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Advanced subjects in mechanical properties of shape memory alloys and polymers are di-
scussed. In the subloop loading under a stress-controlled condition of the shape memory
alloy, the transformation-induced stress relaxation appears due to variation in temperature.
The enhancement of corrosion and corrosion fatigue life of the shape memory alloy is discus-
sed. The development of a functionally-graded shape memory alloy and polymer is expected
to obtain better performance. Three-way motion appears in the shape memory composite
with the shape memory alloy and polymer.
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1. Introduction

The development of shape memory alloys (SMA) has attracted high attention because of the
unique properties of the shape memory effect (SME) and superelasticity (SE) appearance (Duerig
et al., 1990; Funakubo, 1987; Lagoudas, 2008; Lexcellent, 2013; Otsuka and Wayman, 1998; Sun
et al., 2017; Tobushi et al., 2013; Ziolkowski, 2015). If we use the SME and SE in practical
applications, not only large recovery strain but also high recovery stress, energy storage and
energy dissipation can be obtained. The main features of the SME and SE are induced due to
martensitic transformation (MT). Since the deformation properties due to the MT depend on
temperature, stress and thermomechanical hysteresis, they are, therefore, complex. They also
depend on the loading rate. In the case of subloop loading, the deformation behaviors are quite
different between strain- and stress-controlled loading conditions. The transformation-induced
creep and stress relaxation appear in the subloop loading under the stress-controlled condition.
The corrosion and corrosion fatigue properties are important in practical application of SMA
elements.
The shape memory polymer (SMP) has also been developed (Hayashi, 1993; Huang et al.,

2012; Tandon et al., 2016; Yahia, 2015). The main features of SMP appear due to the glass trans-
ition. Elastic modulus differs at temperatures above and below the glass transition temperature,
and the rigidity of SMP elements, therefore, varies depending on the temperature change. Based
on this property, the shape fixity and shape recovery can be used.
Although elastic modulus and yield stress are high at high temperatures and low at low

temperatures in SMAs, they are high at low temperatures and low at high temperatures in
SMPs. The dependence of rigidity on temperature is, therefore, quite different between the
SMA and SMP. If composite materials with SMA and SMP are developed, new characteristics
of the shape memory materials can be obtained.
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In order to obtain a better performance, the development of functionally-graded SMAs and
SMPs is expected. The 3D-printing of SMPs is requested as a simple method to manufacture
complex SMP elements.

In the present paper, advanced subjects in mechanical properties of SMA such as the de-
formation behavior subjected to the stress-controlled subloop loading and the corrosion fatigue
properties of SMA are discussed. Next, the functionally-graded SMA and SMP are discussed.
Following these subjects, the mechanical properties of the shape memory composite with SMA
and SMP such as the characteristics of the three-way bending properties and the 3D printing of
SMP will be discussed.

2. Deformation and fatigue properties of SMAs

2.1. Stress relaxation in subloop loading

SMA elements are subjected to variation in stress, strain and temperature with various
ranges accompanying the MT in practical applications. The analysis in the subloop loading is
therefore important. Although the return-point memory appears under a low strain rate in the
subloop loading, it does not appear under the stress-controlled condition. In the case of the sub-
loop loading under the stress-controlled condition, the transformation-induced creep and creep
recovery appear under a constant stress, and the transformation-induced relaxation and stress
recovery under a constant strain. It should be noticed that the stress-strain curve depends on the
loading rate (Ikeda, 2015; Pieczyska et al., 2006; Yin et al., 2014). The transformation-induced
stress relaxation in the subloop loading of the TiNi SMA under various loading conditions will
be discussed in this Section.

Fig. 1. Stress-strain curves of the TiNi SMA in the stress relaxation test with various holding strains
and in the low strain rate dε/dt = 2.5 · 10−5 s−1

The stress-strain curves obtained in a stress relaxation test with various holding strains are
shown in Fig. 1. The loading conditions of the stress relaxation tests in Fig. 1 were as follows.
The load was applied at a stress rate dσ/dt = 5MPa/s until a point H2 (or H3, H4, H5 and H6)
at a strain εh = 2% (or 3%, 4%, 5% and 6%) followed by holding the strain εh constant till the
decrease in stress finished and thereafter unloaded at a stress rate dσ/dt = −5MPa/s. The stress-
-strain curve shown by a black line in Fig. 1 was obtained at a strain rate dε/dt = 2.5 · 10−5 s−1

during loading and unloading with the maximum strain 8%. As can be seen in Fig. 1, in the strain
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holding process at εh following the loading till the strain εh at the stress rate dσ/dt = 5MPa/s,
the stress decreases to σRF2 (or σRF3, σRF4, σRF5 and σRF6), resulting in stress relaxation. The
stress σRF2 (or σRF3, σRF4, σRF5 and σRF6) at a point εh after relaxation is almost the same as
the stress of the MT start σMS in the stress-strain curve at a strain rate dε/dt = 2.5 · 10

