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The results of fully resolved simulations and large eddy simulations of bluff-body flows
obtained by means of the Lattice Boltzmann Method (LBM) are reported. A selection of
Reynolds numbers has been investigated in unsteady laminar and transient flow regimes.
Computed drag coefficients of a cube have been compared with the available data for va-
lidation purposes. Then, a more detailed analysis of the flow past a sphere is presented,
including also the determination of vortex shedding frequency and the resulting Strouhal
numbers. Advantages and drawbacks of the chosen geometry implementation technique, so
called “staircase geometry”, are discussed. For the quest of maximum computational effi-
ciency, all simulations have been carried out with the use of in-house code executed on GPU.
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1. Introduction

Computational Fluid Dynamics (CFD) is of higher and higher importance in science and engi-
neering as it allows one to predict flow phenomena in investigated systems without carrying out
experiments that tend to be increasingly costly and time consuming. The most popular CFD
approach is the Finite Volume Method (FVM), see Versteeg and Malalasekera (2007), especially
when the computational domain geometry is complex. The FVM is very well validated and has
become an industrial standard in a wide range of applications. On the other hand, recent rapid
developments in computer technology including Graphics Processing Units (GPU) and availabi-
lity of high-level programming tools have made massive parallel computing relatively easy and
inexpensive nowadays. This is an incentive to revisit the formulation of numerical schemes and
algorithms.

The Lattice Boltzmann Method (LBM) is an alternative approach in CFD. Thanks to its
explicit and local character (Succi, 2001), LBM is straightforward to parallelize, e.g., on the
GPUs (Schoenherr et al., 2011). The important feature of the method is that it also allows
easy handling of complex geometries. Satisfactory results obtained by means of LBM have been
reported for various compressible and incompressible, turbulent, single- and multiphase flows
(Arcidiacono et al., 2007; Chang et al., 2013; Prasianakis and Karlin, 2008; Pourmirzaagha et
al., 2015). In a comprehensive paper by Hoelzer and Sommerfeld (2009), directly relevant for
the present work, LBM was applied to the prediction of forces and moments acting on finite-size
particles. Also, reactive flow phenomena including combustion, heat transfer and flows through
porous media can be successfully simulated with the Lattice Boltzmann approach (Chiavazzo et
al., 2010; Arcidiacono et al., 2008; Prasianakis and Karlin, 2007; Grucelski and Pozorski, 2015).
Thus, it is worth to investigate different LBM approaches and implementation techniques to
make it more and more accurate without sacrificing computational efficiency.
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In this paper, we present LBM simulations of a flow around a sphere in both laminar and
turbulent regimes. The investigated case is well validated experimentally (Achenbach, 1972, 1974;
Sakamoto and Haniu, 1990), so it is often treated as a benchmark for computational approaches
(Jones and Clarke, 2008). The main aim of this work is to investigate LBM capability to predict
macroscopic flow quantities (i.e. the drag coefficient and Strouhal number) for the “staircase
geometry” scheme applied on a uniform lattice. This approach is the simplest possible way of
spatial discretisation of the body geometry in LBM and allows one to efficiently parallelize the
implementation of boundary conditions and evaluation of hydrodynamic forces. To the best of the
authors’ knowledge, the use of simplified geometry in the turbulent flow regime is a novel aspect
of this work. Researchers investigated also more sophisticated methods, i.e. interpolation of the
body boundary (Mei et al., 2002). Stiebler et al. (2011) presented an LBM simulation of the flow
around a sphere with the use of local discretisation refinement. In the present work, simulations
have been carried out for a selection of Reynolds numbers varying from 30 up to 104. Large
eddy simulation (LES) has been implemented according to the sub-grid scale (SGS) turbulence
model of Smagorinsky (1963) that already had given good results in simulation of the turbulent
Taylor-Green vortex (Kajzer et al., 2014).

2. Lattice Boltzmann Method and implementation details

2.1. Fundamentals of the method

The LBM is based on the kinetic theory of gases. The discretised Boltzmann equation is so-
lved (instead of the Navier-Stokes equations) for discrete velocity distribution functions fα(x, t),
in further sections also called populations. The spatial discretisation is done on a regular cubic
grid; moreover, only a finite number of directions and magnitudes (indexed by α) are allowed
in the microscopic velocity field. In this paper, we present results obtained with a code imple-
menting the D3Q15 lattice scheme, i.e., D = 3 dimensions and Q = 15 allowed directions. Also
popular, due to its better accuracy and only slightly higher computational cost, is the D3Q19
model. All formulations and proofs of statements recalled in this Section can be found in the
book of Succi (2001).

