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The transitional flow in rotating cavity is investigated numerically by
Direct Numerical Simulation (DNS), Large Eddy Simulation (LES) and
theoretical (LSA) methods. LSA results coupled with accurate numeri-
cal DNS and LES computations based on an efficient pseudo-spectral
Chebyshev-Fourier method, brings new insight into the spatio-temporal
characteristics of the isothermal and not-isothermal flows in the rotating
cavities. DNS and LES computations have been performed for a wide
range of Reynolds numbers to analyze different stages of the transition
process. Computations have been performed for different geometrical
configurations, including co- and counter-rotating cavities with through-
flow.
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1. Introduction

The flow in rotating disks system is not only a subject of fundamental in-
terest but it is also a topic of practical importance. Typical configurations
are cavities between the rotating compressors and turbines’ disks. Numerous
works have been recently devoted to investigation of the instabilities, associa-
ted with a single disk flow and with a differently rotating disks flow, cf. Serre
et al. (2001a,b, 2004), Lingwood (1997), Tuliszka-Sznitko and Soong (2000),
Tuliszka-Sznitko et al. (2002), Itoh (1991). For the high rotation rate, the flow
in a rotor/stator cavity consists of two boundary layers, of the Ekman type
on the rotating disk and of the Bödewadt type on the stationary disk, sepa-
rated by an inviscid rotating core. The transition process in both layers is
related to the type I and type II generic linear instabilities. Type I instability
is the inviscid instability. The mechanism of type II instability is related to the
combined effects of the Coriolis and viscous forces. The instability structures
in the rotor/stator cavity were investigated numerically and experimentally
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among others by Dijkstra and van Heijst (1983), Serre et al. (2001a, 2004),
Gauthier et al. (2002), Schouveiler et al. (1999, 2001). The stability of co- and
counter-rotating disks’ cavity was studied by Gauthier et al. (2002) and Moisy
et al. (2004).

Non-isothermal flow conditions were also considered (Mochizuki and Yang
Wen-Jei, 1986; Tuliszka-Sznitko and Soong, 2000; Tuliszka-Sznitko and Zie-
liński, 2006a), showing that the thermal effects and the rotation-induced bu-
oyancy become influential on the stability characteristics and on the critical
conditions. The most interesting from point of view of applications are cases
with a superimposed radial outflow of cooling air, which are often used to
remove heat from co-rotating turbine discs. Many experimental and numeri-
cal investigations have been conducted in an attempt to understand this kind
of flows and to use expensive cooling air more effectively (Bohn et al., 1994;
Owen and Rogers, 1995; Chew et al., 1984).

DNS method is mostly used to investigate transitional flow between ro-
tating disks by solving 3D Navier Stokes, continuity and, in the case of not-
isothermal flow, energy equations. With DNS all relevant length-scales and
time-scales of motion are resolved. However, the required computational re-
courses are large because CPU time increases as Re3R. Due to the CPU time
requirements, computations are limited to flows of low or moderate Reynolds
number. It means that only transitional or weakly turbulent flow is computed
by DNS. For high Reynolds number the RANS method is commonly used in
which only the mean flow is computed by solving Reynolds – averaged Navier-
Stokes equations and the effect of turbulence on the mean flow is modeled.
The computational cost is small in comparison with the cost of DNS, however
capability of the method is limited. The existing models of turbulence, mostly
using the isotropy assumption, are not sufficient for numerical investigations
of the rotating flows. Large Eddy Simulation (LES) is an intermediate ap-
proach in which the effect of large scales is directly computed and only the
small subgrid scales are modeled. Since small scales are more isotropic than
the large ones, it should be possible to parameterize them using simpler and
more universal models than the RANS models.

In the paper, we present our theoretical and numerical investigations on
the transitional isothermal and non-isothermal flows in rotating cavity. Our
early LSA computations were used to enlighten the DNS and LES results with
respect to type I and II instabilities. Moreover, the absolute instability regions
which are supposed to be strongly connected with the turbulent breakdown
process were identified by the LSA method. The three-dimensional DNS and
LES computations have been performed for an annular roror/rotor cavity of
aspect ratio L = 9 and curvature parameters Rm = 1.5, 3.0. DNS results
obtained for the cylindrical cavity of aspect ratio L = 5 (published in Serre
et al., 2004) are also discussed.
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For the not-isothermal flow the Boussinesq approximation was used. Non-
isothermal computations allowed us to analyze the influence of the thermal
Rossby number on the instability structures and on critical parameters. The
distributions of the local Nusselt numbers along the radius of the disks are pre-
sented. The isothermal and non-isothermal flows with a superimposed radial
outflow of cooling air are analyzed.