−5 s−1,
in which an increase in the stress is smaller than that at a stress rate dσ/dt = −5MPa/s.
In the loading process at a constant stress rate dσ/dt = 5MPa/s, strain rate becomes high in

the upper stress plateau region, and the heat is generated due to the exothermic MT, resulting
in an increase in temperature of the specimen. In the strain holding stage from the point H2 (or
H3, H4, H5 and H6) to σRF2 (or σRF3, σRF4, σRF5 and σRF6), the temperature decreases due
to the heat transfer into the ambient air and the condition for the transformation to progress is
satisfied, resulting in progress of the MT. As a result, stress relaxation occurs while holding the
strain constant.
The relationship between the stress decrease ∆σ and temperature decrease ∆T during hol-

ding a constant strain in the stress relaxation tests with various conditions is shown in Fig. 2.
Temperature was measured by the infrared thermography. The forced convection was performed
by air flow in order to observe the influence of cooling rate on stress relaxation. As can be seen,
the stress decrease ∆σ is proportional to the temperature decrease ∆T . The broken line in Fig. 2
is calculated by ∆σ = a∆T and shows a good overall match with the experimental results. The
value of the coefficient a is 13.2MPa/K.

Fig. 2. Relationship between stress decrease and temperature decrease in the stress relaxation test with
various conditions

2.2. Corrosion and fatigue properties of SMA

2.2.1. Corrosion fatigue life

The corrosion fatigue life is important in practical applications of SMAs. However, the report
on the corrosion fatigue properties is little. The corrosion fatigue life of a TiNi SMA wire was
investigated through a bending fatigue test.
The relationships between the strain amplitude εa and the number of cycles to failure Nf

obtained by the rotating-bending fatigue test in the air and the 10%-NaCl water solution are
shown in Fig. 3 (Yamada and Matsui, 2016). The materials used in the experiment were TiNi
SMA wires (Ti-49.7 at% Ni) with a diameter of 0.7mm. The materials were heat-treated in an
electrical furnace for 1 h at 673K. The materials were then allowed to cool inside the furnace.
The fatigue life in 10%-NaCl water solution (i.e. the corrosion fatigue life) is shorter than that
in the air as shown in Fig. 3. Accordingly, engineers have to be careful with fatigue life of SMA
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devices, particularly, when used in corrosive environment (i.e. in human body, seawater, etc.). In
order to enhance the corrosion fatigue life, we have developed a thermal treatment to generate
a strong and homogeneous passive layer on the surface of TiNi SMAs. This subject will be
discussed in the next Section.

Fig. 3. Fatigue life curves for TiNi shape memory alloys in the air and 10%-NaCl water solution

The enhancement of fatigue life can also be achieved by the surface treatment of materials
through the ultrasonic shot peening (USP) and the nitrogen ion implantation (NII). The influ-
ence of NII, USP and thermal treatment conditions on the corrosion fatigue life of an SME tape
and an SE tape is the future subject.

2.2.2. Corrosion resistance

In order to promote the application of SMAs into devices used in corrosive environment, we
have developed a procedure to generate a passive layer on TiNi SMAs. The proposal process
called the thermal nitridation (TN) treatment to generate thin and homogeneous passive layers
contains heat treatment of a mechanically-polished SMA wire at temperature of 673K for 3.6 ks
in a furnace filled with pure nitrogen gas.

Fig. 4. Anodic polarization curves for TiNi SMA (TN), conventional TiNi SMA and pure Ti

Figure 4 shows anodic polarization curves for TiNi SMA with the passive layer generated by
TN process, a conventional TiNi SMA with a thick oxide layer and a pure Ti in a 3%-NaCl water
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solution. The results reveal that corrosion resistance of the TN-treated TiNi SMA is much higher
than that of the conventional TiNi SMAs and is almost the same as that of pure Ti, which is the
most common material as a biomaterial, with current density of up to above 1 · 10−2mA/cm2.
From the energy dispersive X-ray spectrometry analysis and other microscopic investigations,
we found that a thin titanium-nitride layer with a thickness of tens of nanometers is generated
on the TN-treated TiNi SMA.

Since the corrosion fatigue life for the TN-treated TiNi SMA is one of the important proper-
ties to design devices, we are now investing in clarifying the characteristics of corrosion fatigue
life from a fatigue test in the 10%-NaCl water solution.

