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The problem of boundary layer flow and heat transfer of nanofluids over nonlinear stretching
of a flat sheet in the presence of a magnetic field and chemical reaction is investigated nume-
rically. In this paper, a new locally modified single-phase model for the analysis is introduced.
In this model, the effective viscosity, density and thermal conductivity of the solid-liquid mi-
xtures (nanofluids) which are commonly utilized in the homogenous single-phase model, are
locally combined with the prevalent single-phase model. Similarity transformation is used to
convert the governing equations into three coupled nonlinear ordinary differential equations.
These equations depend on five local functions of the nanoparticle volume fraction viz., local
viscosity ratio, magnetic, Prandtl, Brownian motion and thermophoresis functions. The equ-
ations are solved using Newton’s method and a block tridiagonal matrix solver. The results
are compared to the prevalent single-phase model. In addition, the effect of important go-
verning parameters on the velocity, temperature, volume fraction distribution and the heat
and mass transfer rates are examined.
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1. Introduction

The enhancement of heat transfer in an industrial process such as cooling of electronic devices,
guide or thrust bearings, high-speed sliding surfaces, strips or filaments, and etc., may create
energy savings, reduce the process time, increase efficiency and lengthen the working life of
equipment. Convective heat transfer can be improved by changing flow geometry, boundary
conditions, or by enhancing thermal conductivity of the fluid (Wang and Mujumdar, 2007).
One way to increase the thermal conductivity of base fluids is the use of nanoparticles (such as
Cu, Ag, Al, and etc. as metallic solid, CuO, Al2O3, TiO2 and etc., as metallic oxide particles,
multi walled nanotubes (MWNTs) and single wall nanotubes (SWNTs) (as metallic nanotubes)
suspended in the fluids. Indeed, the Brownian motion of the nanoparticles in these suspensions
is one of the potential contributors to this enhancement (Choi, 1995; Choi et al., 2001; Xie
et al., 2003; Li and Peterson, 2007; Aminossadati and Ghasemi, 2009; Hamad and Ferddows,
2012). Apparently, Choi (1995) was the first researcher who introduced the term nanofluids
to refer to the fluid with suspended nanoparticles, and up from this time, many researchers
focused on numerical or experimental studies in the field of thermophysical and also heat and
fluid flow properties of nanofluids such by Choi (1995), Choi et al. (2001), Xie et al. (2003), Li
and Peterson (2007), Aminossadati and Ghasemi (2009), Hamad and Ferddows (2012), Wen and
Ding Y. (2004), Heris et al. (2006), Abu-Nada and Chamkhac (2010), Sheikhzadeh et al. (2011)
and to name but a few.
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As aforesaid, cooling of continuous strips or filaments by drawing them through a motionless
fluid is one of the heat transfer processes in the industry. In these respects, the feature of the
final product (e.g. plastic and polymer sheets manufactured by extrusion, glass-fiber and paper
production, metal spinning, etc.) depends on the cooling rate and the process of stretching (Rana
and Bhargava, 2012). Therefore, simulation of boundary layer behavior of fluid flow over the
stretching surface (strips or filaments) can be useful for predicting heat transfer characteristics
of such a process. The basic and elementary works on Boundary Layer Flow (BLF) over a
continuous moving surface (with constant velocity) were reported by Sakiadis (1961a,b,c). After
that, Crane (1970) published a report about the exact temperature distribution of the steady
BLF of a viscous fluid caused by stretching a flat isothermal sheet (with a linearly variable
velocity). The temperature and concentration distributions of BLF over an isothermal moving
plate with blowing or suction were found by Gupta and Gupta (1977). The same problem was
studied by Chen and Char (1988) in which the sheet was subjected to a prescribed temperature
and heat flux.

