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In this work, a two-dimensional finite element model for the grain boundary flow rule is de-
veloped based on the thermo-mechanical gradient-enhanced plasticity theory. The proposed
model is temperature-dependent. A special attention is given to physical and micromechani-
cal nature of dislocation interactions in combination with thermal activation on stored and
dissipated energy. Thermodynamic conjugate microforces are decomposed into energetic and
dissipative components. Correspondingly, two different grain boundary material length sca-
les are present in the proposed model. Finally, numerical examples are solved in order to
explore characteristics of the proposed grain boundary flow rule.
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1. Introduction

It is well known that the free surface may act as a source of defect development and its propa-
gation towards the grain inside, whereas the grain boundaries block this dislocation movement,
consequently, give rise to the strain gradients to accommodate geometrically necessary disloca-
tions (Hirth and Lothe, 1982). In addition, the grain boundaries can be a source of dislocations
through transmission of plastic slip to the neighboring grains (Clark et al., 1992). Besides these
physical manifestationa, from the mathematical viewpoint, nonstandard boundary conditions
are necessary at the external boundary of a region for the well-posed governing equations in the
implementation of higher order strain gradient plasticity models. Therefore, careful modeling of
the grain boundary is important in the continued development of higher order strain gradient
plasticity models.

The experimental observations on slip transmission motivate one to assume that the effect
of surface/interfacial energy and the global nonlocal energy residual should be non-vanishing.
Examples can be found from the in-situ TEM direct observations, see e.g., Lee et al. (1989), or
using the geometrically necessary dislocation (GND) concept in the description of observations
in bicrystallines, e.g., Sun et al. (2000) and nanoindentation tests close to the grain boundary,
e.g., Soer et al. (2005). This results in a new type of the boundary condition, in the context
of strain gradient plasticity incorporating the interfacial energy, accounting for the surface resi-
stance to slip transfer due to grain boundary misalignment, see e.g., Aifantis and Willis (2005),
Cermelli and Gurtin (2002), Fredriksson and Gudmundson (2007), Gudmundson (2004), Gurtin
(2008).

Voyiadjis and co-workers (Voyiadjis et al., 2014, 2017; Voyiadjis and Song, 2017) developed
thermodynamically consistent and coupled thermo-mechanical strain gradient plasticity models
incorporating the flow rules for both the grain interior and grain boundary to study characte-
ristics of nano/micro-scale metallic materials. In those three works, the finite element analysis
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was implemented via a one-dimensional model. As is well known, there is bound to be a funda-
mental difference between one-dimensional finite element implementation and two-dimensional
one. For example, in the one-dimensional case, some special complications, e.g. the resonance
between the physical scale and the mesh scale, cannot be considered during simulation. In terms
of dimensional extension, there were simple modifications from one-dimensional finite element
implementation for the strain gradient plasticity model to the two-dimensional one in Voyiadjis
and Song (2017) and Song and Voyiadjis (2018). However, in Voyiadjis and Song (2017), the
grain boundary modeling and the effects of temperature and its gradient were not considered,
but just addressed the effect of the mechanical component of thermodynamic microforces in
terms of the stress jump phenomenon. In addition, in Song and Voyiadjis (2018), only two null
boundary conditions, i.e. microscopically free and hard boundary conditions, were considered
at the grain boundary to describe the dislocation movement and the plastic flow at the grain
boundary areas. In the current work, two-dimensional numerical simulation, in the context of
the small deformation framework, is developed incorporating temperature and rate dependent
flow rules for the grain interior and grain boundary. The proposed model is applied to the simple
shear problem in order to examine the characteristics of the proposed model.

2. Thermodynamically consistent strain gradient plasticity model for
grain interior

In this work, tensors are denoted by the subscripts i, j, k, l, m, and n. The superscripts e, p,
int, ext, en, dis and etc. imply specific quantities such as elastic state, plastic state, internal,
external, energetic, dissipative and etc., respectively. Also, the superimposed dot represents
derivative with respect to time, and the indices after a comma represent partial derivatives.

