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The second-order dual phase lag equation (DPLE) as a mathematical model of the microscale
heat transfer is considered. It is known that the starting point determining the final form of
this equation is the generalized Fourier law in which two positive constants (the relaxation
and thermalization times) appear. Depending on the order of the generalized Fourier law
expansion into the Taylor series, different forms of the DPLE can be obtained. As an example
of the problem described by the second-order DPLE equation, thermal processes proceeding
in the domain of a thin metal film subjected to a laser pulse are considered. The numerical
algorithm is based on an implicit scheme of the finite difference method. At the stage of
numerical modeling, the first, second and mixed order of the dual phase lag equation are
considered. In the final part of the paper, examples of different solutions are presented and
conclusions are formulated.
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1. Introduction

The Fourier heat conduction model is based on the assumption of instantaneous propagation
of the thermal wave in the domain considered. Intuitively, this approach seems to be incorrect,
but it has worked for solving a number of macroscopic heat conduction problems. However, it
turned out that for certain non-typical materials with a complex internal structure, the Fourier
model is insufficient (Roetzel et al., 2003). Even more, deviations from the real course of the
process can be seen in the case of microscale heat transfer.

It is obvious that accumulating enough energy to transfer to the nearest neighborhood would
take time in the process of heat transfer (Zhang, 2007). So, the lag time of the heat flux in relation
to the temperature gradient referred to as “a relaxation time” was introduced by Cattaneo
(1948) and Vernotte (1958), and the appropriate energy equation (a hyperbolic PDE) became
known as the Cattaneo-Vernotte equation. In the recent years, the heat conduction model in
which two delay times appear has become more and more popular. This model is called the
dual-phase lag one (Zhang, 2007; Tzou, 2015). The starting point for considerations is the
generalized form of the Fourier law, e.g. (Faghri et al., 2010; Smith and Norris, 2003). Depending
on the number of terms in the Taylor series expansion of this law, different forms of the dual
phase lag equation (DPLE) can be obtained (see Section 2). The lag times appearing in DPLE
are called the relaxation time and the thermalization time. Some simple tasks described by
this equation (supplemented by appropriate boundary and initial conditions) can be solved
analytically, e.g. (Ciesielski, 2017a; Tang and Araki, 1999; Askarizadeh et al., 2017; Mohammadi-
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-Fakhar and Momeni-Masuleh, 2010). However, most of the practical problems have been solved
using numerical methods. Examples of such solutions in the field of the microscale heat transfer
may be the papers (Majchrzak and Mochnacki, 2014; Ciesielski, 2017b; Dai and Nassar, 2000;
Mochnacki and Paruch, 2013; Chen and Beraun, 2001) concerning the first-order DPLE.
The similar problems have been considered for non-homogeneous (multilayered) domains. In

this place, the papers (Majchrzak et al., 2009; Qiu et al., 1994; Al-Nimr et al., 2004; Wang et al.,
2006, 2008) can be (as the examples) mentioned. The correct form of the boundary conditions
between subdomains (here, the macroscopic boundary conditions are often used, which is a
significant simplification) can be found in (Ho et al., 2003) while the detailed mathematical
considerations were shown in (Majchrzak and Kałuża, 2017). In turn, in the paper (Majchrzak
and Mochnacki, 2016), the problem of stability condition (explicit scheme of the FDM) was
analyzed.
The numerical solutions concerning the second-order DPLE (based on the finite difference

method) are the subject of works prepared by Castro et al. (2016) and Deng et al. (2017). The
similar problems are discussed in the paper presented, but the wider class of equations and the
other numerical algorithm are taken into account.
The applications of DPLE in the scope of bioheat transfer will not be discussed here.