In the present paper the geometrical and mathematical models are presen-
ted in Section 2. The LSA, DNS and LES numerical solution techniques are
described in Section 3. In Sections 4 and 5 the obtained results are analyzed.
In Section 6 concluding remarks are given.

2. Geometrical and mathematical model

The geometrical model is a cavity between co- and counter-rotating disks with
and without throughflow (Fig. 1). The cavity, bounded by an outer cylinder
of radius R∗1 and height 2h is called cylindrical and the cavity bounded by
inner and outer cylinders of radiuses R∗0 and R

∗
1 is called annular. The faster

rotating disk rotates at uniform angular velocity Ω∗1 = Ω
∗
1ez, ez being the

unit vector. The slower rotating disk rotates at angular velocity Ω∗2 = sΩ
∗
1 .

Positive s means that both disks rotate in the same direction and negative s
means that disks rotate in opposite directions. The flow is controlled by the
following physical parameters: the Reynolds number based on the external
radius of the disks and on the angular velocity of the faster rotating disk Ω∗1 ,

ReR = R
∗2
1 Ω

∗
1/ν
∗, the local Reynolds number Reδ = r

∗/δ =
√
r∗2Ω∗1/ν

∗, the

aspect ratio L = (R∗1 − R
∗
0)/2h and the curvature parameter Rm = (R

∗
1 +

R∗0)/(R
∗
1 − R

∗
0). In the case of similarity solution considered in Section 3,

radiuses of the disks are infinite (L→∞, Rm = 1). The temperatures of the
upper and lower disk are denoted by T ∗1 and T

∗
2 , respectively.

Fig. 1. Schematic picture of a rotating cavity
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The flow is described by the continuity, Navier-Stokes and energy equ-
ations. The governing equations are written in a cylindrical polar coordinate
system (r∗, z∗, ϕ), with respect to the rotating frame of reference (it is appro-
priate for explicit presentation of the Coriolis and centrifugal forces)

∇ · V ∗ = 0

ρ∗
∂V ∗

∂t∗
+ ρ∗(V ∗ · ∇)V ∗ + ρ∗Ω∗1 × (Ω

∗

1 × r
∗) + 2ρ∗Ω∗1 × V

∗ =

= −∇p∗ + µ∗∆V ∗ (2.1)

∂T ∗

∂t∗
+ (V ∗ · ∇)T ∗ = a∗∆T ∗

where: t∗ is time, T ∗ is temperature, p∗ is pressure, V ∗ is the velocity vector,
a∗ is the thermal diffusivity. The time, space and velocity are normalized as
follows: (Ω∗1)

−1, h and Ω∗1R
∗
1. The dimensionless axial co-ordinate is z = z

∗/h,
z ∈ [−1, 1]. The radial coordinate is normalized additionally to obtain the
domain [−1, 1] requested by the spectral method based on the Chebyshev
polynomials r = (r∗/Lh − Rm). The dimensionless component of velocity
in radial, azimuthal and axial directions are u, v and w, respectively. The
dimensionless temperature is defined as Θ = (T ∗ − T ∗1 )/(T

∗
2 − T

∗
1 ). To take

into account the buoyancy effects induced by the involved body forces the
Boussinesq approximation is used. No slip boundary condition is applied to
all rigid walls, so u = w = 0. For the azimuthal velocity component, the
boundary conditions are v = (Rm + r)/(Rm + 1) on the top of the faster
rotating disk, and v = s(Rm + r)/(Rm + 1) on the slower rotating disk.

3. Numerical methods

3.1. Linear stability theory

In LSA method the flow parameters are decomposed into the stationary
basic state and non-stationary disturbance field. A similarity model of thermal
flow with assumption of the Boussinesq fluid was formulated for generating
basic solutions of axially symmetric flows (Tuliszka-Sznitko and Soong, 2000).
In LSA we assume that the perturbation quantities have the following normal-
mode form