2.1. Principle of virtual power (grain interior)

The internal power Pint is presented with a combination of three energy contributions, i.e.
the macro-, micro- and thermal-energy contributions, in an arbitrary region Ω0 as follows

Pint =

∫

Ω0

(

σij ε̇
e
ij

︸ ︷︷ ︸

Macro

+xėp +Qiė
p
,i

︸ ︷︷ ︸

Micro

+AṪ + BiṪ,i
︸ ︷︷ ︸

Thermal

)

dV (2.1)

where εeij is the elastic part of the strain tensor, e
p is the accumulated plastic strain, x and

Qi are the thermodynamic microforces conjugate respectively to ė
p and ėp,i, A and Bi are the

micromorphic scalar and vector generalized stresses conjugate to the temperature rate Ṫ and
the gradient of the temperature rate Ṫ,i respectively, and σij is the Cauchy stress tensor.

The internal power Pint for Ω0 is equated with the external power P
ext expended by the ma-

cro and microtractions (ti,m) on the external surface ∂Ω0 and the body forces acting within Ω0
as follows

Pext =

∫

Ω0

biu̇i
︸︷︷︸

Macro

dV +

∫

∂Ω0

(

tiu̇i
︸︷︷︸

Macro

+ mėp
︸︷︷︸

Micro

+ aṪ
︸︷︷︸

Thermal

)

dS (2.2)

where bi is the generalized external body force conjugate to the macroscopic velocity u̇i. Fur-
thermore, it is assumed for the external power to have the term of a conjugate to Ṫ for the
thermal effect.

By using the equation, Pint = Pext, in conjunction with the divergence theorem and factoring
out the common terms, the balance equations for the macroscopic linear momentum, nonlocal
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microforce and generalized stresses A and Bi for the volume Ω0 can be obtained respectively as
follows

σij,j + bi = 0 σij = (x−Qk,k)Nij Bi,i −A = 0 (2.3)

where σij is the deviatoric part of σij with the Kronecker delta δij (σij = σij − σkkδij/3).
On ∂Ω0, the balance equations for the local surface traction and the nonlocal microtraction

are expressed with the outward unit normal vector to ∂Ω0, ni, respectively, as

tj = σijni m = Qini a = Bini (2.4)

2.2. Second law of thermodynamics (grain interior)

The second law of thermodynamics introduces a physical base to account for the GNDs
distribution in the body. The following entropy production inequality can be obtained based on
the basic statement of this law with the specific entropy s and the micromorphic approach by
Forest (2009)

−ρĖ + ρṡT + σij ε̇
e
ij + xė

p +Qiė
p
,i +AṪ + BiṪ,i − qi

T,i

Ṫ
 0 (2.5)

The entropy production vector is assumed in this work to be equal to the thermal flux vector
divided by temperature, as given in Coleman and Noll (1963).

2.3. Energetic and dissipative thermodynamic microforces (grain interior)

The Helmholtz free energy Ψ (per unit volume) is obtained with the entropy s, internal
energy E and temperature T describing the current state of the material as Ψ = E − T s. By
using this equation along with Eq. (2.6), the Clausius-Duhem inequality is derived as follows

σij ε̇
e
ij + xė

p +Qiė
p
,i +AṪ + BiṪ,i − ρΨ̇ − ρsṪ − qi

T,i
T
 0 (2.6)

For deriving the constitutive equations, the functional form of the Helmholtz free energy,
Ψ = Ψ(εeij , e

p, ep,i,T ,T,i), is put forward in this work. By taking time derivative of the Helmholtz

free energy, Ψ̇ is expressed as follows

Ψ̇ =
∂Ψ

∂εeij
ε̇eij +

∂Ψ

∂ep
ėp +

∂Ψ

∂ep,i
ėp,i +

∂Ψ

∂T
Ṫ +

∂Ψ

∂T,i
Ṫ,i (2.7)

Substituting Eq. (2.7) into Eq. (2.6) and factoring the common terms out gives

(

σij − ρ
∂Ψ

∂εeij

)

ε̇eij +
(

x− ρ
∂Ψ

∂ep

)

ėp +
(

Qi − ρ
∂Ψ

∂ep,i

)

ėp,i

+
(

A− ρs− ρ
∂Ψ

∂T

)

Ṫ +
(

Bi − ρ
∂Ψ

∂T,i

)

Ṫ,i −
qi
T
T,i  0

(2.8)

Meanwhile, the thermodynamic conjugate microforces x, Qi and A are assumed to be de-
composed into the energetic and the dissipative elements as follows

x = xen + xdis Qi = Q
en
i +Q

dis
i A = Aen +Adis (2.9)

Substituting Eq. (2.9) into Eq. (2.8) and rearranging them in accordance with the energetic and
the dissipative parts results in the following expression

