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In this paper, Buongiorno’s mathematical model is adopted to simulate both natural con-
vection and mixed convection of a nanofluid in square porous cavities. The model takes
into account the Brownian diffusion and thermophoresis effects. Both constant and varia-
ble temperatures are prescribed at the side walls while the remaining walls are maintained
adiabatic. Moreover, all boundaries are assumed to be impermeable to the base fluid and
the nanoparticles. The governing equations are transformed to a form of dimensionless equ-
ations and then solved numerically using the finite-volume method. Thereafter, effects of
the Brownian diffusion parameter, the thermophoresis number, and the buoyancy ratio on
the flow strength and the average Nusselt number as well as distributions of isocontours of
the stream function, temperature, and nanoparticles fraction are presented and discussed.
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1. Introduction

Heat transfer is a significant and widely explored engineering problem that, due to the lack of
energy resources, has become truly important. One efficient way to improve heat transfer and
to reduce energy consumption goes back to the use of porous media. This occurs since a porous
medium provides a large surface area for heat exchange. On the other hand, the flow field in a
porous medium is completely three-dimensional and irregular, which intensifies fluid mixing.
Further attempt to achieve higher heat transfer rates has led to adding nanoparticles to

working liquids and producing nanofluids. The added nanoparticles are usually made up of
metals or metal oxides with high thermal conductivity. So, the resulting fluid has a better thermal
efficiency than the base liquid. Going into the literature, one may find that heat transfer analysis
of nanofluid flows has been a hot topic among scientists over the past decade. Examples include
the studies of Ali et al. (2014), Ghasemi et al. (2016), and Rostamzadeh et al. (2016).
Different mathematical models have been adopted to describe heat transfer in nanofluids.

The simplest method with the least computational burden is the homogenous model. In this
model, the concentration of nanoparticles is taken constant over the entire flow field. It is also
assumed that the base liquid and the nanoparticles are in local equilibrium and move with the
same velocity and temperature. In spite of previous achievements of this model, some studies
have proved that more complex models provide better agreement with experimental data (e.g.,
Behroyan et al. (2016); Torshizi and Zahmatkesh, 2016).
Buongiorno (2006) introduced seven transport mechanisms which cause relative velocity be-

tween the nanoparticles and the base liquid, namely, inertia, Brownian diffusion, thermophoresis,
diffusiophoresis, Magnus effect, fluid drainage, and gravitational settling. After comparing the
diffusion time scales of these mechanisms he drew a conclusion that, in the absence of flow tur-
bulence, the Brownian diffusion and thermophoresis are the most important effects. Based on
this finding, he then developed a non-homogeneous but an equilibrium model for nanofluid flow
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and heat transfer that incorporates the effects of the Brownian diffusion and thermophoresis.
The Brownian diffusion occurs due to random variations in the bombardment of the base fluid
molecules against the particles. The thermophoresis phenomenon appears as a net force acting
in the opposite direction to the gradient of temperature and is a direct result of the differential
bombardment of the base fluid molecules in the vicinity of the particles (Zahmatkesh, 2008b).

There are many recent papers that deal with Buongiorno’s mathematical model (e.g., She-
ikholeslami et al., 2016; Kefayati, 2017a; Mustafa, 2017) but to the best of our knowledge, there
are no previous works in literature which compare the role of parameters appearing in this model
for both natural convection and mixed convection in porous media. Some simulation studies for
natural convection of nanofluids in porous cavities based on Buongiorno’s model are discussed
below.