The boundary layer and thermal characteristics of fluid flow over a nonlinear stretching sheet
were examined for the first time by Vajravelu (2001). Then, Vajravelu and Cannon (2006) in-
vestigated the existence of a solution for the nonlinear problem by using the Schauder theory.
Afterwards, Cortell (2007) analyzed flow and heat transfer over a nonlinear stretching sheet for
the prescribed and constant surface temperature as boundary conditions. Prasad et al. (2010)
presented a numerical solution for Magneto-Hydrodynamics (MHD) flow of an electrically con-
ducting viscous fluid over a stretching sheet with variable fluid properties. They assumed that the
stretching velocity and the transverse magnetic field varied as a power function of the distance
from the origin. Postelnicu and Pop (2011) explored steady 2D laminar BLF of a non-Newtonian
power-law fluid past a permeable non-linear stretching wedge. And recently, Vajravelu et al.
(2014) published a paper on the subject of MHD flow and heat transfer of a non-Newtonian
power-law fluid over an unsteady stretching isothermal sheet.

Since using nanofluids may improve heat transfer behavior of an engineering process, many
researchers examined the effect of those fluids on the boundary layer and thermal characteristics
of flow caused by stretching a surface. In this respect, Bachok et al. (2010) studied the steady
BLF of nanofluids over a continuous moving surface (with constant velocity). Khan and Pop
(2010) obtained the temperature distribution of steady BLF of nanofluids over a linear isothermal
stretching flat sheet. Gorder et al. (2010) presented the similarity solution for the nano-BLFs
over a linearly stretching sheet, in which on the surface sheet the velocity slip was assumed to
be proportional to the local shear stress. Hassani et al. (2011) obtained an analytical solution
for BLF of a nanofluid past a linearly stretching sheet using the homotopy analysis method
(HAM). Rana and Bhargava (2012) studied numerically flow and heat transfer of a nanofluid
over a nonlinearly stretching sheet. They used the finite difference, finite element, and variational
method in their computations. Nadeem et al. (2014) analyzed flow of a three-dimensional water-
-based nanofluid over an exponentially stretching sheet. And recently, Das (2015) investigated
the problem of BLF of a nanofluid over a non-linear permeable stretching sheet at a predestined
surface temperature in the presence of partial slip.

The study of Magneto-Hydrodynamics (MHD) flow of an electrically conducting fluid due
to a stretching sheet is important in modern engineering processes. Metallurgy, metalworking,
metal fusion in an electrical furnace, and etc., are some examples of such processes (Ibrahim
and Shanker, 2014). The MHD flow analysis over a stretching sheet with various aspects such
as types of fluids, magnetic effect, stagnation geometry and the temperature effect can be seen
in works of many researchers such as Ishak et al. (2008), Fadzilah et al. (2011), Mahapatra
et al. (2009), Prasad et al. (2010), and to name but a few. Ibrahim et al. (2013) studied the
MHD stagnation-point flow and heat transfer due to a nanofluid towards a stretching sheet
using the Runge-Kutta fourth order numerical method. They analyzed the effect of the velocity
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ratio parameter on both the local Nusselt number and local Sherwood number. In the same
year, Ibrahim and Shankar (2013) investigated MHD boundary layer flow and heat transfer of
a nanofluid past a permeable stretching sheet with velocity, thermal and solutal slip boundary
conditions. Recently, Ibrahim and Shankar (2014) studied MHD boundary layer flow and heat
transfer of a nanofluid over a non-isothermal stretching sheet. Their analysis was done for two
different cases, namely a prescribed surface temperature and prescribed heat flux.

The above mentioned literature review shows that in order to investigate the heat transfer
characteristics of nanoparticles (or generally small solid particles) suspended in a fluid, two main
approaches have been adopted by researchers. The first approach is the two-phase model which
considers both the fluid phase and the solid particles behavior in the heat transfer process. The
second one is the single-phase model in which both phases are in thermal and hydrodynamic
equilibrium state (this approach is simpler and more computationally efficient). Generally in
nanofluids, there are several factors that affect heat transfer enhancement. Some of the mo-
re important factors are Brownian motion (including diffusion, sedimentation, and dispersion),
gravity, layering at the solid/liquid interface, particle clustering, friction between the fluid and
the solid particles, etc. Therefore, in the absence of any experimental data and suitable theore-
tical studies, the existing macroscopic two-phase model has not enough precision for analyzing
nanofluids. Consequently, the modified single-phase, considering some of the above factors, is
more convenient than the two-phase model if the main interest of analysis is the heat transfer
process (Khanafer et al., 2003). Therefore, in order to improve the results of the single-phase
model for analyzing the nanofluids flow, some modifications are needed. In this paper, a new
modified single-phase model for analyzing flow and heat transfer in nanofluids is introduced for
the first time. In this model, all effective properties of nanofluids such as density, viscosity and
thermal conductivity, which are normally used for the effective single-phase model (as constant
values), are incorporated locally with the governing equations (as non-constant values). This
approach is used for examining the BLF behavior and thermal characteristics of nanofluids flow
over a nonlinear stretching sheet in the presence of a magnetic field and chemical reaction.
The results for Cu and Al2O3 nanoparticles are compared to the prevalent single-phase model.
This comparison depicts that the prevalent single-phase model has a considerable deviation for
predicting the behavior of nanofluids flow, especially in dimensionless temperature and nano-
particle volume fraction. In addition, the effects of important governing parameters such as the
transverse magnetic field, chemical reaction strength, thermophoresis parameter, nanoparticle
volume fraction near the surface, etc., on the velocity, temperature, volume fraction distribution
and dimensionless heat and mass transfer rates are examined.