(

σij − ρ
∂Ψ

∂εeij

)

ε̇eij +
(

xen − ρ
∂Ψ

∂ep

)

ėp +
(

Qeni − ρ
∂Ψ

∂ep,i

)

ėp,i +
(

Aen − ρs− ρ
∂Ψ

∂T

)

Ṫ

+
(

Bi − ρ
∂Ψ

∂T,i

)

Ṫ,i + x
disėp +Qdisi ė

p
,i +A

disṪ −
qi
T
T,i  0

(2.10)
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By assuming that the fifth term in Eq. (2.10) is strictly energetic, the energetic components of
the thermodynamic microforces are defined as follows

σij = ρ
∂Ψ

∂εeij
xen = ρ

∂Ψ

∂ep
Qeni = ρ

∂Ψ

∂ep,i

Aen = ρ
(

s+
∂Ψ

∂T

)

Bi = ρ
∂Ψ

∂T,i

(2.11)

The dissipation density per unit time D is then obtained as

D = xdisėp +Qdisi ė
p
,i +A

disṪ −
qi
T
T,i  0 (2.12)

The dissipative counterparts of the thermodynamic microforces are obtained from the dissipation
potential D(ėp, ėp,i, Ṫ ,T,i) as follows

xdis =
∂D

∂ėp
Qdisi =

∂D

∂ėp,i
Adis =

∂D

∂Ṫ
−
qi
T
=
∂D

∂T,i
(2.13)

2.4. Constitutive equations for the admissible potentials (grain interior)

2.4.1. Energetic constitutive relations

It is important to define the proper formulation of the Helmholtz free energy Ψ because
it establishes the basis for the derivation of constitutive relations. In the current work, the
Helmholtz free energy function is put forward as follows (Voyiadjis and Song, 2017; Voyiadjis et
al., 2017)

Ψ =
1

2ρ
εeijEijklε

e
kl −
αth

ρ
(T − Tr)ε

e
ijδij +

H0
ρ(r + 1)

[

1−
( T

Ty

)n]

(ep)r+1

+
σ0

ρ(ϑ+ 1)
[ℓ2en(e

p
,ie
p
,i)]

ϑ+1
2 −

1

2

cε
Tr
(T − Tr)

2 −
1

2ρ
aT,iT,i

(2.14)

where αth is the thermal expansion coefficient, Eijkl is the elastic modulus tensor, H0 is the
standard isotropic hardening parameter, r (0 < r < 1) is the isotropic hardening material
parameter, Ty and n are the thermal material parameters, σ0 > 0 is the stress-dimensioned
scaling parameter to explain the initial slip resistance, ℓen is the energetic material length scale
describing the feature of short-range interaction of the GNDs, a is the material constant for
the isotropic heat conduction, ϑ is the parameter of governing nonlinearity of the gradient
dependent defect energy, Tr > 0 is the reference temperature, and cε is the specific heat capacity
at a constant stress.

One can now obtain the energetic thermodynamic forces by using Eqs. (2.11) and (2.14) as
follows

σij = Eijklε
e
kl − α

th(T − Tr)δij xen = H0
[

1−
( T

Ty

)n]

(ep)r

Qeni = σ0ℓ
2
en[ℓ
2
en(e

p
,ke
p
,k)]

ϑ−1
2 ep,i

Aen = ρs− αth(T − Tr)ε
e
ijδij −

cε
Tr
(T − Tr)−

H0(e
p)r+1

r + 1

T

Ty

( T

Ty

)n−1

Bi = −aT,i

(2.15)
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2.4.2. Dissipative constitutive relations

In this work, the following functional form of the dissipation potential is put forward

D = σ0

√

H2(ep) + ℓN−Gεp
[

1−
( T

Ty

)n]( ėp

ṗ1

)m1
ėp

+ σ0
[

1−
( T

Ty

)n]( ṗ

ṗ2

)m2
ṗ−
ς

2
Ṫ 2 −

1

2

k(T )

T
T,iT,i

(2.16)

where ṗ1 and ṗ2 are the non-negative reference rates, m1 and m2 are the non-negative rate
sensitivity parameters, ς is the material constant characterizing the energy exchange between
phonon and electron, and k(T ) is the thermal conductivity coefficient. The N-G material length
scale ℓN−G was first introduced by Nix and Gao (1998). In the special case ℓN−G = 0 and
H(ep) = 1. The first term in RHS reduces to σ0