Sheremet et al. (2014) simulated natural convection of nanofluids in shallow and slender
porous cavities. Their results demonstrated that an inverse relation existed between the ave-
rage Nusselt number and the buoyancy ratio. Conjugate natural convection of nanofluid in a
square porous cavity was discussed by Sheremet and Pop (2014a). They found that the Nus-
slet number was an increasing function of the buoyancy ratio and a decreasing function of the
thermophoresis number and the Lewis number. A simulation study of natural convection of a
nanofluid in a right-angle triangular porous cavity was reported by Sheremet and Pop (2015a).
That investigation showed that the average Nusselt number increased with the enhancement
of the Lewis number but any rise in the Brownian diffusion parameter, the buoyancy ratio or
the thermophoresis number made it lower. Sheremet et al. (2015) discussed natural convection
heat transfer of a nanofluid in a three-dimensional porous cavity. Their results led to the conc-
lusion that the average Nusselt number increased with the Brownian diffusion parameter and
decreased with the buoyancy ratio and the thermophoresis number. Sheremet and Pop (2015b)
analyzed natural convection of a nanofluid in a porous annulus. They indicated that an incre-
ase in the thermophoresis number and the buoyancy ratio led to deterioration in the average
Nusselt number while the Brownian diffusion parameter contributed neutrally. Ghalambaz et al.
(2016) investigated the influence of viscous dissipation and radiation on natural convection of a
nanofluid in a porous cavity and concluded that an increase in the Lewis number improved the
heat transfer but augmentation of the buoyancy ratio and the thermophoresis number decreased
it. More recently, natural convection and entropy generation of a non-Newtonian nanofluid in a
porous cavity was pointed out by Kefayati (2017b). The results demonstrated that rise of the
Lewis number, the thermophoresis number, and the Brownian diffusion parameter declined the
average Nusselt number, but the augmentation of the buoyancy ratio enhanced it.

The role of parameters appearing in Buongiorno’s mathematical model may depend on ther-
mal boundary conditions of the cavity. In this context, Sheremet and Pop (2014b) discussed
how imposition of a sinusoidal temperature distribution on the side walls may affect natural
convection of the nanofluid in a square porous cavity. They found that the average Nusselt
number was an increasing function of the buoyancy ratio and the thermophoresis number but a
decreasing function of the Lewis number and the Brownian diffusion parameter. More recently,
they extended their work to a wavy porous cavity (Sheremet et al., 2017). They found that the
dependence of the average Nusselt number to the pertinent parameters was similar to the square
cavity, which was in contrast to the aforesaid findings in uniformly heated/cooled cavities.

The current research deals with heat transfer of a nanofluid in square porous cavities. The
main purpose of this article is to analyze the effects of the buoyancy ratio, the Brownian dif-
fusion parameter and the thermophoresis number on the flow strength and the average Nusselt
number as well as developments of streamlines, isotherms and isoconcentrations. To provide a
critical analysis, computations are undertaken for various cases in natural convection and mixed
convection environments with both uniform and non-uniform wall temperatures.
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2. Problem definition and mathematical formulation

Both natural and mixed convection heat transfer in a square cavity filled with a nanofluid-
-saturated porous medium are analyzed in this study. A schematic diagram of the flow problems
is shown in Fig. 1, where x and y are the Cartesian coordinates and L is the size of the cavity.
Here, all walls are assumed to be impermeable to mass transfer. The horizontal walls are assumed
adiabatic while two different conditions are imposed on the side walls. In the first case, the
sidewalls are considered to be heated/cooled uniformly while in the second case, the sidewalls
are influenced by the existence of a sinusoidal temperature variation.
In this paper, Buongiorno’s mathematical model is used. Thanks to this approach, the nano-

fluid is considered as a two-component dilute mixture. The porous medium is assumed isotropic
and homogenous while the established flow is concerned to be steady, incompressible, Newtonian
and laminar. The Darcy model is employed for the momentum equation. Moreover, a local ther-
mal equilibrium is assumed between the nanoparticles, the base fluid and the porous medium.
The Boussinesq approximation is adopted to determine the variations of density in the body
force term within the momentum equation. Meanwhile, viscous dissipation, the work done by the
pressure change and radiation heat transfer are neglected. Additionally, the thermophoresis and
Brownian transport coefficients are assumed temperature-independent. On these assumptions,
the conservation equations for mass, momentum, energy and flow concentration are (Nield and
Bejan, 2013)