[u′, v′, w′, p′, τ ′]⊤ = [û, v̂, ŵ, p̂, τ̂ ]⊤ exp(α∗r∗ +mϕ− ω∗t∗) + cc (3.1)

where û, ŵ, v̂, p̂, τ̂ are the dimensional amplitudes of the three components
of velocity (in r∗, ϕ, z∗ directions), pressure and temperature, respective-
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ly, α∗ and β∗ = m/r∗ are the components of wave number k∗ in the ra-
dial and azimuthal directions, respectively, m is the number of spiral vorti-
ces, ω∗ is the frequency and t∗ is time. Asterisk denotes dimensional values.
The co-ordinate system is located on the disk under consideration. The li-
near stability analysis equations plus the homogeneous boundary conditions
(û(z∗) = v̂(z∗) = ŵ(z∗) = τ̂(z∗) = 0 at z∗ = 0 and z∗ = 2h) constitute an
eigenvalue problem which is solved in a global manner (Tuliszka-Sznitko and
Soong, 2000).

3.2. Direct numerical simulation

In the DNS method, the numerical solution is based on a pseudo-spectral
collocation Chebyshev-Fourier-Galerkin approximation. The approximation of
the flow variables Ψ = (u,w, v, p,Θ) is given by a development in truncated
series (Serre et al., 2001a)

ΨNMK(r, z, ϕ, t) =

K/2−1∑

p=−K/2

N∑

n=0

M∑

m=0

Ψ̂nmp(t)Tn(r)Tm(z)e
ipϕ

−1 ¬ r
z ¬ 1
0 ¬ ϕ ¬ 2π

(3.2)
where N , M and K are the numbers of collocation points in the radial, axial
and azimuthal directions, respectively. Tn(r) and Tm(z) are the Chebyshev
polynomials. The time scheme is semi-implicit and second-order accurate. It
corresponds to a combination of the second-order backward differentiation
formula for the viscous diffusion terms and the Adams-Bashforth scheme for
the non-linear terms. The method uses a projection scheme to maintain the
incompressibility constraint. In the case of cylindrical cavity, the singularity
introduced by the axis at r∗ = 0, requires a dependent variable transformation
Ṽ ∗ = r∗V ∗, p̃∗ = r∗p∗, as proposed by Serre et al. (2001a).

3.3. Large eddy simulation

We used the dynamic model for large eddy simulation to optimalize the
subgrid-scale mode coefficient. This method is used in conjunction with a new
version of the dynamic Smagorinski eddy viscosity model proposed by Mene-
veau et al. (1996). In this version, called a Lagrangian subgrid-scale model, the
Germano et al. (1991) identity was averaged for some time along fluid pathli-
nes. In our incompressible computations we proceeded as follows: the filtering
operation was performed only in azimuthal direction using the Gaussian func-
tion. Coefficient field is computed from the following equation (Meneveau et
al., 1996)

C2S =
LLM
LMM

(3.3)



690 E. Tuliszka-Sznitko, A. Zieliński

where

Ln+1LM (x) = H
{
ε[LijMij]

n+1(x) + (1− ε)LnLM (x− u
n∆t)

}

Ln+1MM (x) = ε[MijMij ]
n+1(x) + (1− ε)LnMM (x− u

n∆t) (3.4)

ε =
∆t/T n

1 +∆t/T n

and where x is the position along the pathline, ∆t is a period of time over
which averaging is performed, n and n+1 mean two consecutive time sections,
u is an averaged velocity along the fluid-particle trajectory, H(x) is the ramp
function (H(x) = x if x > 0, H(x) = 0 if x < 0). T is the relaxation time
scale, which controls the memory of the Lagrangean averaging. Some possible
choices for T were given by Meneveau et al. (1996). In our computations we
define T as follows

T n =
3

2
∆(MnijM

n
ij)
−
1

4 (3.5)

The finally obtained field of CS is averaged in azimuthal direction.

4. Linear stability theory results

LSA computations were performed for the co- and counter-rotating disks and
for the thermal Rosby number from −0.1 to 0.1 (Tuliszka-Sznitko and Soong,
2000). For the rotor/stator case the flow consists of two disjoined boundary
layers on both disks, separated by an inviscid core which rotates as a solid
body. As in Itoh (1991), the solid-body angular velocity is constant and equ-
al to v∗/Ω∗1r