3. Functionally-graded shape memory alloy and shape memory polymer

3.1. Functionally-graded shape memory alloy

In order to develop a more advanced actuator, such as a self-stroke controlling device de-
pending on the ambient temperature, a TiNi SMA having a functionally-graded property of
the transformation temperatures will be a major candidate material for the element. If the
functionally-graded shape memory alloy (FGSMA) coil is employed to an actuator, the shape-
-recoverable region exceeding the austenitic transformation finish temperature Af will change
continuously, resulting in length of the coil extending or shortening without a bias element,
depending only on its temperature.

Figure 5 shows a demonstration of movement of an FGSMA coil having different transforma-
tion temperatures Af ; Af1 = 293K, Af2 = 318K and Af3 = 338K. The coil subjected to tensile
load along its axial direction and then it was unloaded at temperature T = 298K as shown in
Figs. 5b and 5c. In this state, a part of the coil, which had the transformation temperature Af1,
recovered its original shape without heating due to superelasticity. The coil was subsequently
heated up to T = 328 and 348K, the shape recoverable region extended and length of the coil
became shorter as shown in Figs. 5d and 5e.

Fig. 5. Movement of the SMA coil having different transformation temperatures; Af1 = 293K,
Af2 = 318K and Af3 = 338K: (a) initial state, (b) loading at T = 298K (Af1 < T < Af2 < Af3),

(c) unloading at T = 298K (Af1 < T < Af2 < Af3), (d) heating up to T = 328K
(Af1 < Af2 < T < Af3), (e) heating up to T = 348K (Af1 < Af2 < Af3 < T )
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As an example of manufacturing the functionally-graded shape memory alloy (FGSMA), we
have developed a new fabrication process that combines powder metallurgy and hot extrusion to
obtain an FGSMA wire in which the transformation temperature varies from high to low along
the wire axis depending on gradually changing composition of Ti and Ni. First, a multilayered
TiNi green compact in which the Ti-Ni compositions varied layer by layer was sintered using a
spark plasma sintering process and then the compact was hot extruded into a wire. We used a
characteristic that the phase transformation temperature of TiNi SMA changed depending on
the composition of Ti and Ni (Duerig et al., 1990; Funakubo, 1987; Otsuka and Wayman, 1998).

Figure 6 shows the stress-local strain curves at three points of the hot extruded wire with
gradually changing composition of Ti and Ni. The wire shows the SE at the position that
corresponds to a Ni content of 51.0 at% and the SME at the position of 50.4 at% Ni. These
differences appear to be based on the different MT temperatures at each position.

Fig. 6. Stress-local strain curves of FGSMA wire with gradually changing composition

If the FGSMA wire or tape is developed, the temperature-dependent continuous actuation
or the multi-way actuation can be obtained by using only one SMA coil or tape, respectively.

3.2. Functionally-graded shape memory polymer

The relationship between force and depth of the functionally-graded shape memory polymer
(FGSMP) board in the indentation test is similar to that of the finger (Takeda et al., 2016).
The deformation properties of the body differ depending on the region. The FGSMP board
corresponding to each region can be developed by a combination of the sheet and foam with
appropriate thickness, glass transition temperature and their arrangement. The FGSMP board
can therefore be applied to the elements coming into contact with the body as a nursing-care
robot in the medical actuators. The basic deformation property of the FGSMP foam will be
discussed in this Section.

A polyurethane-SMP foam has been used to fabricate FGSMP foams. The SMP foams having
different glass transition temperatures Tg (Tg = 298K and 321K) and density ρ (ρ = 43 kg/m

3

and 70 kg/m3) were laminated and the FGSMP was fabricated. Thickness of each SMP foam was
10mm. The structure of an FGSMP foam is shown in Fig. 7. Two SMP foams with Tg = 298K
and ρ = 43 kg/m3 were arranged in the upper part, and those with Tg = 321K and ρ = 70 kg/m

3

in the lower part. The adhesive used to laminate the foam was DW246W produced by SMP
Technologies Inc.
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Fig. 7. Stress-strain curves of FGSMP foam in the thermomechanical compression test

The thermomechanical cyclic compression test was performed on the FGSMP foam. At first,
it was compressed at a strain rate of 3 · 10−3 s−1 in the loading and unloading processes at the
room temperature T = 298K. Thereafter, the FGSMP foam was heated up to 373K for 5 minutes
in the furnace to recover the residual strain followed by cooling down to the room temperature.
These processes were repeated in 7 cycles. The relationship between stress and strain obtained
in the cyclic compression test is shown in Fig. 7. As can be seen, the stress increases slightly
at the initial stage due to deformation of the SMP foam with Tg = 298K and ρ = 43 kg/m

3.
Then, the stress increases rapidly around a strain of 45% due to completion of local deformation
of the upper SMP foam. Thereafter, the SMP foam with Tg = 321K and ρ = 70 kg/m

3 was
deformed accompanying the stress plateau starting from about 70 kPa, resulting in two steps of
deformation in the loading process. After unloading, the residual strain of 19% appears under
no-load due to the irrecoverable strain of the SMP foam with Tg = 321K. This residual strain
can be recovered almost to 0% if the FGSMP is heated above Tg = 321K under no-load. The
deformation behavior is almost the same in each cycle.