2. Mathematical governing equations

The steady-state two-dimensional BLF of a nanofluid past a stretching sheet is considered with
the nonlinear velocity uw = aux

n, where au is a positive constant, n is the nonlinear stretching
parameter and x is the coordinate measured along the stretching surface, as shown in Fig. 1.
Because of the impermeability characteristic of the sheet, the vertical velocity of the fluid on
the surface is vw = 0. In this problem, the stretching surface is a non-isothermal face with the
relation of Tw(x) = T∞ + aTx

r, where aT is a positive constant, r is the surface temperature
parameter in the prescribed surface temperature boundary condition and T∞ is the temperature
of the fluid far away from the stretching sheet. In addition, the fluid is under a transverse
magnetic field with strength B(x) which is applied in the vertical direction, given by the special
form of B(x) = B0x

n−1, where B0 is a positive constant. Also, it is assumed that the first-order
homogeneous chemical reaction with the non-linear rate of K = K0x

n−1 occurs in the fluid
(K0 is the constant chemical reaction parameter). According to (Ibrahim and Shanker, 2014;
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Fig. 1. Physical model of the stretching sheet and the coordinate system

Buongiorno, 2006; Yazdi et al., 2011), the following four governing equations of BLF include the
continuity, momentum, energy, and nanoparticles concentration, respectively
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here, T is temperature of the fluid, u and v are velocity components along the x and y-axis
respectively, ϕ is the nanoparticle concentration (or volume fraction), DT is the thermophoretic
diffusion coefficient, DB is the Brownian diffusion coefficient, c is specific heat capacity, ρ is
density, α = k/(ρc) is thermal diffusivity, ν is kinematic viscosity, k is thermal conductivity,
and σ is electrical conductivity of the fluid. The subscripts p and nf refer to the nanoparticles
and nanofluid, respectively. In this study, a new local Modified Single-Phase Model (here it is
named as MSPM) for analyzing nanofluids flow and heat transfer is introduced. In this manner,
the parameters νnf , knf , ρnf , and cnf of the above governing equations may be introduced by
the following four relations (Oztop and Abu-Nada, 2008)

(ρc)nf
(ρc)f

= 1− ϕ+ ϕ (ρc)p
(ρc)f

ρnf
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νnf
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knf
kf
=
kp + 2kf − 2ϕ(kf − kp)
kp + 2kf + ϕ(kf − kp)

(2.2)

where, the subscript f refers to the base fluid. The associated boundary conditions for the
problem are

u(x, 0) = uw(x) = aux
n v(x, 0) = vw(x) = 0

T (x, 0) = Tw(x) = aTx
r + T∞ ϕ(x, 0) = ϕw

u(x,∞) = 0 v(x,∞) = 0 T (x,∞) = T∞ ϕ(x,∞) = ϕ∞
(2.3)

where ϕw and ϕ∞ are the nanoparticle volume fraction neighborhood to the surface and far away
from the stretching sheet, respectively. By considering the following similarity transformations
(Ibrahim and Shankar, 2013)

η = yβx
n−1

2 u = aux
nf ′(η) v = −γxn−12

(

f +
n− 1
n+ 1

ηf ′
)