∗ = −0.687 in the rotating frame of reference. In order to take
into account the buoyancy effects, the Boussinesq approximation is invoked.
In the case of non-isothermal flow, the influence of the thermal effects and
the rotational-induced buoyancy on stability characteristics and the critical
conditions becomes important. We have found two types of instability in both
boundary layers: type II and type I. In the Bödewadt layer on the stationary
disk, the onset of the type II instability has been found at ReδcII = 34.7.
The type II instability exists only in a narrow range of Reδ, disappearing at
Reδ = 68. The type I instability occurs at a slightly larger Reynolds number,
ReδcI = 47.5. The exemplary iso-lines of the temporal amplification rate ωi
obtained at different local Reynolds numbers Reδ = 65, 80 and 130 are shown
in the plane of the wave-angle and wave-number (ε, k) in Fig. 2. Our results
show that the Ekman layer on the rotating disk is much more stable than
the Bödewadt layer with respect to type I and type II instabilities. The on-
set of type II instability has been found at ReδcII = 90.23 and type I at
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ReδcI = 278.6. Our isothermal linear stability results of the Bödewadt and
Ekman layers characterizing the type I and type II instabilities are in very
good accordance with the results of Itoh (1991).

Fig. 2. Iso-lines of ωi = const in the stationary disk boundary layer and at different
local Reynolds numbers, in the plane of the wave-angle and wave-number (ε, k)

(Tuliszka-Sznitko and Soong, 2000; Tuliszka-Sznitko et al., 2002)

In order to analyze the effect of thermal conditions we have extended our
investigations (Tuliszka-Sznitko and Soong, 2000) to the non-isothermal class
of flow. Calculations have been performed for different thermal Rossby num-
bers B = β(T ∗2 − T

∗
1 ); however, for validity of the Boussinesq approximation,

the values of B have been limited to the range |B| ¬ 0.1. From the definition
of the thermal Rossby number, the positive and negative values of B stand
for T ∗2 > T

∗
1 (hotter stator) and T

∗
2 < T

∗
1 (hotter rotor), respectively. When

the stator is cooled (B < 0), buoyancy enhances in the rotor-stator cavity,
producing a secondary flow which develops in opposite direction to the basic
flow. On the contrary, when the rotor is cooled (B > 0), the buoyancy driven
secondary flow enforces the basic rotation driven flow. For B > 0, the fluid
near the rotating disk is cooler than the fluid near the stationary disk. We
have found that cooling of the stationary disk B < 0, stabilizes the flow with
respect to both the type I and type II instabilities (Fig. 3a) by increasing the
critical Reynolds numbers.

We use the Briggs (1964) criterion with a fixed wave number in the spanwi-
se direction β to determine the region of absolute instability (Tuliszka-Sznitko
et al., 2002). We have found that almost the entire layer on the stationary disk
is absolutely unstable. The critical Reynolds number of the absolutely unstable
flow has been found at Reδca = 48.5. On the rotating disk, the critical Rey-
nolds number of the absolutely unstable flow was determined at Reδca = 562.
In the next step, we extend our absolute/convective calculations to the non-
isothermal class of flow (Tuliszka-Sznitko and Soong, 2000; Tuliszka-Sznitko
et al., 2002). Fig.3b shows the neutral curves of absolutely unstable flow obta-
ined for the stationary disk boundary layer and for different thermal Rossby
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numbers (solid line). Fig. 3b presents also the second families of branch points
(dashed line).

Fig. 3. Comparison of the neutral curves ωr = f(Reδ) in the stationary disk
boundary layer obtained at different thermal Rossby number B; (a) convectively
unstable areas, (b) absolutely unstable areas (dashed lines indicate second family)

(Tuliszka-Sznitko and Soong, 2000; Tuliszka-Sznitko et al., 2002)