(
1 − (T /Ty)

n
)
(ėp/ṗ1)

m1 ėp, a form used by
Voyiadjis and Song (2017). εp is a scalar measure of an effective plastic strain gradient defined

by εp
def
= ‖αij‖ = bρG with the magnitude of the Burgers vector b, Nye dislocation density

tensor αij and the total GNDs density ρG.
The parameter ṗ is a scalar measuring the plastic strain rate gradient, which is defined by

ṗ
def
= ℓdis‖ė

p
,i‖ = ℓdis

√

ėp,iė
p
,i (2.17)

where ℓdis is the dissipative material length scale.
The dimensionless function H(ep) is related to the strain hardening/softening behavior. In

the current work, the following form of the mixed-hardening function is adopted (Voce, 1955)

H(ep) = 1 + (χ− 1)[1 − exp(−ωep)] +
H0
σ0
ep (2.18)

where χ and ω are the material parameters. The strain hardening, strain softening and strain
hardening/softening can be modeled based on the particular choices for these parameters.
Using the dissipative potential given in Eq. (2.16) along with Eq. (2.13) and considering

k(T )/T = k0 = const , the constitutive relations for the dissipative microforces are obtained as
follows

xdis = σ0

√

H2(ep) + ℓN−Gεp
[

1−
( T

Ty

)n]( ėp

ṗ1

)m1

Qdisi = σ0ℓ
2
dis(m2 + 1)

[

1−
( T

Ty

)n]( ṗ

ṗ2

)m2 ė
p
,i

ṗ

Adis = −ςṪ
qi
T
= k0T,i

(2.19)

2.5. Flow rule (grain interior)

The flow rule is established based on the nonlocal microforce balance, Eq. (2.3), and streng-
thened by thermodynamically consistent constitutive relations for energetic and dissipative mi-
croforces. By considering the backstress in the microforce equilibrium such as σij−(−Q

en
k,k)Nij =

(x−Qdisk,k)Nij , one can obtain a second order partial differential flow rule as follows

σij −
{

−σ0ℓ
2
en[ℓ
2
en(e

p
,ie
p
,i)]

ϑ−1
2 ep,kk

}

Nij =
{

H0
[

1−
( T

Ty

)n]

(ep)r

+ σ0

√

H2(ep) + ℓN−Gεp
[

1−
( T

Ty

)n]( ėp

ṗ1

)m1

− σ0ℓ
2
dis(m2 + 1)

[

1−
( T

Ty

)n]( ṗ

ṗ2

)m2 ė
p
,kk

ṗ

}

Nij

(2.20)

where Nij is the direction of plastic flow given by Nij = ε̇
p
ij/ė
p.
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3. Thermodynamically consistent strain gradient plasticity model for the
grain boundary

The main goal of this study is to develop a thermodynamically consistent gradient-enhanced
plasticity model for the grain boundary, which should be also consistent with the one for the
grain interior addressed in Section 2. Hereafter, the superscript GB and the expression GB will
be used to denote specific variables at the grain boundary.

3.1. Principle of virtual power (grain boundary)

Two grains G1 and G2 separated by the grain boundary are taken into account in this work,
and the displacement field is assumed to be continuous, i.e. uG1i = u

G2
i , across the grain boundary.

The internal part of the principle of virtual power for the grain boundary is assumed to depend
on the GB accumulated plastic strain rates ėp

GBG1 at SGBG1 and ėp
GBG2 at SGBG2 in the arbitrary

surface SGB of the grain boundary as follows

Pint
GB

=

∫

SGB

(
MGBG1 ėp

GBG1
+MGBG2 ėp

GBG2 )
dSGB (3.1)

where the GB microscopic moment tractions MGBG1 and MGBG2 are assumed to expend the
power over ėp

GBG1 and ėp
GBG2 , respectively. In addition, the GB external power Pext

GB
is expen-

ded by the macrotractions σG1ij (−n
GB
j ) and σ

G2
ij (n

GB
j ) conjugate to the macroscopic velocity u̇i,

and the microtractions QG1k (−n
GB
k ) and QG2i (n

GB
k ) that are conjugate to ε̇

pGBG1

ij and ε̇p
GBG2

ij ,
respectively, as follows

Pext
GB

=

∫

SGB

[(
σG2ij n

GB
j − σ

G1
ij n
GB
j

)
u̇i +QG2k n

GB
k ė

pGBG2 −QG1k n
GB
k ė

pGBG1
]

dSGB (3.2)

where nGB is the unit outward normal vector of the grain boundary surface. From
Pint