θ(η) =
T − T∞
Tw − T∞

ψ(η) =
ϕ− ϕ∞
ϕw − ϕ∞

(2.4)
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where, β =
√

au(n+ 1)/(2νf ) and γ =
√

auνf (n+ 1)/2, BLF governing equations (2.1) are

transformed into three non-linear ordinary differential equations as follows
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(2.5)

where F (ϕ) is the local viscosity ratio function, G(ϕ), Pr(ϕ), Nb(ϕ) and Nt(ϕ) are the local
magnetic, local Prandtl, local Brownian and local thermophoresis functions are defined as
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In the set of equations (2.6), M = σB0/(auρf ) is the magnetic parameter, Prf = νf/αf is the
fluid Prandtl number, Le = νf/DB is the Lewis number, Nb = [(ρc)pDB(ϕw − ϕ∞)]/[νf (ρc)f ]
is the Brownian motion number, Nt = [(ρc)pDT (Tw − T∞)]/[T∞νf (ρc)f ] is the thermophoresis
parameter and, finally, R = K0/au. It is clear that Nb is related to Le as follows

Nb =
(ρc)p(ϕw − ϕ∞)
Le(ρc)f

(2.7)

It should be noted that the enhancement of nanofluids thermal conductivity is because of four
major mechanisms: (1) Brownian motion of nanoparticles, (2) nanolayer, (3) clustering, and
(4) nature of heat transport in the nanoparticles. Also, some important parameters which affect
the thermal conductivity of nanofluids are particle volume fraction, temperature, particles size
and the size and property of the nanolayer. Therefore, a considerable number of studies can
be found on the modelling of thermal conductivity of nanofluids, such as the Maxwell model,
Hamilton-Crosser model, Bruggeman model, Wasp model, Maxwell-Garnett (MG) model, Gupta
model, and to name but a few. However, there is a lack of reliable and comprehensive model
which includes all mechanisms and influenced parameters for thermal conductivity of nanofluids
(Esfe et al., 2014; Kumar et al., 2015). As a matter of fact, the present study does not focus on
a comprehensive thermal conductivity model of nanofluids (so the Maxwell model (Eqs. (2.5)
is selected as the model). The novelty of this study can be found in Eqs. (2.5) and (2.6). In
Eqs. (2.5), F (ϕ), Pr(ϕ), Nb(ϕ), and Nt(ϕ) are not constant during the calculation and they
are updated locally based on the third relation of Eq. (2.5), which is more physical. It means
that three relations of Eqs. (2.5) should be solved together. By considering Eqs. (2.3), non-linear
ordinary differential equations (2.5) are solved subject to the following boundary conditions

f ′(0) = 1.0 θ(0) = 1.0 ψ(0) = 1.0 f(0) = 0

f ′(∞) = 0 θ(∞) = 0 ψ(∞) = 0
(2.8)

By introducing the local Reynolds number via Rex = uw(x)x/νf = aux
n+1/νf , the surface

heat flux through qw = knf (∂T/∂y)y=0, the surface mass flux via qm = DB(∂ϕ/∂y)y=0, the
local nanofluid Nusselt number through Nunf = xqw/[knf (Tw − T∞)] and the local nanofluid
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Sherwood number by means of Shnf = xqm/[DB(ϕw − ϕ∞)], the following relation can be
established

Nunf√
Rex
=

√

n+ 1

2
|θ′(0)| Shnf√

Rex
=

√

n+ 1

2
|ψ′(0)| (2.9)

where Nunf/
√
Rex and Shnf/

√
Rex are known as dimensionless heat and mass transfer rates,

respectively. Without loss of generality, one can assume that the nanoparticle volume fraction
far away from the stretching sheet is zero or ϕ∞ = 0. In this paper, the fluid is a water based na-
nofluid containing different types of prevalent nanoparticles: copper (Cu) and alumina (Al2O3).
Based on (Oztop and Abu-Nada, 2008), the thermophysical properties of the fluid (water) and
the mentioned nanoparticles are given in Table 1.