5. DNS and LES results

5.1. Cylindrical cavity

In this Section we will analyze shortly the results obtained using the DNS
method for cylindrical rotor/stator cavity of aspect ratio L = 5, with outer
cylinder attached to the stator (Serre et al., 2004). The basic state consists of
two disjoint boundary layers on each disk and of a central inviscid core flow.
The fluid is pumped radially outwards, along the rotating disk (the upper
one) and radially inwards, along the stator. In order to obtain an insight into
the laminar-turbulent transition process in the rotor/stator flow, numerical
simulations have been performed for the Reynolds number close to the critical
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Reynolds number of transition to unsteadiness. We gradually increased the
Reynolds number and over a certain ReR, and we have observed 2D cylindri-
cal vortices propagating towards the axis of cavity in the stator’s boundary
layer. Cylindrical vortices are interpreted as the type II instability. Above a
second critical Reynolds number, 3D spiral structures appeared (interpreted
as type I instability) in the area near the outer end-wall. Spiral vortices pro-
pagate towards the outer cylinder i.e. in opposite direction to the direction
of the basic state. This behavior could suggest (in accordance with the LSA
results) that the area of dominance of type I in the stator boundary layer
may be absolutely unstable. Exemplary structures obtained at ReR = 13200
at the transient times t = 60 and t = 320 are presented in Fig. 4. This pro-
cedure was repeated for the flow additionally disturbed by superimposing on
the initial condition at every consecutive ReR, the 3D perturbation function
of the general form η sin(pϕ), where p is an arbitrary number corresponding
to an azimuthal wavelength and η is the amplitude growth rate. Calculations
have been performed for η = 0-3.5 and for p = 2π/4. We have found that for
η = 0 the critical Reynolds number of transition to unsteadiness equals 12300.
The amplitudes of disturbances in the stationary disk layer are much larger
than the corresponding amplitudes in the rotating disk’s boundary layer. This
result is in good agreement with the similarity solution presented in the pre-
vious section. From the time history of the axial component of velocity in the
stationary disk boundary layer (Fig. 5), we can see that disturbances are first
damped and the flow reaches a steady state. Then we observe the beginning
of the exponential growth of disturbances. Finally, these oscillations reach an
asymptotic finite-amplitude periodic state with a constant angular frequency
σ = ω∗Reδ ≈ 1.1.

Fig. 4. Iso-surface of fluctuations of the axial component of velocity at
ReR = 13200, η = 0; (a) coexistence of annular and spiral structures related to
Bödewadt layer instability during the transient time t = 60, (b) final state showing

only 12 spiral arms (Serre et al., 2004)
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Fig. 5. Time histories of the axial component of velocity in the stationary disk
boundary layer; ReR = 13200, η = 0 (Serre et al., 2004)

5.2. Annular cavity

In our investigations we performed computations for the annular cavities
with co- and counter-rotating disks of different aspect ratios L and different
curvature parameters Rm (Tuliszka-Sznitko and Zieliński, 2006a,b). However
in this section we have restricted our analysis to the results obtained for L = 9
and Rm = 1.5 and 3.0.

5.2.1. Rotor/stator cavity

We first focused on the steady axisymmetric basic state of the rotor/stator
case. Fig. 6 shows the velocity field in the meridional section (r∗/h, z∗/h, 0)
obtained for the rotor/stator case (s = 0, ReR = 70000, B = 0, the outer end-
wall attached to the rotor and inner end-wall attached to the stator). From
Fig. 6 we can see that the flow consists of two disjoint boundary layers on each
disk and of a central core flow. For arbitrary chosen positive value of s and
very small negative value, the meridional structure is similar to that obtained
for the rotor/stator case.

Fig. 6. Flow in the meridional section, rotor/stator cavity, B = 0, L = 9, Rm = 1.5,
ReR = 70000 (Tuliszka-Sznitko and Zieliński, 2006a,b)

In the annular cavity we observed the same instability structures as in the
cylindrical cavity. In stationary disk’s boundary layer we observed two types
of vortices: 2D cylindrical vortices interpreted as type II instability and 3D
spiral vortices interpreted as type I instability. Fig. 7a shows the iso-lines of
the azimuthal velocity component disturbances, in azimuthal section (r∗/h,
z∗/h = −0.95, ϕ) obtained for L = 9, Rm = 1.5, ReR = 36000 and for outer
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end-wall attached to the stator and the inner one attached to the rotor. For
this configuration in our DNS computations we observed 3 cylindrical vortices
and 23 3D spiral vortices. The iso-lines of the axial velocity component di-
sturbances in the meridional section (r∗/h, z∗/h, ϕ = 0) are shown in Fig. 7c.
The critical Reynolds number of transition to unsteadiness was estimated at
ReR = 34000. Our results were compared with the experimental results obta-
ined by Schouveiler et al. (1999, 2001) for the cavity of aspect ratio L = 8.75,
Rm = 1, ReR = 20900 (the same outer end-wall condition). Schouveiler (1999,
2001) observed also 3 cylindrical vortices and 18 spiral vortices (Fig. 7b). Sim-
lar computations, have been performed for the outer cylinder attached to the
rotor and the inner one attached to the stator. For this configuration the cri-
tical Reynolds number of transition to unsteadiness equaled ∼ 70000 and we
observed 36 spiral vortices in the stationary disk boundary layer (Fig. 7d and
Fig. 7f). These results were compared to the results obtained by Gauthier et
al. (2002) for L = 20.9, Rm = 1 and for the outer cylinder attached to the
rotor (Fig. 7e). We can see that for the considered cavity (L = 9, Rm = 1.5),
the end-wall conditions have significant influence on the critical parameters.
However, this influence is expected to be negligible in the limit of a large
aspect ratio L.