4. Shape memory composite with SMA and SMP

The structure and a photograph of the fabricated shape memory composite (SMC) belt is shown
in Fig. 8. As can be seen in Fig. 8a, the 3D-printed SMP sheet, SME wire and SE wire were
laminated. Then the laminated material was set in the mold for heat-treating of the SMC belt.
The glass transition temperature (Tg = 328K) of the SMP sheet was above the both phase
transformation temperatures Af of the SME wire (Af2 = 316K) and SE wire (Af1 = 306K)
of TiNi alloy. The SME and SE wires were arranged facing in the opposite directions for the
memorized U-shape. The SME and SE wires were sandwiched between two 3D-printed SMP
sheets from the upper and lower sides. The SMC belt shown in Fig. 8b can be fabricated without
bubbles and gaps by using the 3D-printed SMP sheet.

The relationship between the recovery force and temperature of the SMC belt operated by
joule heating of both wires is shown in Fig. 9. As can be seen, during heating by joule heat,
the recovery force decreases from point (I) to (II) due to the recovery force of SE wire. Then,
the recovery force of the SMC belt increases from point (II) to (III) since the recovery force of
the SME wire appears. During cooling by the ambient air, the recovery force of the SMC belt
decreases from point (III) to (IV) due to decreasing in the recovery force of the SME wire. Then
the force of the SMC belt becomes constant since the SMP sheet becomes harder below Tg.
The deformation behavior of the SMC belt is almost the same in the cyclic heating and cooling
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Fig. 8. Structure (a) and photograph (b) of the SMC belt

Fig. 9. Variation in the recovery force of the SMC belt during cyclic heating and cooling

processes. The reciprocating three-way behavior of the recovery force can be obtained by a
simple SMC structure.

5. 3D-Printed shape memory polymer

Recently, the 3D printer which can make products in a short time without cutting or casting has
been attracted worldwide attention. If we use the 3D printer, it is possible that a customized
product which is well suited to the individual is fabricated with a low cost and in a short time.
If we make a product with SMP using a 3D printer, the new device which is well suited to the
individual complex shape can be developed without using expensive metal molds.

The material used to fabricate a 3D-printed SMC belt was a SMP filament which was newly
developed by SMP Technologies Inc. and KYORAKU Co., Ltd. The 3D-printed SMP belt was
fabricated by a fused deposition modeling (FDM) 3D printer. The nozzle movement during
printing the belt is shown in Fig. 10. The pattern of movement of the nozzle during printing was
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0◦ angle with respect to the longitudinal direction of the belt. The thickness of each layer in the
printing process was 0.2mm. The total layers were two and thickness of the belt was 0.4mm.

Fig. 10. Nozzle movement during fabricating an SMP belt in 3D-printing

Photographs of motion of the 3D-printed SMP belt for shape fixity and shape recovery are
shown in Fig. 11. As can be seen, (1) the 3D-printed SMP belt was deformed at a temperature
above Tg. Then, (2) the deformed shape was maintained without a force at temperatures be-
low Tg. Next, (3) the original shape of the belt was recovered by heating above Tg. The shape
fixity and shape recovery properties are obtained in the 3D-printed SMP as same as the SMP
made by the general method. The thermomechanical properties of the 3D-printed SMP depend
on the nozzle temperature, table temperature, printing rate and pattern of each layer (Takeda
et al., 2017). These points are the future subjects.

Fig. 11. Photographs of shape fixity and shape recovery of the 3D-printed SMP belt

6. Conclusions

Mechanical properties and advanced subjects in shape memory alloys and polymers have been
discussed. The results obtained are summarized as follows.

• The shape memory effect and superelasticity of shape memory alloys depend on thermome-
chanical loading conditions. The transformation-induced stress relaxation appears in the
subloop loading under the stress-controlled condition. The stress decrease is proportional
to the temperature decrease during holding the strain constant.

• The thin titanium-nitride layer with thickness of tens of nanometers is generated on TN-
treated TiNi SMA. The enhancement of corrosion fatigue life of the shape memory alloy
is expected by thermal nitridation treatment.

• The functionally-graded shape memory alloy and polymer with various compositions and
phase transformation temperatures are fabricated to obtain better performance of shape
memory elements.
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• Three-way motion can be obtained by the composite with shape-memory alloys and poly-
mers having various phase transformation temperatures.

• The shape fixity and recovery properties can be obtained by a 3D-printed shape memory
polymer element.
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