Table 1. Thermophysical properties of the fluid (water) and three nanoparticles

Properties Fluid phase (water) Cu Al2O3

c [J/kgK] 4179 385 765

ρ [kg/m3] 997.1 8933 3970

k [W/mK] 0.613 400 40

Prf 6.83 – –

(ρc)p/(ρc)f – 0.825 0.729

kp/kf – 652.53 65.25

3. Algorithm of numerical solution

The algorithm of numerical calculation (computer programming procedure) of non-linear dif-
ferential equations (2.5)-(2.7) with boundary conditions (2.8) is given via items (i) to (viii).
It should be noted that for step (ii), by assuming ϕ∞ = 0, the initial guess can be
ψ(η) = ϕ(η)/ϕw = [1 − exp(η − ηmax)]/[1 − exp(−ηmax)] as an example, where ηmax is the
maximum value of η in the numerical calculation.

(i) Specify input data of the base fluid and nanoparticles: ρp/ρf , (ρc)p/(ρc)f , kp/kf , Prf , Nb,
Nt, Le, ϕw

(ii) Set an initial guess for ϕ(η) or its dimensionless parameter, i.e. ψ(η)

(iii) Calculate F (ϕ), G(ϕ), Nb(ϕ), Nt(ϕ), and Pr(ϕ) based on step (i) and profile of ϕ

(iv) Solve the 1st relation of equation (2.5) to obtain f(η) by using Newton’s method

(v) Solve the 2nd relation of equation (2.5) to obtain θ(η) by using Newton’s method

(vi) Solve the 3rd relation of equation (2.5) to update ψ(η) or ϕ(η) by using Newton’s method

(vii) Check the error between the updated ψ(η) and the guessed one

(viii) If the maximum error ¬ 10−5 then the procedure is finished; else go to step (iii)

4. Validation of the numerical solution

With reference to many studies such as Khan and Pop (2010), Das (2015), Ibrahim and Shankar
(2013), Ibrahim and Shankar (2014) and etc., it is evident that the MSPM is reduced to the old
Prevalent Single-Phase Model (PSPM) by considering the relations: F (ϕ) = 1.0, G(ϕ) = M ,
Nb(ϕ) = Nb, Nt(ϕ) = Nt, and Pr(ϕ) = Pr. In order to check the validity of the present compu-
tational programming code, governing equations (2.5)-(2.7) subject to boundary conditions (2.8)
are solved numerically for some values of the governing parameters of the PSPM. The results
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for the reduced Nusselt number |θ′(0)| and the reduced Sherwood number |ψ′(0)| are compared
with those obtained by Khan and Pop (2010) in Table 2. In this simulation, the default values
of the parameters are considered as Pr = 10, Le = 10, n = 1, r = 0, M = 0, R = 0 and
ηmax = 20. Also, Table 3 shows the comparison of the magnitude of the velocity gradient at
the wall, |f ′′(0)|, between the present code results and that obtained previously by Fang et al.
(2009) for the case of n = 1, ηmax = 20, and M = 0.25-4.0. It can be seen from Tables 2 and 3
that the present results are in very good agreement with those reported by other researchers.
Therefore, it is clear that the results obtained in this study are accurate.

Table 2. Comparison of |θ′(0)| and |ψ′(0)| for Pr = 10, Le = 10, n = 1, r = 0, R = 0, M = 0,
ηmax = 20