The discretised Boltzmann equation with the Bhatnagar-Gross-Krook closure for the collision
operator takes the following form

fα(x+∆teα, t+∆t)− fα(x, t) = τ−1
(
f eqα (x, t)− fα(x, t)

)
(2.1)

where α is the index of the velocity direction (α = 0, 1, . . . , Q − 1), τ is the nondimensional
relaxation time and eα is the lattice velocity in the direction α. The equilibrium distributions
f eqα (x, t), or more precisely f

eq
α (ρ(x, t),u(x, t)), corresponding to the density ρ and macroscopic

velocity u at the lattice node x at the time t, are calculated as follows

f eqα (ρ,u) = wαρ
(
1 +
3

c2
eα · u+

9

2c4
(eα · u)2 −

3

2c2
u · u

)
(2.2)

where ρ =
∑Q−1
α=0 fα is the fluid density, u = ρ

−1∑Q−1
α=0 fαeα is the macroscopic fluid velocity,

wα is a weighting coefficient (depending on the lattice type DnQm), c = ∆x/∆t is the lattice
speed.

The discretised Boltzmann equation is solved in two steps, called respectively the collision
step and the propagation step

f̃α(x, t) = fα(x, t) + τ
−1(f eqα (x, t− fα(x, t))

fα(x+∆teα, t+∆t) = f̃α(x, t)
(2.3)
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The explicit and local character of LBM is visible in the above equations: the collision step
involves values of the flow fields (through f eq) and populations at a single node only, and the
propagation step consists in copying the post-collision populations to proper neighbouring nodes.
In our implementation, ∆x = ∆t = 1 which results in c = 1. The pressure field is obtained from
the following equation of state: p = ρc2s, where the speed of sound is cs = c/

√
3. It can be shown

that u and p satisfy the Navier-Stokes equations with the kinematic viscosity ν = (τ −1/2)c2s∆t
with an error O(Ma2).

2.2. Boundary conditions

As the discretised Boltzmann equation solves for the discrete velocity distribution functions,
proper boundary conditions on these distributions have to be enforced to retrieve the physical
behaviour of the fluid in the macroscopic sense (i.e., velocity and pressure). All types of boundary
conditions used in presented simulations are widely described by Succi (2001). The easiest way
to implement the immersed body geometry is to project it on regular lattice nodes. The lattice
nodes are then marked with respective flags, “fluid” and “solid”, say. That is why this variant is
called “staircase geometry” (mesh-fitted surface of the body). Such an approach enables explicit
use of the so-called bounce-back (BB) boundary condition. The populations outcoming from the
solid nodes to the fluid nodes are replaced by populations moving in the opposite direction. This
scheme makes the code efficient as it does not require any interpolation steps. Unfortunately, it
is of the first order of accuracy in the described case (i.e. when the solid wall coincides with the
lattice nodes). The inflow boundary condition corresponds to the constant velocity vector normal
to the inflow plane, and the density (thus the pressure) is resultant. It is achieved by enforcing
the populations to be in the equilibrium state fα(xin, t) = f

eq
α (xin, t) with xin being the inlet

nodes, corresponding to the inflow velocity and the resulting density. The outflow boundary
condition forces the density (and pressure) to be constant and the velocity gradient to vanish. It
is realized by setting the populations in equilibrium related to the reference density ρ0 and the
velocity values in nodes preceding to the outflow plane in the normal direction −en,out, pointing
towards the domain interior: fα(xout, t) = f

eq
α (xout − ∆ten,out, t), where xout are the outflow

nodes. On the domain side boundaries, the symmetry plane boundary condition is imposed
(this is achieved by mirror reflection of proper populations), and the density is resultant. Some
other approaches to inflow and outflow conditions can be found in (Grucelski and Pozorski,
2013).

2.3. Force evaluation

Hydrodynamic forces acting on the sphere are calculated by means of the momentum exchan-
ge method. We decided to use this method although it is proposed for cases with boundary nodes
lying exactly halfway beetwen the lattice nodes. Mei et al. (2002) raised some questions about
the required body discretisation resolution as a function of the Reynolds number when using
this method. It utilises only the advection and collision distribution functions (fα and f̃α) wi-
thout the necessity of computing the pressure and shear stress. The total force F acting on the
immersed body is calculated as follows

F =
∑

xsf

∑

α

(
f−α(xsf ) + f̃α(xsf )

)
eα (2.4)

where xsf denotes the fluid nodes that have at least one solid neighbour, and the subscript −α
is defined by e−α = −eα.
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2.4. Large Eddy Simulation in LBM

LES is a method of turbulence modelling that resolves spatially filtered flow fields (Aubard
et al., 2013; Sagaut and Grohens, 1999). The method can be implemented as a local increase of
the kinematic viscosity ν

νeff = ν + νsgs (2.5)

where νeff is the effective local viscosity and νsgs denotes the turbulent (or sub-grid scale, SGS)
viscosity which in the model of Smagorinsky (1963) is computed as

νsgs = (CS∆)
2|S| (2.6)

where ∆ is the filter size, |S| = √2SijSij and Sij = 12
(
∂ui
∂xj
+
∂uj
∂xi

)
is the strain rate tensor, CS is

a constant, most often equal to 0.17.