GB
= Pext

GB
, the macro- and microforce balances for the grain boundary are obtained

as follows

(σG1ij − σ
G2
ij )n

GB
j MGBG1 +Q

G1
k n
GB
k = 0 MGBG2 −Q

G2
k n
GB
k = 0 (3.3)

3.2. Laws of thermodynamics (grain boundary)

The first and second laws of thermodynamics are considered to construct the thermodyna-
mically consistent gradient- and temperature-enhanced framework for the grain boundary as
follows

ĖGB =MGB ėp
GB

+ qGBi n
GB
i

ṡGBT GB − qGBi n
GB
i  0

(3.4)

where EGB is the GB surface energy density, qGBi is the GB heat flux vector and sGB is the
surface density of entropy of the grain boundary.

3.3. Energetic and dissipative thermodynamic microforces (grain boundary)

By using the time derivative of the equation, ΨGB = EGB − T GBsGB, and substituting it
into Eqs. (3.4), the following Clausius-Duhem inequality for the grain boundary is obtained

MGB ėp
GB

− Ψ̇GB − sGBṪ GB  0 (3.5)
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Suppose the isothermal condition for the grain boundary (Ṫ GB = 0) and the Helmholtz free

energy for the grain boundary is given by ΨGB = ΨGB(ep
GB

). Substituting the time derivative
of ΨGB into Eq. (3.5) gives the following inequality

MGB ėp
GB

− ρ
∂ΨGB

∂epGB
ėp
GB

 0 (3.6)

The GB thermodynamic microforce quantitity MGB is further assumed to be decomposed into
the energy and dissipative components such as MGB = MGB,en + MGB,dis. The components
MGB,en and MGB,dis indicate the mechanisms for the pre- and post-slip transfer, and thus
involve the plastic strain at the grain boundary prior to the slip transfer ep

GB(pre)
and the one

after the slip transfer ep
GB(post)

, respectively, (ep
GB

= ep
GB(pre)

+ ep
GB(post)

). From Eq. (3.6)

(

MGB,en − ρ
∂ΨGB

∂epGB

)

ėp
GB

+MGB,disėp
GB

 0 (3.7)

The GB energetic microforce can be obtained as

MGB,en = ρ
∂ΨGB

∂epGB
(3.8)

Hence the GB dissipative microforce can then be obtained as

MGB,dis =
∂DGB

∂ėpGB
(3.9)

where DGB is the non-negative dissipation density per unit time for the grain boundary, given
by DGB = MGB,disėp

GB
 0. This non-negative plastic dissipation condition can be satisfied

when the GB plastic dissipation potential is a convex function of the GB accumulated plastic
strain rate.

3.4. Energetic and dissipative thermodynamic microforces (grain boundary)

In this work, it is assumed, following Fredriksson and Gudmundson (2007), that the GB
Helmholtz free energy per unit surface has the form of a general power law as follows

ΨGB(ep
GB

) =
1

2
GℓGBen (e

pGB(pre))2 (3.10)

where G is the shear modulus in the case of isotropic linear elasticity, ℓGBen is the GB energetic
length scale. By substituting Eq. (3.10) into Eq. (3.8), the GB energetic microforce quantity can
be obtained as follows

MGB,en = GℓGBen e
pGB(pre) (3.11)

Note thatMGB,en is independent of the plastic strain rate and temperature since this variable
comes from the recoverable stored energy.
Meanwhile, two major factors might be identified affecting energy dissipation when the di-

slocations move in the grain boundary area (Aifantis and Willis, 2005). When the dislocations
encounter a grain boundary, they pile up there. Slip can transmit to the adjacent grain only
when the stress field ahead of the pileup is high enough. Direct observation of the process using
transmission electron microscopy (TEM) also shows that the main mechanisms for the afore-
mentioned slip transmission are dislocation absorption and re-emission for low angle boundaries
(Soer et al., 2005) and the dislocation nucleation in the adjacent grain for high angle boundaries
(Ohmura et al., 2004), respectively. As soon as deformation initiates in the adjacent grain, the
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grain boundary begins to deform and the plastic strain on the grain boundary increases. The
energy associated with the deformation of the grain boundary in this case is taken to be mainly
due to energy dissipation as the dislocations move in the grain boundary region. In addition,
considering the resistance force to dislocation motion being temperature and rate dependent,
this energy dissipation can be taken as a linear function of the GB plastic strain.