∇ · (V) = 0

0 = −∇P −
µ

K
V + [Cρp + (1− C)ρf (1− β(T − Tc))]g

V · ∇T = αm∇
2T + δ

(

DB∇C · ∇T +
DT
Tc
∇T · ∇T

)

ρp
ε
V · ∇C = −∇ · jp

(2.1)

Here, V is the Darcy velocity vector, P is pressure, T is temperature, C is the nanoparticles
fraction, g is gravitational acceleration (g = −gj), ρ is density, µ is dynamic viscosity, β is
the volumetric expansion coefficient, α is thermal diffusivity, ε is medium porosity, and K is
permeability of the porous medium. Meanwhile, DB is the Brownian diffusion coefficient, DT is
the thermophoretic diffusion coefficient, and δ is a parameter defined by δ = ε(ρcp)p/(ρcp)f with
cp being the specific heat. Moreover, the subscripts p, f , and m correspond to the nanparticles,
the base fluid and effective values, respectively.
In Eq. (2.1)4, jp is the nanoparticles mass flux. Based on Buongiorno’s model, the nanopartic-

les mass flux is made up of two parts, namely, Brownian diffusion jp,B, and thermophoresis jp,T .
Thus

jp = jp,B + jp,T = −ρpDB∇C − ρpDT
∇T

T
(2.2)

After using the Boussinesq approximation and taking the nanofluid as a dilute mixture, one
arrives at the following form of the momentum equation (Nield and Kuznetsov, 2009)

0 = −∇P −
µ

K
V + [C(ρp − ρf0) + ρf0(1− β(T − Tc)(1 − C0))]g (2.3)

with subscript 0 standing for reference values.
To simplify this vector equation, cross-differentiation is adopted, which eliminates the pres-

sure term. So, the governing equations become

∂u

∂x
+
∂v

∂y
= 0 (2.4)
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and

0 = −
µ

K

(∂u

∂y
−
∂v

∂x

)

+ g(ρp − ρf0)
∂C

∂x
− (1− C0)ρf0βg

∂T

∂x

u
∂T

∂x
+ v

∂T

∂y
= αm

(∂2T

∂x2
+
∂2T

∂y2

)

+ δ
{

DB
(∂C

∂x

∂T

∂x
+
∂C

∂y

∂T

∂y

)

+
DT
Tc

[(∂T

∂x

)2
+
(∂T

∂y

)2]}

1

ε

(

u
∂C

∂x
+ v

∂C

∂y

)

= DB
(∂2C

∂x2
+
∂2C

∂y2

)

+
DT
Tc

(∂2T

∂x2
+
∂2T

∂y2

)

(2.5)

where u and v denote the velocity components in the x and y directions, respectively.

After introducing the stream function by u = ∂ψ/∂y and v = −∂ψ/∂x, the continuity
equation will be satisfied. Moreover, Eqs. (2.5) lead to

∂2ψ

∂x2
+
∂2ψ

∂y2
= −
(1− C0)ρf0gKβ

µ

∂T

∂x
+
ρp − ρf0

µ
gK

∂C

∂x

∂ψ

∂y

∂T

∂x
−
∂ψ

∂x

∂T

∂y
= αm

(∂2T

∂x2
+
∂2T

∂y2

)

+ δ
{

DB
(∂C

∂x

∂T

∂x
+
∂C

∂y

∂T

∂y

)

+
DT
Tc

[(∂T

∂x

)2
+
(∂T

∂y

)2]}

1

ε

(∂ψ

∂y

∂C

∂x
−
∂ψ

∂x

∂C

∂y

)

= DB
(∂2C

∂x2
+
∂2C

∂y2

)

+
DT
Tc

(∂2T

∂x2
+
∂2T

∂y2

)

(2.6)

