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The paper contains recommendations of finite element models of the
crack tip neighborhood to obtain results independent of the finite element
mesh. The recommendations are valid for elastic-plastic problems and
finite strains. As an example, analysis of single edge notched specimens
under bending is presented.
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1. Introduction

The Finite Elements Method (FEM) requires proper modeling of a given pro-
blem. The modeling concerns specimen geometry, description of a material,
selection of the proper Finite Elements (FE) mesh.

The Hutchinson, Rice and Rosengren (HRR) solution (Hutchinson, 1968;
Rice and Rosengren, 1968) of stress, strain and displacement fields near the
crack tip for non-linear (elastic-plastic) materials concerns small strains and
consists of one singular term only.

The amplitude of the singular stress field is the J-integral. The J-integral
is path independent when the strain energy is a unique function of strains.

However, the stress distribution for a plane strain model is in most cases
different from the HRR solution (see Fig. 1). This difference between the FEM
stress distribution and the HRR solution was called by O’Dowd and Shih
the ”Q-parameter” (O’Dowd and Shih, 1991, 1992). In fact, the Qσ0 term
(where σ0 is yield stress), when added to the HRR singular term, replaces all
neglected terms in the asymptotic expansions of the stress field in front of the
crack.
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Fig. 1. (a) The stress distribution near the crack tip. Curves obtained using FEM
for small and finite strain and HRR formula; (b) the stress-strain curve of the

material used in FEM analysis

In a real structural element with a crack, stresses near the crack tip are
finite. The stress infinity is a result of the assumption that the crack tip is
perfectly sharp and it remains sharp during loading of the crack tip. When
the assumption of small strains is relaxed, the crack tip blunts and the stres-
ses in front of the crack become finite. The opening stress reaches maximum
at the distance equal to r = 0.5J/σ0 to r = 2J/σ0, and its value depends
on material properties, specimen geometry and external loading. This fe-
ature was first noticed by Rice and Johnson (1970), McMeeking and Parks
(1979).

FE analysis of the stress and strain field in front of the crack when the finite
strains are used is not a trivial problem. The level of the stress maximum and
its localization depends on FE mesh details when it is not properly selected.
For the small strain option, such a problem is not observed (ODowd and Shih,
1992; Al-Ani and Hancock, 1991; O’Dowd, 1995; O’Dowd et al., 1995).

2. Numerical model

Numerical results are presented for single edge notched bend speci-
mens (SEN(B)). Dimensions of the specimens satisfy requirements of the
ASTM E 1820-05 standard. Computations were performed for a plane strain
using the finite strain option. The relative crack length was a/W = 0.5, where
a is the crack length, and the width of specimens W was equal to 40mm.
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The computations were performed using ADINA SYSTEM 8.3. Due to the
symmetry, only a half of the specimen was modeled. The finite element mesh
was filled with 9-node plane strain elements. The size of finite elements in
the radial direction was decreasing towards the crack tip, while in the angular
direction the size of each element was kept constant. It varied from ∆θ = π/13
to ∆θ = π/23 for various cases tested. The crack tip region was modeled
using 6, 16, 35 and 75 semicircles. The crack tip was modeled as an arc whose
radius varied from 0.0001mm to 0.01mm, (10−6(W − a) to 10−4(W − a),
respectively).

The Poisson ratio which was ν = 0.3, the yield stress σ0 = 315MPa,
Young’s modulus E = 206000MPa and the work hardening exponent n = 5
defined mechanical properties of the material. The true stress-strain curve used
in FEM analysis is presented in Fig. 1b. In the model, the stress-strain curve
was approximated by relation
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where ε0 denotes the reference strain (ε0 = σ0/E) and α is a hardening
constant, which was assumed 1 in this case.

3. Results of finite elements analysis

The numerical analysis of the stress distribution in the domain next to the
crack tip revealed that results depend on the details of FE modeling, when the
finite strain option is adopted. It is shown in Fig. 2 and Fig. 3. One may notice
that when the number of the FEs between the crack tip and the maximum
location of the opening stress is not large enough for the results to converge to a
single curve. It is recommended to use at least 20 FEs between the crack tip and
the stress maximum location. Thus, the FE size in the radial direction should
be smaller than 0.1δT , where δT is the Crack Tip Opening Displacement
(CTOD).