2. Dual-phase lag model

The following well known thermal diffusion equation is considered

c
∂T (X, t)

∂t
= −∇ · q(X, t) +Q(X, t) (2.1)

where c is a volumetric specific heat, q is a heat flux vector, Q is a capacity of the internal
volumetric heat source, X, t denote the geometrical co-ordinates and time.
The relationship between the heat flux q and the temperature gradient ∇T is given in the

form of the generalized Fourier law (Zhang, 2007; Smith and Norris, 2003), namely

q(X, t + τq) = −λ∇T (X, t+ τT ) (2.2)

where λ is thermal conductivity, τq and τT are the relaxation time and thermalization time,
respectively. The relaxation time τq is the mean time for electrons to change their energy states,
while the thermalization time τT is the mean time required for electrons and lattice to reach
equilibrium.
Using the Taylor series expansions, the following second-order approximation of formula (2.2)

can be taken into account

q(X, t)+τq
∂q(X, t)

∂t
+
τ2q
2

∂2q(X, t)

∂t2
= −λ

[

∇T (X, t)+τT
∂∇T (X, t)

∂t
+
τ2T
2

∂2∇T (X, t)

∂t2

]

(2.3)

which means

−q(X, t) = τq
∂q(X, t)

∂t
+
τ2q
2

∂2q(X, t)

∂t2
+λ∇T (X, t)+λτT

∂∇T (X, t)

∂t
+λ
τ2T
2

∂2∇T (X, t)

∂t2
(2.4)

From equation (2.4) it results that

−∇ · q(X, t) = τq
∂[∇ · q(X, t)]

∂t
+
τ2q
2

∂2[∇ · q(X, t)]

∂t2
+∇[λ∇T (X, t)]

+ τT
∂{∇[λ∇T (X, t)]}

∂t
+
τ2T
2

∂2{∇[λ∇T (X, t)]}

∂t2

(2.5)
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The last dependence is introduced in to equation (2.1), and then

c
∂T (X, t)

∂t
= τq
∂[∇ · q(X, t)]

∂t
+
τ2q
2

∂2[∇ · q(X, t)]

∂t2
+∇[λ∇T (X, t)]

+ τT
∂{∇[λ∇T (X, t)]}

∂t
+
τ2T
2

∂2{∇[λ∇T (X, t)]}

∂t2
+Q(X, t)

(2.6)

Equation (2.1) can also be written as

∇ · q(X, t) = −c
∂T (X, t)

∂t
+Q(X, t) (2.7)

Putting equation (2.7) into (2.6), one obtains

c
∂T (X, t)

∂t
= τq
∂

∂t

[

−c
∂T (X, t)

∂t
+Q(X, t)

]

+
τ2q
2

∂2

∂t2

[

−c
∂T (X, t)

∂t
+Q(X, t)

]

+∇[λ∇T (X, t)] + τT
∂{∇[λ∇T (X, t)]}

∂t
+
τ2T
2

∂2{∇[λ∇T (X, t)]}

∂t2
+Q(X, t)

(2.8)

Assuming the constant value of the volumetric specific heat c, one has

c
[∂T (X, t)

∂t
+ τq
∂2T (X, t)

∂t2
+
τ2q
2

∂3T (X, t)

∂t3

]

= ∇[λ∇T (X, t)] + τT
∂{∇[λ∇T (X, t)]}

∂t

+
τ2T
2

∂2{∇[λ∇T (X, t)]}

∂t2
+Q(X, t) + τq

∂Q(X, t)

∂t
+
τ2q
2

∂2Q(X, t)

∂t2

(2.9)

Additionally, for λ = const the last equation takes form

c
[∂T (X, t)

∂t
+ τq
∂2T (X, t)

∂t2
+
τ2q
2

∂3T (X, t)

∂t3

]

= λ∇2T (X, t) + λτT
∂[∇2T (X, t)]

∂t

+ λ
τ2T
2

∂2[∇2T (X, t)]

∂t2
+Q(X, t) + τq

∂Q(X, t)

∂t
+
τ2q
2

∂2Q(X, t)

∂t2

(2.10)

As previously mentioned, dual phase lag equation (2.10) is often simplified by omitting appro-
priate components. For example, in several works (e.g. Tzou, 1995) the second order Taylor
expression of heat flux and the first order Taylor expression of the temperature gradient are
applied to take into account the phase lagging behavior. Ignoring the inner heat source (as in
Tzou, 1995), the governing equation of temperature based on the DPL model is the following

c
[∂T (X, t)

∂t
+ τq
∂2T (X, t)

∂t2
+
τ2q
2

∂3T (X, t)

∂t3

]

= λ∇2T (X, t) + λτT
∂[∇2T (X, t)]

∂t
(2.11)

It is also possible to consider the energy equation in the form (assuming that Q(X, t) = 0)

c
[∂T (X, t)

∂t
+ τq
∂2T (X, t)