Moreover, a change in the grain boundary area can also affect the energy dissipation. The
macroscopic accumulated plastic strain at the grain boundary, ep

GB
, can be related to micro-

scopic deformation of the grain boundary through the root-mean-square of the gradient of this
deformation. In addition, the energy change after the grain boundary has yielded, i.e. the on-
set of slip transmission, can be approximated by a quadratic function of the aforementioned
displacement gradient at microscale and hence the GB plastic strain at macroscale.

Combining both the aforementioned mechanisms, i.e. a change in the grain boundary area
and deformation of the grain boundary due to the dislocation movement, involved in the ener-
gy dissipation due to plastic strain transfer across the grain boundary, one can postulate the
following generalized expression for the GB dissipation potential

DGB =
ℓGBdis
mGB + 1

(

σGB0 +H
GB
0 e

pGB(post)
)(

1−
T GB

T GBy

)nGB( ėp
GB(post)

ṗGB

)mGB

ėp
GB(post)

 0 (3.12)

where ℓGBdis is the GB dissipative length scale, m
GB and ṗGB are the viscous related material

parameters, σGB0 is a constant accounting for the GB yield stress, HGB0 is the GB hardening
parameter, T GBy is the scale-independent GB thermal parameter at the onset of yield, nGB is
the GB thermal parameter. The temperature- and rate-dependency of the GB energy are shown
respectively in terms (1− T GB/T GBy )

nGB and (ėp
GB(post)

/ṗGB)m
GB
.

By using Eqs. (3.9) and (3.12), the GB dissipative microforce MGB,dis can be obtained as

MGB,dis = ℓGBdis (σ
GB
0 +H

GB
0 e

pGB(post))
(

1−
T GB

T GBy

)nGB( ėp
GB(post)

ṗGB

)mGB

(3.13)

Therefore, the GB thermodynamic microforce MGB can be obtained as

MGB = GℓGBen e
pGB(pre)

+ ℓGBdis (σ
GB
0 +H

GB
0 e

pGB(post))
(

1−
T GB

T GBy

)nGB( ėp
GB(post)

ṗGB

)mGB (3.14)

It can be seen from Eq. (3.14) that the grain boundary may act like a free surface, i.e. microsco-
pically free boundary condition, when ℓGBen = ℓ

GB
dis = 0. On the other hand, the microscopically

hard boundary condition can be compelled under the conditions ℓGBen →∞ and ℓ
GB
dis →∞.

3.5. Flow rule (grain boundary)

The flow rule for the grain boundary can be derived by substituting Eq. (3.14) into the
microforce balances for the grain boundary, Eq. (3.3), such as:

— for SGBG1

{

σ0ℓ
2
en[ℓ
2
en(e

p
,ke
p
,k)]

ϑ−1
2 ep,i + σ0ℓ

2
dis(m2 + 1)

[

1−
( T

Ty

)n]( ṗ

ṗ2

)m2 ė
p
,i

ṗ

}

nGBk +Gℓ
GB
en e

pGB(pre)

= −ℓGBdis (σ
GB
0 +H

GB
0 e

pGB(post))
(

1−
T GB

T GBy

)nGB( ėp
GB(post)

ṗGB

)mGB
(3.15)
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— for SGBG2

{

σ0ℓ
2
en[ℓ
2
en(e

p
,ke
p
,k)]

ϑ−1
2 ep,i + σ0ℓ

2
dis(m2 + 1)

[

1−
( T

Ty

)n]( ṗ

ṗ2
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where the second term in LHS of both equations represents the backstress. Note that, in a
general case, the grain boundary model parameters are not identical on each side, however in
this work, the same values are assumed to be considered for simplification.

Considering the GB flow rules as the boundary conditions of the grain interior flow rule, Eq.
(2.20), results in a yield condition accounting for the temperature and rate dependent barrier
effect of grain boundaries on the plastic slip and, consequently, the influence on the GNDs
evolution in the grain interior.