We now define the following parameters to make the above equations dimensionless

X =
x

L
Y =

y

L
Ψ =

ψ

αm
θ =

T − Tc
Th − Tc

Φ =
C

C0
Ra =

(1− C0)gKρf0β(Th − Tc)L

αmµ

Pe =
V0L

αm
Le =

αm
εDB

Nb =
δDBC0
αm

Nr =
(ρp − ρf0)C0

ρf0β(Th − Tc)(1 − C0)
Nt =

δDT (Th − Tc)

αmTc

(2.7)

Here, Ra is the Rayleigh number, Pe is the Peclet number (with V0 being the inlet velocity),
Le is the Lewis number, Nb is the Brownian diffusion parameter, Nr is the buoyancy ratio, and
Nt is the thermophoresis number.

Substituting the dimensionless parameters into the governing equations yields

∂2Ψ

∂X2
+
∂2Ψ

∂Y 2
= −Ra

( ∂θ

∂X
−Nr

∂Φ

∂X

)

∂Ψ

∂Y

∂θ

∂X
−
∂Ψ

∂X

∂θ

∂Y
=

∂2θ

∂X2
+
∂2θ

∂Y 2
+Nb

( ∂Φ

∂X

∂θ

∂X
+
∂Φ

∂Y

∂θ

∂Y

)

+Nt
[( ∂θ

∂X

)2
+ (

∂θ

∂Y

)2]

Le
(∂Ψ

∂Y

∂Φ

∂X
−
∂Ψ

∂X

∂Φ

∂Y

)

=
∂2Φ

∂X2
+
∂2Φ

∂Y 2
+
Nt

Nb

( ∂2θ

∂X2
+
∂2θ

∂Y 2

)

(2.8)

Notice that the governing equations reduce to those of a regular fluid if one chooses
Nb = Nr = Nt = 0.
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The boundary conditions for the flow problems are:

Case I: Natural convection with a constant temperature at the side walls

Left wall: Ψ = 0 θ = 1 jp = 0
(

or,Nb
∂Φ

∂X
+Nt

∂θ

∂X
= 0
)

Right wall: Ψ = 0 θ = 0 jp = 0
(

or,Nb
∂Φ

∂X
+Nt

∂θ

∂X
= 0
)

Horizontal walls: Ψ = 0
∂θ

∂Y
= 0

∂Φ

∂Y
= 0

(2.9)

Case II: Natural convection with a sinusoidal temperature distribution at the side walls

Left wall: Ψ = 0 θ = sin(2πY ) jp = 0
(

or,Nb
∂Φ

∂X
+Nt

∂θ

∂X
= 0
)

Right wall: Ψ = 0 θ = sin(2πY ) jp = 0
(

or,Nb
∂Φ

∂X
+Nt

∂θ

∂X
= 0
)

Horizontal walls: Ψ = 0
∂θ

∂Y
= 0

∂Φ

∂Y
= 0

(2.10)

Case III: Mixed convection with a constant temperature at the side walls

Left wall: Ψ = 0.1Pe θ = 1 jp = 0
(

or,Nb
∂Φ

∂X
+Nt

∂θ

∂X
= 0
)

Right wall: Ψ = 0 θ = 0 jp = 0
(

or,Nb
∂Φ

∂X
+Nt

∂θ

∂X
= 0
)

Inlet: Ψ = Y Pe θ = 0 Φ = 1

Bottom wall: Ψ = 0
∂θ

∂Y
= 0

∂Φ

∂Y
= 0

Upper wall: Ψ = 0.1Pe
∂θ

∂Y
= 0

∂Φ

∂Y
= 0

Outlet:
∂Ψ

∂X
= 0

∂θ

∂X
= 0

∂Φ

∂X
= 0

(2.11)

Case IV: Mixed convection with a sinusoidal temperature distribution at the side walls

Left wall: Ψ = 0.1Pe θ = sin(2πY ) jp = 0
(

or,Nb
∂Φ

∂X
+Nt

∂θ

∂X
= 0
)