In contrast to the FE size in the radial direction, the size in the angular
direction does not effect the stress distribution in front of the crack at θ = 0◦.
Several cases for the FE modeled as semicircular rings were tested (from 13
to 23 segments). The results are shown in Fig. 4.

In the literature, the crack tip is modeled in two different ways shown in
Fig. 5c and Fig. 5d.
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Fig. 2. Influence of the number of FE between the crack tip and the maximum
location of the opening stress σ22 along the θ = 0

◦ direction on the stress
distribution: (a) r ¬ 6J/σ0; (b) r ¬ 2J/σ0

Brocks et al. (2003) and Brocks and Scheider (2003) suggests that the crack
tip should be modeled in the way shown in Fig. 5d. Computations confirm that
when this model is used, the radius of the crack tip can be smaller than for
the model shown in Fig. 5c to conduct the FE analysis for larger external
loads.

O’Dowd and Shih (1991, 1992), O’Dowd (1995), O’Dowd et al. (1995)
suggests that the crack tip radius should be smaller than the half of the crack
tip opening displacement δTc for the critical moment

rw =
1

2
δTc =

1

2
dn
Jc
σ0

(3.1)

where Jc is the critical value of the J-integral (for the material used in the
FEM analysis: Jc = 40 kN/m) and dn is a parameter introduced by Shih,
which connects the J-integral, yield stress and crack tip opening displacement
(in our case dn = 0.297). The crack tip radius calculated from equation (3.1)
is equal to rw = 1.89 · 10

−5m and is greater than the crack tip radii tested in
the FEM analysis which seemed to be advisable.

However O’Dowd was not interested in the opening stress distribution at
the distance r < J/σ0 which is of vital interest in our analysis. He used the
small strain option during computation.

The FEM analysis shows that when the crack tip radius ρ decreases, the
level of the maximum of the opening stress in front of the crack increases
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Fig. 3. Influence of the number of FE between the crack tip and the maximum
location of the opening stress σ22 along the θ = 0

◦ direction: (a) the level of the
maximum opening stress as a function of the external loading (JIC = 40000N/m for
this material); (b) normalized location of the opening stress maximum as a function
of the external load; (c) location of the opening stress maximum as a function of the

external loading (P0 is the limit load)

and appears closer to the crack tip. However, for a sufficiently small value
of ρ, both the opening stress maximum and its location in front of the crack
become independent of the crack tip radius. For increasing external load, the
saturation of the ξ0 = ξ0(J) and ψ0 = ψ0(J) (where ξ0 = (σ22)max/σ0 and
ψ0 = (r22)maxσ0/J) curves was observed (see Fig. 6). The curves level off, and
the level is independent of the crack tip radius. Convergence of the FEM results
is observed, when ρ is about 2.5·10−6m (δTc/15 for the critical moment when
the J-integral value is equal to Jc = 40 kN/m, respectively).
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Fig. 4. Influence of the FE size in the tangential direction on FE results: (a) stress
distributions in front of the crack tip for different levels of external loads (results for
the θ = 0◦ direction); (b) normalized distance of the maximum opening stress to the

crack tip; (c) distance of the maximum opening stress to the crack tip

Thus the crack tip model shown in Fig. 5d is recommended.

4. Estimation of the J-integral

In this section, the influence of size of contour of integration on the J-integral
is investigated. In ADINA SYSTEM 8.3, the J-integral may be calculated by
making use of two methods.

The first method is based on the J-integral definition

J =

∫
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ds (4.1)
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Fig. 5. (a) SEN(B) specimen; (b) FEM mesh for SEN(B) specimen; (c), (d) two
alternative crack tip models
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Fig. 6. Effect of size of the crack tip radius on: (a) level of the maximum opening
stress; (b) normalized location of the maximum opening stress

where w is the strain energy density, t is the stress vector acting on the
contour C drawn around the crack tip, u denotes the displacement vector
and ds is an infinitesimal segment of the contour C.

The second method, called the ”virtual shift method”, uses the concept of
virtual crack growth to compute the virtual energy change.