4. Finite element implementation of the proposed SGP model

A two-dimensional finite element model for the derived grain interior/boundary flow rules is
developed to account for the size dependent response for microscopic structures. In this finite
element solution, the plastic strain field ep as well as the displacement field ui are discretized
independently and both the fields are taken as fundamental unknown nodal degrees of freedom.
The increments in the nodal displacement and plastic strains can be obtained by computing the
system of linear equations shown in Eq. (4.1)

[

KΩeluiuk K
Ωel
uiep

KΩelepuk K
Ωel
epep

]

︸ ︷︷ ︸

K
Ωel

{

(∆Uuk)η
(∆Eep)η

}

=

{

(Rui)η
(Rep)η

}

(4.1)

where KΩel is the Jacobian (stiffness) matrix. The nodal displacement and the plastic strain in

the iteration ζ at the node η are expressed as (Uζui)η and (E
ζ
ep)η , respectively, and their incre-

ments are calculated by (∆Uuk)η = (U
ζ+1
ui
)η − (U

ζ
ui
)η, (∆Eep)η = (E

ζ+1
ep )η − (E

ζ
ep)η. (Rui)η and

(Rep)η are the nodal residuals for the displacement and plastic strain at the node η, respecti-
vely. The system of linear equations is solved via the user-defined element subroutine (UEL) in
ABAQUS/standard using the Newton-Raphson iterative method.

Each component of the Jacobian matrix can be obtained respectively as follows
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(4.2)

and



386 Y. Song, G.Z. Voyiadjis
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where ∆t is the time step. The grain boundary terms in Eq. (4.3) are only applied for nodes on
the grain boundary area.

5. Numerical examples

The assumption of the microscopically hard boundary condition is used in the authors’ previous
work (Song and Voyiadjis, 2018). In this work, the governing differential equation is solved by
imposing the proposed grain boundary flow rule to account for the deformable grain boundary.
Furthermore, the characteristics of the proposed strain gradient plasticity theory incorporating
the flow rules of both the grain interior and the grain boundary is addressed in this Section
by solving the shear problem of a square plate with an edge of L. A schematic illustration of
the problem, initial conditions and macroscopic and microscopic boundary conditions as well
as the grain boundary area are shown in Fig. 1. The parameter u+(t) represents the prescribed
displacement. The whole square is meshed using 1 600 (40×40) elements and split into 16 (4×4)
grains by the grain boundary area, which is indicated by bold lines.

Fig. 1. The schematic illustration of the simple shear problem: (a) macroscopic, microscopic boundary
conditions, and initial conditions, (b) 4× 4 grains
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The following material parameters are used in this Section unless stated otherwise:
E = 110GPa, ν = 0.343, ρ = 8.960 g·cm−3, cε = 0.385 J/(g·K), α

th = 16.0µm/(m·K),
ṗ1 = ṗ2 = 0.04 s

−1, r = 0.6, m1 = 0.05, m2 = 0.2, Ty = 1358K, n = 0.3, σ0 = 195MPa,
H0 = 0MPa, σ

GB
0 = 300MPa, HGB0 = 300MPa, ṗGB = 0.04 s−1, mGB = 1, T GBy = 700K,

nGB = 0.4.

As mentioned in Section 3.4, the microscopically free and hard boundary conditions at the
grain boundary can be introduced respectively by setting ℓGBen = ℓ

GB
dis = 0 and ℓ

GB
en → ∞,

ℓGBdis → ∞. Firstly, the validity of these conditions is examined in this work. Next, a direct
comparison between the classical plasticity theory (ℓen/L = ℓdis/L = ℓN−G/L = 0.0) and the
gradient-enhanced plasticity theory (ℓen/L = ℓdis/L = ℓN−G/L = 0.1) is given in order to check
the ability of the proposed flow rule on the size effect. The numerical results in terms of the
accumulated plastic strain profile and the stress-strain curves are shown in Figs. 2 and 3. The

Fig. 2. Classical plasticity theory (ℓen/L = ℓdis/L = ℓN−G/L = 0). Distributions of the accumulated
plastic strain with: (a) microscopically free (ℓGBen = ℓ

GB

dis
= 0), and (b) microscopically hard boundary

conditions (ℓGBen →∞, ℓ
GB

dis
→∞), and (c) stress-strain responses

terminology “NT11” in Figs. 2 and 3 indicates the accumulated plastic strain. As can be seen
in these figures, the microscopically free and hard boundary conditions are well captured under
the classical plasticity theory as well as the gradient-enhanced plasticity theory. In addition, in
Fig. 2c, no size effect is observed in the classical plasticity theory with varying normalized mate-
rial length scales as expected. In Fig. 3c, on the other hand, strain hardening and strengthening
are more pronounced as the dimensions of the shear plate height are reduced (ℓGBen /L → ∞,
ℓGBdis /L→∞).
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Fig. 3. Strain gradient plasticity theory (ℓen/L = ℓdis/L = ℓN−G/L = 0.1). Distributions of the
accumulated plastic strain with: (a) microscopically free (ℓGBen = ℓ