∂t2

]

= λ∇2T (X, t) + λτT
∂[∇2T (X, t)]

∂t
+ λ
τ2T
2

∂2[∇2T (X, t)]

∂t2
(2.12)

The most popular DPLE results from the assumption that the first-order approximation of
formula (2.2) is used, and then (e.g. Tang and Araki, 1999; Al-Nimr et al., 2004; Majchrzak and
Mochnacki, 2014)

c
[∂T (X, t)

∂t
+ τq
∂2T (X, t)

∂t2

]

= λ∇2T (X, t)+λτT
∂[∇2T (X, t)]

∂t
+Q(X, t)+ τq

∂Q(X, t)

∂t
(2.13)

One can see that for τT = 0, DPLE (2.13) takes form of the Cattaneo-Vernotte equation, while
for τq = 0 and τT = 0 the well known macroscopic Fourier equation is obtained.
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Taking into account the numerical examples presented in the final part of the paper, a
modified form of the Neumann boundary condition must still be formulated, namely

qb(X, t) + τq
∂qb(X, t)

∂t
+
τ2q
2

∂2qb(X, t)

∂t2

= −λ
[

n · ∇T (X, t) + τT
∂[n · ∇T (X, t)]

∂t
+
τ2T
2

∂2[n · ∇T (X, t)]

∂t2

]

(2.14)

where n · ∇T (X, t) denotes normal derivative and qb(X, t) is the known boundary heat flux. In
the case of simplified forms of the DPLE, the appropriate components in condition (2.14) should
be neglected.

3. Formulation of the problem

Thermal processes proceeding in a thin metal film subjected to laser pulse are considered. A
1D problem is analyzed (heat transfer in the direction perpendicular to the layer is taken into
account). The front surface x = 0 is irradiated by a laser pulse and according to (Tang and
Araki, 1999; Kaba and Dai, 2005), the conductional heat transfer in the domain considered can
be modeled using the DPLE in which the volumetric heat source Q(x, t) is introduced. At the
same time, for x = 0 and x = L, the non-flux conditions should be assumed. The laser irradiation
is described by the following source term

Q(x, t) =

√

β

π

1−R

tpδ
I0 exp

[

−
x

δ
− β
(t− 2tp)

2

t2p

]

(3.1)

where I0 is the laser intensity, tp is the characteristic time of the laser pulse, δ is the optical
penetration depth, R is the reflectivity of the irradiated surface, and β = 4 ln 2.
In the most general case, the following DPLE is considered::

— for 0 < x < L

∂T (x, t)

∂t
+ τq
∂2T (x, t)

∂t2
+ wq
τ2q
2

∂3T (x, t)

∂t3
= a
∂2T (x, t)

∂x2
+ aτT

∂3T (x, t)

∂t∂x2

+ wTa
τ2T
2

∂4T (x, t)

∂t2∂x2
+
1

c
Q(x, t) +

τq
c

∂Q(x, t)

∂t
+ wq
τ2q
2c

∂2Q(x, t)

∂t2

(3.2)

where a = λ/c is the diffusion coefficient, wT and wq are bivalent parameters. Here wT = 1 and
wq = 1. For the “simplified” forms of DPLE, they are equal to (0, 1), (1, 0) and (0, 0).
As previously mentioned, qb(0, t) = qb(L, t) = 0 and the appropriate boundary conditions

are of the form (Eq. (2.14)):
— for x = 0

∂T (x, t)

∂x
+ τT
∂2T (x, t)

∂t∂x
+ wT

τ2T
2

∂3T (x, t)

∂t2∂x
= 0 (3.3)

— for x = L

∂T (x, t)

∂x
+ τT
∂2T (x, t)

∂t∂x
+ wT

τ2T
2

∂3T (x, t)

∂t2∂x
= 0 (3.4)

The initial condition is also given for t = 0

T (x, 0) = Tp
∂T (x, t)

∂t

∣

∣

∣

∣

∣

t=0

= u(x)
∂2T (x, t)

∂t2

∣

∣

∣

∣

∣

t=0

= v(x) (3.5)

where Tp is the initial temperature, while u(x) and v(x) are known functions.
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4. Numerical algorithm

The algorithm presented below is based on the implicit scheme of the finite difference method
(FDM).

