = 0m/s,
ρ = 2000Kg/m3, E = 100GPa, ν = 0.2, µ1 = 0.25GPa, µ2 = 0.5GPa, f0 = (0, 0)GPa,
f2 = (0,−10t) GPa·m on Γ2, µ = 0.4, g = 0.05m/s, p(r) = cν(r)+, cν = 50GPa·s,
ε = 1/50000 GPa·s.

Fig. 2. Deformed configuration at the final time: the original contact problem (left) and the penalty
problem (right)

The deformed configuration of the body at the final time T = 1 s is represented in Fig. 2 (left),
which corresponds to the numerical solution of problem PV . Note that the vertical displacement
of the bottom side is quite large, and this is a consequence of the fact that we model the contact
with the normal damped response condition which, in contrast to the unilateral condition in
displacement, describes the contact with a deformable foundation and allows penetration. In
order to compare the deformed mesh related to Problem PV with that obtained for the numerical
solution of Problem P εV , we plotted in Fig. 2 (right) the deformed configuration for the numerical
solution of the penalty problem P εV . Then, in Figs. 3 and 4, we show the reactions and velocities
of the nodes of the contact surface for µ = 0.4. The zone AB is a sliding zone formed by 15 nodes
which are in a status of the normal damped response; there, the normal velocity is such that
0 < u̇ν < g and the tangential velocity does not vanishes, i.e., u̇τ 6= 0. In this zone, the friction
follows the Coulomb law. The zone BC is a sliding zone formed of 29 nodes which are in a status
of the unilateral condition in velocity; there, the normal velocity reaches the bound g. In this
zone, the friction follows the Tresca law with the friction bound Fb. Next, we have the stick
zone CD where the slip vanishes and ‖στ‖ < Fb.

Fig. 3. Frictional contact reactions on Γ3 at the final time: the original contact problem (left) and the
penalty problem (right)
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Fig. 4. Velocity on Γ3 at final time: the original contact problem (left) and the penalty problem (right)

According to the deformed configurations (Figs. 2-4), we observe that the numerical results
obtained for the solution of Problem PV are very well approximated by the solution of Pro-
blem PV ǫ. Next, we lead a parametric study according to the penalty coefficient ε. To this end,
in Fig. 5 we consider various values of ε, and we compare in the left graph the normal velocities
profiles on the contact boundary obtained for the solution of the original contact Problem PV
and the penalty Problem P εV . In the right graph of Fig. 5, we study the convergence on the
whole discrete domain Ωh of the velocity solution obtained for Problem P εV towards that obta-
ined for Problem PV . Here, we consider the numerical estimation of the difference ‖u̇

hk
ε − u̇

hk‖
at the time T = 1 s between the numerical solutions obtained for Problems PV and P

ε
V . The

results depicted in Fig. 5 illustrate that the solution of the penalty problem gives a reliable and
accurate approximation of the original problem, provided that the penalty parameter takes very
large values.

Fig. 5. Normal velocity for different values of the contact penalty parameter (left) and convergence of
the penalty method (right)
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