The J-integral is path independent for small strain formulation only. Ho-
wever, one may also calculate the J-integral using the large strain formulation,
but the contour of integration should be sufficiently distant from the crack tip
and not too close to the specimen borders.
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In Table 1, the contours of integration used in this investigation are shown.

Table 1. Definition of J-integral contours

Number of Distance form
contour crack tip [mm]
1 0.02
2 0.15
3 0.36
4 0.67
5 1.08
6 1.59
7 2.25
8 4.64
9 9.39
10 18.0
11 18.0

Fig. 7. Effect of size of the integral contour and the mesh size on the numerically
found J-integral

Figure 7 presents J-integral values obtained for different contours and
different meshes. The smallest FE mesh (the first mesh in Table 2) used in
the analysis was extremely dense. Subsequent meshes were gradually sparse.
Every mesh but the last (the fifth mesh in Table 2) were filled with 9-nodes
elements. In the fifth mesh, 4-nodes finite elements were used.
The calculations confirm that the J-integral is almost independent of the

finite elements used in FEM analysis. The most important is the way the
contour of integration is drawn. It should not lie too close to the crack tip nor
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to the edge of the specimen. The best recommendation is to use a few different
integral contours in FEM analysis and compare the results.

Table 2. Definition of FE meshes used for calculation of the J-integral

Number of elements between crack tip and
Nodes per
element

Mesh maximun opening stress for critical moment
Jc = 40 kN/m

mesh 1 72 9

mesh 2 35 9

mesh 3 16 9

mesh 4 6 9

mesh 5 36 4

5. Determination of the crack tip opening displacement

The Crack Tip Opening Displacement (CTOD) is determined using the me-
thod proposed by Shih (1981) (see Fig. 8). The most important problem here
is the choice of the crack tip model. In our calculations, we used three models
of the crack tip.

Fig. 8. Shih’s method proposed for determination of the crack opening displacement

In the most common model called hereafter ”sharp”, the crack tip radius
is equal to zero. In the second model, the crack tip is modeled as a half of the
circle (see Fig. 5c) and in the last one, the crack tip is in a form of the quarter
of the circle (see Fig. 5d). In the third model, the initial value of CTOD is
equal to the radius of the crack tip circle.

The results obtained show (see Fig. 9) that the best results, which are close
to the theoretical plane strain value of CTOD (Shih, 1981), are obtained for
the sharp crack tip model, and the worst results – with a half of the circle.
Unfortunately, two of the three models are unable to determine the CTOD for
small external loads, which in Fig. 9 are represented by the J-integral level. To
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determine the CTOD for the complete spectrum of external loads, we suggest
to use the third model (see Fig. 5d).

Fig. 9. Changes of the CTOD for growing external load

6. Conclusions

In the paper, the influence of finite element mesh size and the crack tip model
on FEM results was discussed. In particular, the stress distribution in front
of the crack for the finite strain option was analyzed. It is important that the
size of elements in front of the blunted crack should be less than 0.1 · CTOD
for the critical moment.

The crack tip radius should be of the order of 10−6-10−7m. The size of the
crack tip radius is not important if the stresses are measured at the distance
r > J/σ0 and when it increases to the value three times greater than the initial
one. We propose to use the crack tip model shown in Fig. 5d when the large
strain formulation is used.

The calculations show that the J-integral can be determined using quite
large finite elements if ”the virtual shift method” is used. The contour of
integration, which is used to determine the J-integral, must not lie too close
to the crack tip and to the edge of the specimen. It should not cross the border
between the plastic and elastic zone if it is possible.

To calculate the crack tip opening displacement, we suggest using the crack
tip model shown in Fig. 5d. This model allows one to determine the CTOD
value for the whole spectrum of external loads.
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Wpływ modelu wierzchołka pęknięcia na wyniki uzyskane metodą

elementów skończonych

Streszczenie

W pracy przeprowadzono analizę wpływu modelu MES na wartość naprężeń przed
frontem pęknięcia w materiałach sprężysto-plastycznych, wyznaczaną w sposób nu-
meryczny wartość całki J oraz rozwarcie wierzchołka pęknięcia (RWP). Obliczenia
prowadzono dla płaskiego stanu odkształcenia przy założeniu dużych odkształceń.

Manuscript received June 14, 2006; accepted for print February 21, 2007