Right wall: Ψ = 0 θ = sin(2πY ) jp = 0
(

or,Nb
∂Φ

∂X
+Nt

∂θ

∂X
= 0
)

Inlet: Ψ = Y Pe θ = 0 Φ = 1

Bottom wall: Ψ = 0
∂θ

∂Y
= 0

∂Φ

∂Y
= 0

Upper wall: Ψ = 0.1Pe
∂θ

∂Y
= 0

∂Φ

∂Y
= 0

Outlet:
∂Ψ

∂X
= 0

∂θ

∂X
= 0

∂Φ

∂X
= 0

(2.12)

The physical quantities related to the problems are the local and average Nusselt numbers
(Nu,Nu) and the local and average Sherwood numbers (Sh,Sh) (Sheremet and Pop, 2014b)
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Nu = −
∂θ

∂X

∣

∣

∣

∣

∣

X=0

Nu =
1

0.9

1
∫

0.1

Nu dY

Sh = −
∂Φ

∂X

∣

∣

∣

∣

∣

X=0

Sh =
1

0.9

1
∫

0.1

Sh dY

(2.13)

In the flow problems, we limit our attention to the Nusselt number since, at the side walls,
we have Sh = −(Nt/Nb)Nu.

3. Solution method

The governing equations constitute a system of nonlinear partial differential equations. In order
to discretize them, the finite-volume approach is adopted. By integrating the governing equations
over each control volume, a system of algebraic equations is produced, which is solved by the Tri-
-Diagonal Matrix Algorithm (TDMA). Appropriate relaxation is chosen on the basis of numerical
experiments. The iteration is terminated when changes between two consecutive iterations get
smaller than 10−5. The solution method has been implemented in FORTRAN software.

For the purpose of acquiring an acceptable grid for each current case, four different grid
independence tests have been carried out. The results indicated that the suitable grid systems
are 200× 200 (Case I), 400× 400 (Case II and Case III), and 300 × 300 (Case IV).
The employed Fortran code is essentially a modified version of a code built and validated

in the previous works (Zahmatkesh, 2008a, 2015; Zahmatkesh and Naghedifar, 2017). In order
to evaluate the accuracy of this code for simulation of nanofluid-saturated porous cavities with
Buongiorno’s model, the corresponding results have been compared with those of Sheremet et al.
(2014) in Table 1. Here, the average Nusselt numbers in a square porous cavity with isothermal
vertical walls and adiabatic horizontal walls saturated with the nanofluid are presented. The
compared results belong to Ra = 100, Le = 1, 10, 100, Nr = 0.1, 0.4, and Nb = Nt = 0.4.
Notice that there is a trustworthy similarity with that study. This assured us that our results
are reliable. So, we have applied the code to analyze the flow problems depicted in Fig. 1.

Table 1. Comparison of the present results with those of previous works at Ra = 100

Le Nr
Nu

Sheremet et al. (2014) Current study

1
0.1 3.8387 3.8108
0.4 2.7791 2.7617

10
0.1 4.6270 4.5575
0.4 4.0088 3.9637

100
0.1 4.6252 4.4401
0.4 4.3049 4.1542

4. Simulation results

In this Section, simulation results for both natural convection and mixed convection heat transfer
of the nanofluid are presented. The results are discussed for the following values of the pertinent
parameters: the Rayleigh number (Ra = 30, 100, 300), the Peclet number (Pe = 25), the Lewis
number (Le = 25), the buoyancy ratio (Nr = 0.05, 0.1, 0.5), the Brownian diffusion parameter
(Nb = 0.05, 0.1, 0.5) and the thermophoresis number (Nt = 0.05, 0.1, 0.5).
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Fig. 1. Physical models of the flow problem: (a) Case I: Natural convection with a constant temperature
at the side walls; (b) Case II: Natural convection with a sinusoidal temperature distribution at the side
walls; (c) Case III: Mixed convection with a constant temperature at the side walls; (d) Case IV: Mixed

convection with a sinusoidal temperature distribution at the side walls

Tables 2, 3, and 4 illustrate the numerical values of |Ψmax| and Nu for the four configurations
at Ra = 30, 100, 300, respectively. Here, |Ψmax| provides a measure of the convection vigor. In
a general way, the imposition of the sinusoidal temperature distribution on the sidewalls leads
to heat transfer enhancement both in the natural and mixed convection environments within
the current range of the Rayleigh number. This imposition also intensifies the flow strength in
the mixed convection case. In the natural convection problem, however, depending on the value
of Ra, the sinusoidal wall temperature may enhance or deteriorate the flow strength.

