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The paper is aimed at analyzing the influence of external flow on abso-
lutely unstable modes of a ring jet with recirculation zone. The double
ring jet is also considered. The investigation is carried out by means of
the linearized, inviscid spatio-temporal stability theory. Calculations are
based on the shooting method for asymmetric azimuthal mode.
During the numerical experiment, absolutely unstable modes were iden-
tified. No major influence of the external stream on the stability of the
flow was also proved.
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1. Introduction

The linear spatio-temporal theory is applied in order to show the most unstable
modes of axisymmetric jets and to analyze the influence of an external co-
flow on the convective and absolute instabilities. The applied spatio-temporal
analysis follows the formulation of Briggs (1964) and Bers (1983) for plasma
physics. The complex wave number and the complex frequency are used in
the perturbation equation. Using this approach, an absolutely unstable flow
can be defined as the one which has a mode with zero group velocity in the
upper half of the complex frequency plane. If the zero group velocity lies in
the lower half plane, the flow is called convectively unstable. In the field of
fluid mechanics, the concept was comprehensively described by Huerre and
Monkewitz (1990).

The analysis is based mainly on the numerical work of Michalke (1999)
concerning a single ring jet with recirculation zone. Michalke has proved, on
the basis of the inviscid linearized theory, that the flow is only convectively
unstable for the axisymmetric mode and becomes absolutely unstable for the
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first azimuthal mode with back flow greater than −0.3 of the maximum axial
velocity. It seems to be interesting to analyze whether an additional outer
ring jet stabilizes or destabilizes the flow and what is the effect of the second
recirculation zone between both co-axial jets.

The starting point in the research is the configuration considered by Mi-
chalke, i.e. a single jet with recirculation zone. The known solution of the
flow is used to speed up the saddle point searching for further slightly mo-
dified configurations. The iterative procedure is applied, i.e. solution of one
configuration serves as an estimation for the next one. The base flow is first
modified by increasing the outer co-flow up to 0.9 of the maximum velocity.
The changes are sufficiently small to keep the solution close to the previous
one. Next, the second recirculation zone is created by decreasing velocity in
the region between the jets to the level of −0.3 of the maximum velocity. The
final velocity profile is the double annular jet.

Contents of the paper is as follows: Section 2 contains a short introduction
to absolute/convective instability concepts, in Sections 3 and 4 the scope of
the work and numerical procedure are described, results are in Section 5, the
paper is summarized in the last Section 6.

2. Spatio-temporal stability analysis

The classical linearized stability analysis involves a mean parallel flow and an
infinitesimal perturbation superimposed on it. The fluctuations are decompo-
sed into elementary instability waves

p̂(r) exp[i(αx − ωt)] (2.1)

of complex wave number α and complex frequency ω; in the spatial stability
theory the frequency is real whilst the wave number is complex, similarly the
temporal theory considers complex frequency and real wave number. The x
variable is the spatial coordinate in flow direction, r is the radial direction
and t is time. The p̂(r) is an amplitude which satisfies the Orr-Sommerfeld
equation. In these circumstances the differential equation leads to eigenvalue
and the eigenfunction problem, where ω/α is the eigenvalue and p̂(r) the
eigenfunction. Next, according to the stability theory, the flow is stable if the
Green function of the differential equation is zero along all rays x/t = const

lim
t→∞
G(x, t) = 0 for all

x

t
= const (2.2)
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and the flow is unstable if the Green function along at least one ray
x/t = const is infinite

lim
t→∞
G(x, t) =∞ for at least one

x

t
= const (2.3)

Contrary to the predecessors, the spatio-temporal theory distinguishes two
types of instability: convective and absolute. The first one means that initial
perturbation is amplified and convected away from its origin. In the second
type, the perturbation spreads in all directions and eventually contaminates
all spatial positions. It follows that the unstable flow is convectively unstable
if

lim
t→∞
G(x, t) = 0 for

x

t
= 0 (2.4)

and is absolutely unstable if

lim
t→∞
G(x, t) =∞ for

x

t
= 0 (2.5)

The above condition for absolutely unstable flow is necessary but not suffi-
cient. The additional constraint was formulated in plasma physics and is often
referred to Briggs (1964) or Fainberg et al. (1961) condition. It states that the
absolutely unstable flow has a saddle point in the space (α, ω) and the point
is formed by coalescence of an upstream and a downstream α branches – it
is also called a pinching requirement. To find such a saddle point, a map of
α(ω) is constructed where the α branch coalescence can be easily identified.
Additionally, as it was shown by Chomaz et al. (1988), a flow is absolutely
unstable if the saddle point lies within the region

0 < Im(ω) ¬ Im(ω(αm)) (2.6)

The αm is the wave number of the most amplified wave in time.

Exhaustive description of the spatio-temporal theory can be found in the
papers of Bers (1983) or Huerre and Monkewitz (1990).