We present now the application of the Smagorinsky SGS model to LBM (Chang et al., 2013;
Stiebler et al., 2011). In the lattice Boltzmann method, the kinematic viscosity of the fluid ν is
uniquely linked with the relaxation time τ . The effective relaxation time is determined as

τeff = 3(ν + νsgs)
∆t

(∆x)2
+
1

2
(2.7)

It can be shown that

νsgs = (CS∆)
2|S| = 1

6

(√

τ2 +
18(CS∆)2|P |

ρ
− τ

)
(2.8)

where |P | = √2PijPij with Pij =
∑
α eαieαj(fα − f eqα ) being the stress tensor. Combining Eqs.

(2.7) and (2.8), we obtain

τeff =
τ

2

(
1 +

√

1 +
18(CS∆)2P

ρτ2

)
(2.9)

In our implementation of LES in the LBM, we set ∆ = ∆x.

3. Flow cases and results

3.1. Validation case: flow past a cube

In order to validate the computer implementation, we made a simulation of the flow around
a cube, as the solid boundary is exactly modelled within the “staircase geometry” approach. All
computations have been carried out with the use of an in-house LBM code written in NVIDIA
CUDA-C language and executed on NVIDIA GeForce series GPU. The code does not involve
external libraries or user-defined data structures – only CUDA built-in types are used. The
spatial resolution was set to 644 × 244 × 244 nodes in the x, y and z directions respectively,
resulting in about 38 million of nodes which exploited all available GPU memory (6GB). The
cube centre was placed at x = 160 l.u. (lattice units) and the cube edge was 32 l.u. Setting the
inflow speed to 0.0289 l.u. resulted in Ma < 0.1 (while the lattice sound speed cs ≈ 0.57) in the
whole domain so the flow could be treated as incompressible. The computations were carried
out at Reynolds numbers Re = 50, 100, 200, 300 (fully resolved simulations) and 104 (LES),
where Re = UinD/ν = 3UlN/(τ −0.5) with D being the cube edge size (characteristic length) in
physical units, where Uin is the inlet speed in physical units, Ul is the inlet speed in lattice units,
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Fig. 1. A snapshot of the vorticity y-component in the flow past a cube at Re = 104 (cross-section
normal to the y-axis in the symmetry plane, t+ = 95)

N is the number of lattice nodes per cube characteristic length. The obtained y component of
vorticity field at Re = 104 at non-dimensional time t+ = 95 (statistically steady state), where
t+ = tUl/N with t being the time in l.u., is shown in Fig. 1.

In Fig. 2, the results of the computed drag coefficient CD are shown. It is calculated as
CD = 2Fx/ρU

2
l S, where Fx is the force acting on the cube in the x-direction, see Eq. (2.4),

ρ is the density, Ul is the inflow speed in l.u. and S is the cross-section area of the cube in l.u.
At Re = 50, 100, 200 and 300, the computed drag is in very good agreement with the data
reported by Saha (2004) obtained by means of the MAC (Marker And Cell) method. His results
were summarised in the form of correlation CD = (24/Re)(1 + 0.232 · Re0.628). For Reynolds
numbers above 300 in the transient flow regime, some scattered data on the drag coefficient are
available, but no precise values or correlations are given (Hoelzer and Sommerfeld, 2009). In the
turbulent regime, at Re = 104, the drag coefficient is slightly overestimated in comparison to
the Re-independent value CD = 1.05 ± 0.05 given by Holmes et al. (2004). The reason of this
discrepancy is discussed in the next Section.

Fig. 2. Drag coefficient of cube; •: present LBM results; ——: approximation of numerical results given
by Saha (2004) for laminar flow; ×: CD = 1.05± 0.05, valid for the turbulent regime