Due to the CPU time requirements, DNS computations are limited to
flows of low or moderate Reynolds numbers. For higher Reynolds numbers, the
computations were performed using LES method. Fig. 8 shows the iso-lines of
axial velocity component disturbances in the meridional section (r∗/h, z∗/h, 0)
obtained for the rotor/stator case and for ReR = 36000, 50000 and 75000
(s = 0, L = 9, Rm = 1.5, B = 0, the outer end-wall attached to the stator and
the inner end-wall attached to the rotor). For ReR = 50000 and 75000 the
results were obtained using LES method. The iso-lines of azimuthal velocity
component disturbances in the azimuthal section obtained for ReR = 75000
are presented in Fig. 9. We can see that for ReR = 75000, the flow is at the
last stage of the transition process.

5.2.2. Rotor/rotor cavity

In this section we consider the instability patterns of the flow between
two counter-rotating disks and two cylinders. In the counter-rotating case, the
centrifugal flow induced by the faster disk (upper one) recirculates along the
slower rotating disk (lower one) towards the inner end-wall. This inward flow
meets the outward radial flow induced by the slower rotating disk, leading
to a stagnation area where the radial component of the velocity vanishes. In
our computations we increased slowly the rotation of the upper disk ReR upper
from 6000 to 60000, with a fixed value of the bottom one ReR lower = 3000.
The exemplary results are presented in Fig. 10. We can see that with incre-
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Fig. 7. (a) The iso-lines of azimuthal velocity component disturbances in the
azimuthal section, L = 9, Rm = 1.5, ReR = 36000, the outer end-wall attached to
the stator, (b) Schouveiler et al. (2001), experimental result, Rm = 1, L = 8.75,
(c) the iso-lines of azimuthal velocity component disturbances in the azimuthal
section, z = −0.95, L = 9, Rm = 1.5, ReR = 75000, the outer end-wall attached to
the rotor, (d) Gauthier et al. (2002) experimental result, Rm = 1, L = 20.9, (e) the
iso-lines of axial velocity component disturbances in the meridional section, L = 9,
Rm = 1.5, ReR = 36000, (f) the iso-lines of axial velocity component disturbances in
the meridional section, L = 9, Rm = 1.5, ReR = 75000 (Tuliszka-Sznitko and

Zieliński, 2006a,b)

asing ReR upper (with decreasing |s|), the stagnation circle moves from the
outer cylinder toward the inner one. In Figs. 10a,b for ReR upper = 6000 and
20000 we can see that the boundary layers on the disks are separated by the
shear layer. This free shear layer, which separates two regions of opposite an-
gular rotations, breaks the azimuthal symmetry of the flow. The instability
structures of free shear layer are observed for much lower Reynolds numbers
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Fig. 8. The iso-lines of azimuthal velocity component disturbances in the meridional
section, L = 9, Rm = 1.5, ReR = 36000, 50000, 75000

Fig. 9. The iso-lines of azimuthal velocity component disturbances in the azimuthal
section z = −0.95, obtained for ReR = 75000, L = 9, Rm = 1.5, s = 0, B = 0

Fig. 10. The flow and the corresponding iso-lines of axial velocity component
disturbances in meridional section obtained for ReR lower = 3000, and for

ReRupper = 6000, 20000, 600000, L = 9, Rm = 1.5 (Tuliszka-Sznitko and Zieliński,
2006a)
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than the critical Reynolds numbers of type II and I instability in the rota-
ting disks boundary layers. For some combination of parameters (ReR lower ,
ReR upper ), interaction between the Ekman layer and the still existing she-
ar layer results in negative spirals. The negative spiral vortices obtained for
ReR upper = 60000 are presented in Fig. 11a (azimuthal section). In Fig. 11b the
experimental results obtained by Gauthier for L = 20.9 are shown. We can
see very good agreement between our numerical results and the experimental
results obtained by Gauthier et al. (2002), Fig. 11.