3. Scope of the work

The starting point of the numerical experiment is the Michalke velocity profile
Michalke (1999)

U(r) = 4BF (r)[1−BF (r)]

F (r) =
1

1 + [exp(ar2)− 1]N
(3.1)

B =
1

2
(1 +

√
1− U0)
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With the parameters U0 = −0.3, N = 1, the profile represents a ring jet
with a back flow on the jet axis. The maximum jet velocity defines the radius
of the jet R, so that Umax = U(R). The nondimensional Michalke profile
– normalized by length R and velocity Umax – is shown in Figure 1. The
nondimensional form will be used in the calculation. For convenience, the
introduced notation is preserved and further in the text all symbols are treated
as nondimensional.

Fig. 1. Velocity profiles: for the base, Michalke profile 3, flow with small external
co-flow (0.3) + and final profile with co-flow (0.9) and back-flow (−0.3) 2

For the velocity shape mentioned above, Michalke had found one saddle
point which satisfied the pinching requirement. The influence of an external
co-flow and secondary back flow on the saddle point locus will be investigated.
The modification of the base profile is done by addition of an outer velocity
profile of the form Michalke and Hermann (1982)

Uouter =
U2
2
−
U2
2
tanh
[
(|r −R2| −R2w)

θ

2

]
(3.2)

The profile has a single ring jet shape with the velocity magnitude U2. R2 is
the distance of the ring from the axis, R2w is the width of the ring and θ con-
trols the mixing layer thickness. The profile is superimposed on the base one
(proposed by Michalke (1982)) in order to keep the Michalke profile unaffected.
Superposition of two velocity profiles created by the above equation with posi-
tive and negative U2 and with the base profile, leads to the final co-axial flow
with two recirculation zones – one on the axis and the second one between
two inflow streams. During the numerical experiment the velocity magnitu-
de U2 varied from 0.1 to 0.9, in the case of co-flow, and from 0 to −0.3
for the back-flow. The recirculation zone is taken into account only for flows
with co-flow greater than 0.3. The remaining parameters of the external flow
are summarized in Table 1. The flows with and without recirculation zone are
shown in Figure 1.
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Table 1. Parameters of the external flow

U2 R2 R2w θ

co-flow 0.1 to 0.9 4 0.4 15

back flow 0 to −0.3 2.8 0.5 10

4. Numerical procedure

The inviscid, linear stability equation (Boguslawski, 2002; Jendoubi and Stry-
kowski, 1994)

d2p̂(r)

dr2
+
(1
r
−
2

U − c

dU

dr

)dp̂(r)
dr
−
(
α2 +

m2

r2

)
p̂(r) = 0 (4.1)

where: c = ω/α – the complex phase velocity, has an asymptotic solution in
the area of zero velocity gradient dU/dr of the form

p̂(r) = C1Im(αr) + C2Km(αr) (4.2)

where: C1, C2 – arbitrary constants; Im, Km – modified Bessel functions of
order m.

The second order differential equation (??) can be transformed to the first
order using the substitution

χ = −iα
p̂

ν̂
(4.3)

and
dp̂(r)

dr
= −iα(U − c)ν̂ (4.4)

The resulting relation

dχ

dr
= −α2(U − c) + χ

[ 1
U − c

(α2 +
(
m
r

)2

α2
χ−
dU

dr

)
+
1

r

]
(4.5)

is solved numerically.

The boundary conditions for the above equation is derived from equation
(4.2) and the presented substitution. The equations (4.3) and (4.4) lead to the
relation for χ

χ = −α2(U − c)
p̂
dp̂(r)
dr

(4.6)
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At the boundaries r = 0 and r =∞ the pressure and its derivatives are

p̂0 = C1Im p̂∞ = C2Km

dp̂

dr 0
= C1I

′

m

dp̂

dr∞
= C2K

′

m

(4.7)

Substituting the boundary values to the equation (4.6) and neglecting constant
terms, the boundary conditions have the form

χ0 = −α
2(U − c)

Im
I ′m

χ∞ = −α
2(U − c)

Km
K ′m

(4.8)

For a value of ω, a guessed value of α is chosen, then Eq. (4.5) is integrated
by means of the sixth order Runge-Kutta scheme from both sides χ0, the axis,
and χ∞, a point sufficiently far from the axis. The two solutions are compared
at r = 1 and if the curves do not meet, a new value of α is calculated according
to the Newton-Ralphson method

α∗ = α− J−1(χL − χR) (4.9)

Value α∗ is only an estimation of the proper value for ω, so the procedure must
be repeated until both sides appear with the same left (χL) and right (χR)
value at r = 1, including a small error of the order of 10−5. The J in Eq.
(4.9) is the difference

J =
dχL
dα
−
dχR
dα

(4.10)

Finally, ω or c is an eigenvalue and the continuous curve χ(r) is an eigen-
function of Equation (4.5). The above procedure is performrd for complex ω
in a wide range in order to obtain a α(ω) map in the α complex space. Figu-
re 2 presents the map for configuration with the back-flow (−0.3) and co-flow
(0.3).