Let T fi = T (xi, f∆t), where ∆t is the time step, xi = ih (h is the geometrical mesh step)
and f = 0, 1, . . . , F . Taking into account initial conditions (3.5), on the assumption that u(x) =
v(x) = 0, one has T 0i = T

1
i = T

2
i = Tp. For the transition t

f−1 → tf (f  3), the approximate
form of equation (3.2) resulting from the introduction of adequate differential quotients is as
follows

T fi − T
f−1
i

∆t
+ τq
T fi − 2T

f−1
i + T f−2i
(∆t)2

+ wq
τ2q
2

T fi − 3T
f−1
i + 3T f−2i − T f−3i
(∆t)3

= a
T fi−1 − 2T

f
i + T

f
i+1

h2
+
aτT
∆t

(T fi−1 − 2T
f
i + T

f
i+1

h2
−
T f−1i−1 − 2T

f−1
i + T f−1i+1
h2

)

(4.1)

+wT
aτ2T
2(∆t)2

(T fi−1 − 2T
f
i + T

f
i+1

h2
− 2
T f−1i−1 − 2T

f−1
i + T f−1i+1
h2

+
T f−2i−1 − 2T

f−2
i + T f−2i+1
h2

)

+
1

c
Qfi +

τq
c

(∂Q

∂t

)f

i
+ wq
τ2q
2c

(∂2Q

∂t2

)f

i

After mathematical transformations, one has

−
a[2(∆t)2 + 2τT∆t+ wT τ

2
T ]

2h2(∆t)2
T fi−1 +

[2(∆t)2 + 2τq∆t+ wqτ
2
q

2(∆t)3

+
2a[2(∆t)2 + 2τT∆t+ wT τ

2
T ]

2h2(∆t)2

]

T fi −
a[2(∆t)2 + 2τT∆t+ wT τ

2
T ]

2h2(∆t)2
T fi+1

=
2(∆t)2 + 4τq∆t+ 3wqτ

2
q

2(∆t)3
T f−1i −

2τq∆t+ 3wqτ
2
q

2(∆t)3
T f−2i

+
wqτ

2
q

2(∆t)3
T f−3i −

aτT (∆t+ wT τT )

h2(∆t)2
(T f−1i−1 − 2T

f−1
i + T f−1i+1 )

+
awT τ

2
T

2h2(∆t)2
(T f−2i−1 − 2T

f−2
i + T f−2i+1 ) +

1

c
Qfi +

τq
c

(∂Q

∂t

)f

i
+ wq
τ2q
2c

(∂2Q

∂t2

)f

i

(4.2)

Denoting

A = −
a[2(∆t)2 + 2τT∆t+ wT τ

2
T ]

2h2(∆t)2
B =
2(∆t)2 + 2τq∆t+ wqτ

2
q

2(∆t)3
− 2A

Cfi =
2(∆t)2 + 4τq∆t+ 3wqτ

2
q

2(∆t)3
T f−1i −

2τq∆t+ 3wqτ
2
q

2(∆t)3
T f−2i +

wqτ
2
q

2(∆t)3
T f−3i

−
aτT (∆t+ wT τT )

h2(∆t)2
(T f−1i−1 − 2T

f−1
i + T f−1i+1 ) +

awT τ
2
T

2h2(∆t)2
(T f−2i−1 − 2T

f−2
i + T f−2i+1 )

+
1

c
Qfi +

τq
c

(∂Q

∂t

)f

i
+ wq
τ2q
2c

(∂2Q

∂t2

)f

i

(4.3)

one obtains

AT fi−1 +BT
f
i +AT

f
i+1 = C

f
i (4.4)

The FDM equation resulting from the boundary condition for x = 0 is of the form

T f1 − T
f
0

h
+
τT
∆t

(T f1 − T
f
0

h
−
T f−11 − T f−10

h

)

+
wT τ

2
T

2(∆t)2

(T f1 − T
f
0

h
− 2
T f−11 − T f−10

h
+
T f−21 − T f−20

h

)

= 0

(4.5)
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or

− [2(∆t)2 + 2τT∆t+ wT τ
2
T ]T
f
0 + [2(∆t)

2 + 2τT∆t+ wT τ
2
T ]T
f
1

= (2τT∆t+ 2wT τ
2
T )(T

f−1
1 − T f−10 )− wT τ

2
T (T

f−2
1 − T f−20 )