Table 2. Numerical values of |Ψmax| and Nu for the flow at Ra = 30

Ra = 30
Nb Nr Nt Nb = Nr = Nt

0.05 0.5 0.05 0.5 0.05 0.5 0.1

Case I
|Ψmax| 1.909 1.918 1.916 1.894 1.917 1.889 1.914
Nu 1.421 1.424 1.423 1.417 1.455 1.186 1.422

Case II
|Ψmax| 0.750 0.750 0.750 0.750 0.736 0.878 0.750
Nu 3.577 3.576 3.576 3.576 3.575 3.722 3.576

Case III
|Ψmax| 2.499 2.499 2.499 2.499 2.499 2.499 2.499
Nu 3.570 3.542 3.541 3.610 3.584 3.381 3.549

Case IV
|Ψmax| 3.370 3.362 3.364 3.377 3.351 3.462 3.366
Nu 4.613 4.610 4.611 4.616 4.590 4.914 4.611

Inspection of the numerical values of |Ψmax| in the conduction–dominated regime (i.e., Table 2
with Ra = 30) indicates that in Case I, increasing Nb leads to an insignificant growth in the
flow strength (maximum 0.47%) but rising Nr or Nt causes a slight drop in it (maximum 1.15%
and 1.46%, respectively). The results of Case II show that an increment in the thermophoresis
number from 0.05 to 0.5 intensifies the flow strength to about 19.29%. Nb and Nr, however,
contributes neutrally there. The results of Case III indicate that the value of |Ψmax| is not
dependent in this case to Nb, Nr, and Nt. Meanwhile, notice that all current parameters are
influential to the flow strength in Case IV. This is similar to Case I but the trends of the
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Table 3. Numerical values of |Ψmax| and Nu for the flow at Ra = 100

Ra = 100
Nb Nr Nt Nb = Nr = Nt

0.05 0.5 0.05 0.5 0.05 0.5 0.1

Case I
|Ψmax| 4.707 4.725 4.722 4.676 4.722 4.668 4.717
Nu 2.932 2.936 2.935 2.925 2.999 2.450 2.934

Case II
|Ψmax| 2.618 2.622 2.622 2.608 2.579 2.942 2.621
Nu 4.265 4.252 4.254 4.254 4.247 4.536 4.258

Case III
|Ψmax| 3.264 3.240 3.245 3.288 3.237 3.342 3.251
Nu 4.975 4.932 4.940 5.017 5.003 4.518 4.950

Case IV
|Ψmax| 5.435 5.459 5.456 5.398 5.412 5.728 5.449
Nu 5.512 5.500 5.503 5.530 5.468 5.987 5.506

Table 4. Numerical values of |Ψmax| and Nu for the flow at Ra = 300

Ra = 300
Nb Nr Nt Nb = Nr = Nt

0.05 0.5 0.05 0.5 0.05 0.5 0.1

Case I
|Ψmax| 9.813 9.847 9.841 9.749 9.843 9.709 9.831
Nu 6.082 6.083 6.083 6.073 6.214 5.111 6.083

Case II
|Ψmax| 6.270 6.286 6.284 6.181 6.222 6.756 6.282
Nu 7.553 7.534 7.535 7.585 7.525 7.933 7.537

Case III
|Ψmax| 8.02 7.952 7.958 8.094 7.953 8.094 7.981
Nu 8.181 8.061 8.100 8.262 8.168 7.488 8.128

Case IV
|Ψmax| 8.898 8.951 8.918 8.903 8.898 9.470 8.916
Nu 8.800 8.904 8.831 8.981 8.799 9.721 8.830

variations are quite distinct. Evidently, with the increase in Nb, a slight drop in the flow strength
appears (maximum 0.24%), but with an elevation in Nr or Nt, insignificant increases occur in
it (maximum 0.39% and 3.31%, respectively).