Fig. 11. (a) The iso-lines of azimutal velicity component disturbances in azimuthal
section obtained for: ReR lower = 3000 and for ReR upper = 60000, z = 0.844
(Tuliszka-Sznitko and Zieliński, 2006a), (b) experimental results of Gauthier et

al. (2002)

5.3. Rotor/rotor configuration with throughflow

In this section we analyze the flow in a rotor/rotor cavity of s = 1 (both
disks rotate in the same direction with the same rotational speed) with thro-
ughflow. We consider a radial outflow of fluid from a source at the inner cy-
linder to a sink at the outer cylinder. Computations with throughflow require
changes in the boundary conditions at the cylinders (in comparison with cases
of impermeable cylinders considered in previous chapters). For the inner and
outer cylinders we have the following boundary conditions:

— for r = −1.0

u =
CwL(Rm + 1)

2

4πReR(Rm + r)
v = w = 0

— for r = 1.0

u =
CwL(Rm + 1)

2

4πReR(Rm + r)
v = w = 0

where Cw = V̇
∗/R∗1ν

∗ is a dimensionless volume flow rate. In our computations
we proceeded as follows: with the fixed Reynolds number we slowly increased
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Cw and the result obtained for smaller Cw was used as the initial condition
for higher Cw. The basic state is steady and axisymmetric. The exemplary
meridional velocity field obtained for ReR = 200000 and Cw = 700 (L = 9,
Rm = 3) is displayed in Fig. 12a. We can see that for isothermal radial outflow
from a uniform source at R∗0 to a uniform sink at R

∗
1, the meridional flow can

be divided into three regions: an inner source, separated Ekman layers on each
disk and an outer sink layer. In our computations, in order to accelerate the
transition to unsteadiness, the axisymmetric basic flow was perturbed near the
inner cylinder by superimposing a disturbance of the following form: η sin(pϕ)
(as in Section 5.1). Results presented in Fig. 12b were obtained for p = 1/4
and η = 3.4. We can see that the most unstable regions are sink and source
areas. Four pairs of 2D counter-rotating rolls in both the Ekman layers are
visible. Superimposed disturbance near the inner end-wall produced the rise
of weak 8 spiral vortices in this area.

Fig. 12. The mean flow (a) and the iso-lines of axial velocity component
disturbances in meridional section obtained for ReR = 200000, Cw = 700, B = 0,

L = 9, Rm = 3 (Tuliszka-Sznitko and Zieliński, 2006a)

5.4. Non-isothermal flow in annular cavity

The heat transfer in flow between two rotating disks is a problem of great
importance to the gas-turbine air cooling designer. In this chapter we present
our exemplary results obtained for the non-isothermal flow to estimate the
influence of the thermal Rossby number on the basic state, distribution of the
local Nusselt numbers and on the instability structures.

5.4.1. Rotor/stator configuration

The influence of the thermal Rossby number on the basic state is small.
However, we have found a significant influence of B on the critical Reynolds
number of transition to unsteadiness. As we expected, the critical Reynolds
number of transition to unsteadiness in the stationary disk’s boundary layer
increases with decreasing B. The instability structures obtained for the non-
isothermal flow are roughly the same as those for the incompressible cases. In
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the rotor/stator cases we observed 2D cylindrical vortices for the lower Rey-
nolds number and positive 3D spiral vortices for the higher Reynolds number,
however we have found that the number of spiral vortices decreases with in-
creasing B. To verify our non-isothermal results we compared distribution of
the local Nusselt numbers on the rotating disk (L = 9, Rm = 1.5, outer end
wall attached to the stator and inner one to the rotor) with the experimental
data of Mochizuki and Yang Wen-Jei (1986) and with the results obtained for
a single heated rotating disk using the similarity analysis. Agreement of the
results is good. Exemplary distributions of Nu along the radius r∗/h obta-
ined from DNS computations and from the similarity equations for the single
heated rotating disk for B = −0.1, ReR = 25000, 35000, 47000 are presented
in Fig. 13. The local Nusselt number is calculated from the following equation

Nu =
α∗r∗

λ∗
= −
(∂Θ
∂z

)

w

r∗

h

1

Θw −Θc
(5.1)

where ΘC is the dimensionless temperature of inviscid core, λ
∗ is the coeffi-

cient of thermal conductivity, α∗ is the coefficient of heat transfer and index w
a indicates parameter at the wall. In Fig. 13 the areas near the end-walls we-
re cut off because of difficulties with definition of temperature ΘC near the
cylinders. From Fig. 13 we can see that the DNS and the similarity solutions
(straight broken lines in Fig. 13) coincide well along a large part of the rotor.