(4.6)

Let us denote

D = 2(∆t)2 + 2τT∆t+ wT τ
2
T E = 2τT∆t+ 2wT τ

2
T (4.7)

then

−DT f0 +DT
f
1 = E(T

f−1
1 − T f−10 )− wT τ

2
T (T

f−2
1 − T f−20 ) (4.8)

In a similar way, for x = L, one has

−DT fn−1 +DT
f
n = E(T

f−1
n − T f−1n−1 )− wT τ

2
T (T

f−2
n − T f−2n−1 ) (4.9)

So, the final form of the system of equations corresponding to the transition tf−1 → tf (f  3)
is the following

−DT f0 +DT
f
1 = E(T

f−1
1 − T f−10 )− wT τ

2
T (T

f−2
1 − T f−20 )

AT fi−1 +BT
f
i +AT

f
i+1 = C

f
i i = 1, 2, . . . , n− 1

−DT fn−1 +DT
f
n = E(T

f−1
n − T f−1n−1 )− wT τ

2
T (T

f−2
n − T f−2n−1 )

(4.10)

So, the transition from tf−1 to tf (f  3) requires solving of the system of equations with a
three-band main matrix which is the fastest solved using the Thomas algorithm.

5. Examples of computations

Thin metal films (L = 100 nm) made of chromium, nickel and gold have been considered.
The surface x = 0 of the domain is subjected to the laser pulse. The parameters determi-
ning the capacity of the internal heat source (Eq. (3.1)) are equal to I0 = 13.7 J/m

2, tp = 0.1 ps,
δ = 15.3 nm, R = 0.93. The initial temperature of the domain equals Tp = 300K, while the
initial values of functions are u(x) = 0, v(x) = 0. Differential mesh parameters are n = 1000,
∆t = 0.0001 ps.
At the stage of numerical computations, constant values of thermophysical parameters have

been assumed (mainly due to lack of other data in the literature) – see Table 1.

Table 1. Thermophysical parameters (Tzou, 2015)

Chromium Gold Nickel

c [MJ/(m3K)] 3.21484 2.4897 4

λ [W/(mK)] 93 315 90.8

τq [ps] 0.136 8.5 0.82

τT [ps] 7.86 90 10

Computations have been performed in versions corresponding to wT = 0, wq = 0 (first-order
DPLE), wT = 1, wq = 1 (second-order DPLE), wT = 0, wq = 1 and wT = 1, wq = 0 (mixed
order DPLE). Additionally, for comparative purposes, numerical solutions of the classical Fourier
problems have been also found. The results are presented in the form of heating/cooling curves
at the irradiated surface. The set of solutions for the chromium layer is shown in Fig. 1. For
the other materials (Figs. 2 and 3), the solutions corresponding to the Fourier model, wT = 0,
wq = 0 and wT = 1, wq = 1 are distinguished. The discussion of the results obtained will be
carried out in the next Section.
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Fig. 1. Temperature history at the irradiated surface for different models (chromium)

Fig. 2. Temperature history at the irradiated surface for different models (gold)

6. Conclusions

Different (in the sense of the order) models using the dual phase lag equation give different
results. Here, one can see some regularities. In relation to the model based on the second-order
DPLE, the solution resulting from the first-order equation is clearly overstated. This is the case
for all the materials in question. The fact that the Fourier model gives a solution over DPLE
has been repeatedly confirmed in numerous papers. This is a natural consequence of the delay
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Fig. 3. Temperature history at the irradiated surface for different models (nickel)

times introduced. In the case of mixed models, the omission of the component containing τ2T
(Eq. (2.11)) leads to results close to the solution of the first-order DPLE – see Fig. 1. On the
other hand, the omission of the component containing τ2q (Eq. (2.12)) gives a solution similar to
the solution of the second-order DPLE. The same trend is observed for the remaining materials.
This results from the much larger (in the case of metals) value of the thermalization time versus
the relaxation one. Therefore, more components of the Taylor series should be included on the
right hand side of the generalized Fourier law. Summing up, the problems connected with the
modeling of thermal processes in metal microdomains should be solved using the second-order
dual phase lag equation. If the delay times vary less, then the solution based on the first-order
model is sufficiently accurate.
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