3.2. Flow past a sphere

After the validation tests presented above, simulations of the flow past a body of simplest
curvilinear geometry – a sphere – have been carried out. The sphere diameter was set to 32 lattice
units which resulted in domain blockage about 1.3% (defined as the ratio of cross-stream areas
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of the sphere and the domain). All other parameters were set to the same values as in the
simulations of the flow past a cube. Computations without turbulence modelling at Re = 30,
50, 100, 300 and 500 were performed. In Table 1, the computed drag coefficients are compared
with the experimental correlation reported by Clift et al. (1978). The computed drag coefficients
are in good agreement with the experimental results up to Re = 300 (see Fig. 3). At Re = 500,
the error is more significant, which suggests that the simulation is underresolved. Therefore,
at higher Reynolds numbers (103, 3 · 103 and 104), the LES model (described in Sec. 2.4) was
used. In Fig. 4, the map of the ratio of the turbulent-to-molecular viscosity νsgs/ν is shown at
Re = 103. It is clearly visible that the resolution used in these simulations is barely sufficient
since the maximum values of the SGS viscosity are comparable to the molecular viscosity. At
Re = 104, the values of νsgs can locally be even one order of magnitude higher than ν in the
vicinity of the sphere surface, which means that the boundary layer is not adequately resolved.
Arguably, this explains the overestimation of the drag coefficient. Moreover, since we are close
to the stability limit of computations, some artefacts are visible in the upstream region in Fig. 4
due to the weakly compressible nature of LBM. Computations at higher Reynolds numbers
(above 104, not shown in Fig. 3) reveal that the drag coefficient remains almost constant. This
effect is expected since capturing these slight differences, in particular a correct prediction of
the drag crisis at Re ∼ 2 · 104, would require very fine meshes (Rodriguez et al., 2013).

Table 1. Computed and experimental drag coefficients CD of the sphere. At Re = 10
3 and

above, the LES approach has been applied

Re exp. data LBM (rel. error in %)

30 2.12 2.08 (1.9%)

50 1.57 1.55 (1.3%)

100 1.09 1.08 (1.0%)

300 0.65 0.67 (3.1%)

500 0.55 0.59 (7.3%)

103 (LES) 0.47 0.55 (17%)

3 · 103 (LES) 0.40 0.53 (33%)

104 (LES) 0.41 0.54 (32%)

The frequency spectra of velocity in the wake area have also been calculated in order to
obtain the Strouhal number defined as

St =
f0D

Uin
(3.1)

where f0 denotes the frequency of vortex shedding, D is the sphere diameter and Uin is the
inflow velocity. The frequency spectra of the cross-stream velocity components were obtained
by means of FFT. The velocity probes were placed at x = xc + xpx0 + ypy0 + zpz0, where
xc denotes the position of the sphere centre, x0, y0, z0 are axes unit vectors, and xp = 3.0D,
yp = 0.3D and zp = 0.5D. The spectra were computed at Re = 10

3 and Re = 104. Figure 5 shows
the computed spectra of the y-component of velocity, F [uy], as a function of the dimensionless
frequency f∗ = fD/Uin.
The obtained results match quite well the experimental data at Re = 103. Sakamoto and Ha-

niu (1990) reported St = 0.18-0.20 with ∼ 4% measurement errors, while the present LBM result
is St = 0.19. At Re = 104, the spectrum has significant amplitudes also at higher frequencies,
which is an expected result as the wake becomes more turbulent than at Re = 103. Moreover, it
is hard to distinguish a clearly dominating frequency in the neighbourhood of f∗ = 0.2 (obtained
in experiments), although the highest value is achieved at f∗ = 0.17. This result should however
be taken with care since the simulation is underresolved.
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Fig. 3. Drag coefficient of the sphere. •: present LBM computations; ——–: approximation of
experimental results according to Clift et al. (1978)

Fig. 4. The grayscale map of νsgs/ν at Re = 10
3 at non-dimensional time t+ = 95

Fig. 5. The spectrum of the y-component of velocity obtained in LBM simulations expressed in terms of
the dimensionless frequency f∗ at Re = 103 (left) and Re = 104 (right)

4. Conclusions and perspectives

The methods presented in this paper allow one to accurately predict the flow past simple bluff
bodies in terms of the drag force and the Strouhal number in the range of low and moderate
Reynolds numbers. In the transitional and turbulent regimes, we have added the LES closure
for non-resolved flow scales. In the case of a turbulent flow, it would be however necessary to
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introduce a local lattice refinement to solve the boundary layer and wake with sufficient accuracy.
Further validation of the presented methods should involve study of more complex phenomena in
bluff-body flows, e.g. wake dynamics and structures which were investigated in an experimental
way by Klotz et al. (2014) and Szaltys et al. (2011).
The presented implementation of boundary conditions, force evaluation and turbulence model

do not deprive LBM from its explicit local character, so the problem size (the number of lattice
nodes N , say) does not have a big impact on the total simulation time as the computational
complexity remains of O(N). These features of LBM make it incomparably faster than other
methods, even up to two orders of magnitude faster than FVM executed on a single multicore
CPU of comparable cost with a similar programming effort (Kajzer et al., 2014). Introduction
of the block-wise refinement will not require modification of the presented approaches. However,
it will make the implementation slightly more complicated in comparison to the homogenous
lattice.
Summarising, the Lattice Boltzmann Method seems to be a promising tool for external flow

computations in a wide range of Reynolds numbers.
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