Scrutiny of the Nu values in Table 2 demonstrates that Nb and Nr possess a minor impact
on the average Nusselt number in all current cases. Notice that maximum deviations of Nu, as a
result of the tenfold increase in Nb and Nr, may not exceed 0.78% and 1.95%, respectively. The
pattern is completely different when we go to Nt, since this parameter affects the heat transfer
rate in all configurations. Specifically, a rise in Nt from 0.05 to 0.5 increases Nu to 4.11% and
7.06% in Case II and Case IV with sinusoidal wall temperatures, but decreases it to 18.49% and
5.66% in Case I and Case III with constant wall temperatures, respectively. This controversy
in the effect of the thermophoresis number on the heat transfer of cavities with uniform wall
temperatures and those with non-uniform wall temperatures is in agreement with the previous
findings in the natural convection environment, as pointed out previously.

The results presented in Table 3 belonging to Ra = 100 indicate that, in Case I, the variations
of |Ψmax| with Nb, Nr and Nt are similar to those of Ra = 30. The corresponding deviations
are +0.38%, −0.97%, and −1.14%, respectively. In Case II and III, the consequences of the
pertinent parameters on the flow strength are no longer negligible at this Rayleigh number. In
Case II, the tenfold increase in Nb, Nt, and Nr leads to 0.15% and 14.07% growths and a 0.53%
drop in |Ψmax|, respectively. The deviations are −0.74%, +3.24%, and +1.33% in Case III and
+0.44%, +5.84%, and −1.06% in Case IV, respectively. Analysis of the average Nusselt number
is also interesting. Similarly to what appeared at Ra = 30, it is evident that Nb and Nr are not
so influential on Nu prediction at Ra = 100. Maximum changes of Nu by increasing Nb and Nr
are +0.14% and −0.34% in Case I, −0.30% and 0% in Case II, −0.86% and +4.93% in Case III,
and −0.22% and +0.49% in Case IV, respectively. The effect of the theromophoresis number on
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the heat transfer rate is more remarkable. Specifically, a rise in Nt from 0.05 to 0.5 increases
Nu to 6.80% and 9.49% in Case II and IV but decreases it to 18.31% and 9.69% Case I and III,
respectively.

Table 4 indicates that when Ra = 300, then Nb, Nr, and Nt affect the value |Ψmax| in all the
problems. Notice that maximum variations of |Ψmax| as a result of the increase in Nb are +0.35%,
+0.26%, −0.85% and +0.60% in Case I, II, III, and IV, respectively. The corresponding values
due to a rise in Nr are −0.93%, −1.64%, +1.71%, and −0.17%. The results also demonstrates
that a rise in Nt from 0.05 to 0.5 results in 8.58%, 1.77% and 6.43% increase in the flow strength
in Case II, III, and IV, respectively, but decreases the value |Ψmax| to 1.36% in Case I.

Numerical values of the average Nusselt number in Table 4 indicate that an increase in Nb
from 0.05 to 0.5 leads to +0.02%, +0.01%, −1.47%, and +1.18% deviations in heat transfer in
Case I, II, III, and IV, respectively. The corresponding changes due to a rise in Nr are −0.16%,
+0.66%, +2.0%, and +1.70%. The alternation of Nt also brings −17.75%, +5.42%, -8.33%, and
+10.48% variations in the average Nusselt number.