The pressure distribution p̂ can be easily obtained from χ using the rela-
tion

p̂(r) = p̂(r∗) exp
(
−

r∫

r∗

α2(U − c)

χ(r)
dr
)

(4.11)

p̂(r∗) is a boundary value at a certain position r = r∗ and is unknown. Because
of that, the pressure is normalized to obtain p̂max = 1. The authors have
integrated the integral of Eq. (4.11) from the right side (r∗ = r∞) towards
zero, which seems to be more accurate.
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Fig. 2. Map of α(ω) for configuration with back-flow (−0.3) and co-flow (0.3); a
line is the image of α function for constant Im (ω), values denoted near the line

5. Results

5.1. Localization of absolutely unstable modes

The experiment revealed numerous saddle points for the considered configura-
tions. Nevertheless, only one for each case satisfied the pinching requirement.
The remaining points have been eliminated because they were located in a
region above Im(ω(αm)) of Eq. (2.6) or ωi was negative. For example, in
the double jet with recirculation zone (−0.3) and inflow (0.3), three saddle
points were found with: (+) ω = 0.5014 + 0.0510i, (3) ω = 1.2742 + 0.7146i
and (2) ω = 1.4514 + 0.7323i. The map α(ω) of the configuration, Fig. 2,
shows that the line of constant ωi = 0.19 has the highest ω imaginery part
among the lines crossing the real α axis. This means that perturbation with
the ωi = 0.19 is the wave most amplified in time. Accordingly, only the first
saddle point is absolutely unstable.

As it was noted, no influence of the external co-flow on the stability (in
fact on the locus of the single saddle point) was observed. Figure 3 presents
the amplification rate ωi as a function of the co-flow velocity.
Similarly, no change of the saddle point was observed in the presence of

back-flow, neither in α nor in ω complex spaces. In the result, all configura-
tions have the same absolutely unstable complex frequency ω = 0.501+0.051i
and complex wave number α = 1.696 − 0.782i.

5.2. Pressure distribution of the absolutely unstable mode

Surprisingly, the external flow with and without recirculation zone did not
change the shape of the amplitude pressure disturbance. The pressure ampli-
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Fig. 3. Amplification rate ωi as a function of co-flow velocity

Fig. 4. Pressure distribution along the radial direction. The shape is the same for all
configurations

tude, shown in Figure 4, is confined to the region of the first ring jet. It is
zero on the axis and does not act on the secondary jet. The peak value of the
eigenfunction is located in the vicinity of the first inflection point.

Fig. 5. Imaginary part of the pressure amplitude for flows without back-flow and
with co-flow 0.0 (3), 0.1 (+), 0.2 (2), 0.3 (×), 0.6 (△), 0.9 (⋆)

The presence of the additional flow is manifested only in the perturbation
phase. For the configuration without the back-flow the phase is increasing
with external stream, which is shown in Figure 5. The creation of recirculation
zone has a similar effect. The phase shift is in the negative direction with the
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increase of back-flow – Figure 6. However, the phase variation does not have
any significant effect on physical behavior of the flow.

Fig. 6. Influence of the recirculation zone on the pressure amplitude phase. The
co-flow is 0.3 and back-flow 0.0 (3), −0.1 (+), −0.2 (2), −0.3 (×)

6. Summary

The linear spatio-temporal stability analysis allowed to identify complex para-
meters (α, ω) of the absolutely unstable modes in the presence of outer flow.
Among many saddle points only one for each of the corresponding configura-
tions was proved to be absolutely unstable. No influence of the external flow
on the growth rate and wave length of the absolutely unstable mode was ob-
served. Analysis of eigenfunctins showed also no significant change. Only a
phase variation was noted, but it had no major physical consequences. The
investigation was focused on asymmetric mode (m = 1) without swirl. Recent
measurements of double ring jets Frania (2006), Frania and Hirsch (2005) sho-
wed that a flow without inlet swirl had a nonzero annular velocity close to
the nozzle. It permits to expect additional unstable modes with the presence
of a swirl. However, it is only an assumption of authors of the text based on
the mean velocity data. In future the work will be extended to the analysis of
double annular jet with inner and outer swirl.
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Niestabilność absolutna podwójnej strugi pierścieniowej – analiza

numeryczna

Streszczenie

W pracy analizuje się wpływ zewnętrznego przepływu na mody niestabilności
absolutnej strugi pierścieniowej ze strefą recyrkulacji oraz podwójnej strugi pierście-
niowej. Badania przeprowadzono przy użyciu liniowej, czasowo-przestrzennej teorii
stabilności dla przepływów nielepkich. Do rozwiązania zagadnienia brzegowego wyko-
rzystano metody numeryczne bazujące na algorytmie strzałów.W pracy uwzględniono
tylko asymetryczne obwodowe mody niestabilności.
W trakcie eksperymentu numerycznego zidentyfikowanomody niestabilności abso-

lutnej, nie stwierdzając wpływu zewnętrznego przepływu formującego zarówno strefę
recyrkulacji, jak i drugą strugę pierścieniową, na stabilność przepływu.
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