GB

dis
= 0), and (b) microscopically hard

boundary conditions (ℓGBen →∞, ℓ
GB

dis
→∞), and (c) stress-strain responses

In Fig. 4, the effects of each material length scale parameter, i.e. ℓen, ℓdis and ℓN−G, along
with the microscopically hard boundary condition are also examined through the profile of the
accumulated plastic strain. In addition, the contributions of each length scale parameter on the
stress-strain responses are shown in Fig. 4c.

Variations in the stress-strain responses and evolutions of the maximum temperature are in-
vestigated for various values of the normalized energetic and dissipative grain boundary material
length scales as shown in Figs. 5 and 6. It is assumed by setting ℓGBdis /ℓdis = 0 that all plastic
work at the grain boundary is stored as surface energy which depends on the plastic strain state
at the surface. In this case, ℓGBen /ℓen reflects the grain boundary resistance to plastic deformation.
Figures 5b and 6b show the size effects on the strain hardening and temperature evolution due
to the grain boundary energetic length scale, and it is more pronounced in the more strongly
constrained material, i.e. increasing ℓGBen /ℓen. On the other hand, by setting ℓ

GB
en /ℓen = 0, it is

assumed that the work performed at the grain boundary is dissipated in the absence of surface
energy. In this case, ℓGBdis /ℓdis reflects the grain boundary resistance to slip transfer. As can be
seen in Fig. 5c, the initial yield strength increases without strain hardening as ℓGBdis /ℓdis increases.

6. Conclusions

The two-dimensional finite element model for the thermodynamically consistent thermo-
mechanical coupled gradient enhanced plasticity theory is proposed on the basis of the concept
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Fig. 4. Distributions of the accumulated plastic strain with the microscopically hard boundary condition
(ℓGBen /L→∞, ℓ

GB

dis
/L→∞) under: (a) energetic length scale only (ℓen/L = 0.1, ℓdis/L = ℓN−G/L = 0),

(b) dissipative length scale only (ℓdis/L = 0.1, ℓen/L = ℓN−G/L = 0), (c) N-G length scale only
(ℓN−G/L = 0.1, ℓen/L = ℓdis/L = 0), and (d) stress-strain responses

Fig. 5. Distributions of the accumulated plastic strain according to various values of ℓGBen /ℓen
and ℓGB

dis
/ℓdis: (a) combined ℓ

GB
en and ℓ

GB

dis
, (b) ℓGBen only, and (c) ℓ

GB

dis
only
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Fig. 6. Evolutions of the maximum temperature according to various values of ℓGBen /ℓen and ℓ
GB

dis
/ℓdis:

(a) combined ℓGBen and ℓ
GB

dis
, (b) ℓGBen only, and (c) ℓ

GB

dis
only

of dislocation interaction mechanisms and thermal activation energy. The thermodynamic mi-
crostresses for the grain interior and grain boundary are respectively assumed to be divided
into two components, i.e. energetic and dissipative components which, in turn, both energetic
and dissipative material length scale parameters are incorporated in the governing constitutive
equations and flow rules for both areas. These thermodynamic microstresses can be respectively
obtained in a direct way from the Helmholtz free energy and the rate of dissipation potential
by taking the maximum entropy production into account. In particular, the concept of GNDs
density is additionally employed in the grain interior to interpret the microstructural streng-
thening mechanisms induced by the nonhomogeneous deformation. Correspondingly, the model
in this work incorporates the terms related to GNDs-induced strengthening and the additional
material length scale parameter.

In order to investigate the characteristics of the proposed strain gradient plasticity theory
incorporating the flow rules for both the grain interior and grain boundary, the shear problem
of a square plate is solved in this work. The microscopically free and hard boundary conditions
are well captured under the classical plasticity theory as well as the gradient-enhanced plasticity
theory by using the proposed grain boundary flow rule. In addition, the size effects on the
stress-strain responses and the evolutions of the maximum temperature are well observed with
the cases of (a) combined ℓGBen and ℓ

GB
dis , (b) ℓ

GB
en only, and (c) ℓ

GB
dis only.
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