Fig. 13. The exemplary distributions of the local Nusselt number on the rotor
obtained for B = −0.1, ReR = 25000, 35000, 47000 (Tuliszka-Sznitko and Zieliński,

2006a)

5.4.2. Rotor/rotor configuration with throughflow

The most interesting from the point of view of turbomachinery air cooling
devices are examples with the superimposed radial outflow. In Fig. 14 the iso-
lines of temperature and disturbances of the axial velocity component obtained
for L = 9, Rm = 3, ReR = 200000, B = 0.1, t = 16 and Cw from 300 to 700
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are displayed. Both disks rotate in the same direction with the same angular
speed and on both disks Θ = 1. The boundary conditions at the inner and
outer cylinders are as follows:

— for r = −1.0

u =
CwL(Rm + 1)

2

4πReR(Rm + r)
v = w = 0 Θ = 0

— for r = 1.0

u =
CwL(Rm + 1)

2

4πReR(Rm + r)
v = w = 0 Θ = 1

Figures 14 show the effectiveness of radial cooling; the areas dominated by
coming cooling air are laminar for all considered mass flow rates.

Fig. 14. The iso-lines of temperature and disturbances of the axial velocity
component obtained for L = 9, Rm = 3, ReR = 200000, B = 0.1, t = 16 and

Cw = 300 and 700

6. Conclusions

In the present paper results of numerical simulation of the transitional flow
with heat transfer in a rotating cavity were reviewed. The isothermal and non-
isothermal 3D fluid flows between co- and counter-rotating disks enclosed by
two rotating cylinders, were investigated. Computations have been performed
using the DNS, LES and LSA methods. Special attention has been paid to the
basic laminar flow in order to obtain more insight into the onset of the different
instability patterns and their regions of existence. Three different patterns
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have been found: axisymmetrically propagating vortices interpreted as type II
instability, positive spiral vortices interpreted as type I instability and negative
spirals. The first two vortices, i.e. cylindrical vortices and positive spirals were
present in all the considered configurations; cylindrical and annular cavities of
the different aspect ratios and curvature parameters. Negative spirals, which
exist in the counter-rotating configurations, differ significantly from the 2D
and positive 3D vortices. First of all, the negative spirals rotate around the
central axis and the mechanism is not of a cross-flow type; it is probably the
result of interaction between free shear layer and the Ekman layer. We have
found that the negative spirals can co-exist with the positive vortices. These
results were discussed using the experimental results of Gauthier et al. (2002).
Comparison shows a good agreement. Our LSA computations also turned out
to be very useful in interpretation of 2D and positive 3D vortices in terms of
the type II and type I instability. Additionally, the LSA allowed us to identify
the areas of absolutely unstable flow.
The configurations which are most interesting from the point of view of

possible applications are those with the superimposed flow (flow with the
source and sink). For the incompressible configuration we have found similar
instability structures as those in paper by Serre et al. (2001b). We extended
these computations to the non-isothermal cases.
Our non-isothermal results showed that influence of the thermal Rossby

number on instability structure is not large, however we have found significant
influence B on the critical Reynolds number of transition to unsteadiness.
Distributions of the local Nusselt numbers along the radius of the disk show a
good agreement with the experimental data of Mochizuki and Yang Wen-Jei
(1986) and with theoretical solutions. Computations showed effectiveness of
the radial cooling.
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Niestabilność przepływów w wirujących przestrzeniach

Streszczenie

W pracy dokonano analizy wyników dotychczasowych prac własnych nad statecz-
nością przepływów w wirujących przestrzeniach. Badania te prowadzono metodą li-
niową, metodą DNS i LES. Do trójwymiarowych obliczeń numerycznych zastosowano
metodę spektralnej kolokacji bazującą na szeregach Czebyszewa i szeregu Fouriera. Do
metody LES zastosowano metodę Lagrangea zaproponowaną przez Meneveau. Głów-
nym celem było zbadanie struktur niestabilnościowych występujących w wirujących
przestrzeniach. Wyniki te porównano z wynikami prac eksperymentalnych innych au-
torów. Badano wpływ termicznej liczby Rossbiego na rozkłady liczb Nusselta wzdłuż
promienia tarcz oraz efektywność chłodzenia promieniowego tarcz za pomocą napły-
wającego chłodnego czynnika.
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