The thermophoresis parameter is found to be the most effective coefficient in the current
cases. In order to provide a better picture about the consequences of this parameter on di-
stributions of isocontours of the stream function, temperature and nanoparticles fraction, the
corresponding contours for the flow problems are provided in Figs. 2-5, which belong to Ra = 100
with both Nt = 0.05 and Nt = 0.5.

Fig. 2. Isocontours of the stream function, temperature and nanoparticles fraction for Case I at
Ra = 100, Le = 25 with different values of Nt (up: Nt = 0.05; down: Nt = 0.5)

Figure 2 shows the isocontours of the stream function (left), temperature (middle) and
nanoparticles fraction (right) for Case I. Regardless of the value of Nt, a single convective cell
appears inside the cavity with an ascending flow near the left wall and a descending flow near the
right wall. It is evident that a growth in Nt does not have a significant effect on the streamlines
and isothermal lines but makes the nanoparticles distribution more non-homogeneous.

The streamlines, isotherms and isoconcentrations of Case II are provided in Fig. 3. Obvio-
usly, four convective cells appear here within the cavity. The convective cells located in the



230 I. Zahmatkesh, M.R. Habibi

Fig. 3. Isocontours of the stream function, temperature and nanoparticles fraction for Case II at
Ra = 100, Le = 25 with different values of Nt (up: Nt = 0.05; down: Nt = 0.5)

bottom-left/top-right parts of the cavity are rotating clockwise but those located in the bottom-
-right/top-left parts are counter-clockwise vortices. The appearance of these circulations is at-
tributed to the imposition of the sinusoidal temperature distribution on the side walls in this
case. Cores of the convective cells are located close to the side walls due to large temperature
gradients there. The distributions of Ψ and θ are symmetric with respect to X = 0.5. It is evi-
dent that the Nt promotion leads to variations in all characteristics noticeably. Obviously, the
streamlines pattern is changed in a way of growing the two top convective cells. Moreover, the
bottom half of the cavity experiences more intensive heating while the opposite side transfers
less heat. The main variations with Nt are related to the isoconcentrations. The Nt elevation
causes a more non-homogeneous nanoparticles distribution. This is similar to Case I, but the
effect is more remarkable here.

Figures 4 and 5 depict the isocontours of the stream function, temperature and nanoparticles
fraction for Case III and IV, respectively. They correspond to the mixed convection environment.
The effect of theNt promotion on the distribution of the contour plots bears a strong resemblance
to what is observed in the natural convection cases.

5. Concluding remarks

A critical analysis of natural and mixed convection of a nanofluid in square porous cavities has
been presented here using Buongiorno’s mathematical model. The findings of this study can be
summarized as:

(1) Imposition of a sinusoidal temperature distribution on the sidewalls leads to heat transfer
improvement both in the natural and mixed convection environments.

(2) The consequence of the thermophoresis number on the flow strength and the average
Nusselt number is more prominent than the Brownian diffusion parameter and the ther-
mophoresis number.
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Fig. 4. Isocontours of stream the function, temperature and nanoparticles fraction for Case III at
Ra = 100, Pe = 25, Le = 25 with different values of Nt (up: Nt = 0.05; down: Nt = 0.5)

Fig. 5. Isocontours of the stream function, temperature and nanoparticles fraction for Case IV at
Ra = 100, Pe = 25, Le = 25 with different values of Nt (up: Nt = 0.05; down: Nt = 0.5)
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(3) With an increase in the thermophoresis number, progressive changes occur in the isoconto-
urs of the stream function, temperature and nanoparticles fraction, and the nanoparticles
distribution becomes more non-homogeneous.

(4) With the sinusoidal wall temperatures, the heat transfer rate is an increasing function of
the thermophoresis number, but in a cavity with uniform wall temperatures, depending
on the value of the Rayleigh number, an increase in Nt may enhance or deteriorate the
average Nusselt number.

(5) The Brownian diffusion parameter and the buoyancy ratio have almost no effect on Nu in
the natural convection but with an increase in Ra, they become gradually more influential
in the mixed convection.
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