Parameter
Present result Khan and Pop (2010)
|θ′(0)| |ψ′(0)| |θ′(0)| |ψ′(0)|

Nb = 0.1, Nt = 0.1 0.95238 2.12939 0.9524 2.1294

Nb = 0.1, Nt = 0.3 0.52007 2.52863 0.5201 2.5286

Nb = 0.1, Nt = 0.5 0.32105 3.03514 0.3211 3.0351

Nb = 0.3, Nt = 0.1 0.25215 2.41002 0.2522 2.4100

Nb = 0.3, Nt = 0.3 0.13551 2.60882 0.1355 2.6088

Nb = 0.3, Nt = 0.5 0.08329 2.75187 0.0833 2.7519

Nb = 0.5, Nt = 0.1 0.05425 2.38357 0.0.543 2.3836

Nb = 0.5, Nt = 0.3 0.02913 2.49837 0.0291 2.4984

Nb = 0.5, Nt = 0.5 0.01792 2.57310 0.0179 2.5731

Table 3. Comparison of results for |f ′′(0)| when n = 1, and ηmax = 20

Parameter
Present result Fang et al. (2009)
|f ′′(0)| |f ′′(0)|

M = 0.25 1.11803 1.1180

M = 4.0 2.23606 2.2361

5. Results and discussion

In this Section, the numerical results for profiles of dimensionless velocity f ′(η), temperatu-
re θ(η), nanoparticle concentration ψ(η), and etc., are presented for different values of the
governing parameters. The obtained results are displayed through graphs in Figs. 2-7. For all
simulations and their corresponding figures, the used governing parameters are given in Table 4.
It should be noted that the value of the Brownian motion number Nb for the MSPM is cal-
culated by equation (2.7), while for PSPM this is considered as the average of Nb for Cu and
Al2O3 nanoparticles. In order to compare the effect of using MSPM and PSPM on the results,
the linear and non-linear stretching sheet problems for two different nanoparticles (i.e. Cu and
Al2O3) are considered. These comparisons for six dimensionless profiles (i.e. f , f

′, θ, θ′, ψ and ψ′)
are presented in Fig. 2 (linear stretching sheet problem) and Fig. 3 (non-linear stretching sheet
problem). The illustrated results in both Figs. 2 and 3 confirm that the temperature and na-
noparticle volume fraction profiles (i.e. θ and ψ) converge quicker than the horizontal velocity
profiles (i.e. f ′) for both PSPM and MSPM. Nevertheless, it is evident from the figures that the
PSPM has a remarkable deviation for predicting the behavior of nanofluids flow, especially in
dimensionless temperature θ and nanoparticle concentration ψ. Also, the comparison between
the results presented in Figs. 2 and 3 displays that this deviation is intensified when the sheet is
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stretched nonlinearly. It should be noted that discussions about the PSPM and its effect on the
results of the stretching sheet problem were recently reported in many studies such as Khan and
Pop (2010), Hassani et al. (2011), Ibrahim and Shankar (2013), Ibrahim and Shanker (2014),
and to name but a few. Therefore, for the next simulations, the MSPM is only considered. Also,
based on the results shown in Figs. 2 and 3, one can observe that the boundary layer beha-
vior and thermal characteristics of both nanoparticle flows are approximately the same. Hence,
the further results and discussions are focused only on the Cu-water nanofluid flow (using the
MSPM).

Fig. 2. Effect of the MSPM and PSPM on the dimensionless profiles for n = 1 and r = 0

Table 4. The governing parameters for nanofluid flow simulations

Nb
Fig. n r Nt Le ϕw M R MSPM MSPM PSPM

(Cu) (Al2O3)

2 1 0 0.1 5 0.5 0.25 0.1 0.0825 0.0729 0.0777

3 5 5 0.1 5 0.5 0.25 0.1 0.0825 0.0729 0.0777

4 5 5 0.1 5 0.5 0.0-4.0 0.1 0.0825 – –

5 5 5 0.1 5 0.5 2.0 0.0-10 0.0825 – –

6 5 5 0.1 1 0.1-0.5 2.0 5 0.0825-0.4125 – –

7a 5 5 0.1 5 0.5 0.0-4.0 0.1 0.0825 – –

7b 5 5 0.1 5 0.5 2.0 0.0-10 0.0825 – –

7c 5 5 0.1 1 0.1-0.5 2.0 5 0.0825-0.4125 – –
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Fig. 3. Effect of the MSPM and PSPM on the dimensionless profiles for n = 5 and r = 5

Fig. 4. Effect of M on the dimensionless profiles for n = 5 and r = 5

The first analysis is related to the effects of the transverse magnetic field M on the flow
and thermal characteristics. By applying a transverse magnetic field, a Lorentz force is created,
which results in a retarding force on the velocity of the flow (Ibrahim and Shanker, 2014).
Therefore, as M increases (and, consequently, increasing the retarding force), the velocity of
the fluid decreases. This fact can be observed in Fig. 4a. In addition, Fig. 4b illustrates the
impact of the transverse magnetic field on the temperature profile. The results show that as
the magnetic parameter M increases, the temperature profile and the thermal boundary layer
thickness increase. Also, from Fig. 4c it is seen that the behavior of dimensionless concentration
is the same as the temperature profile when the values of the magnetic parameter M increase.
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Chemical reaction is an important process that should be considered in micro-mixing of
biological systems such as cell-activation and protein-folding, particularly when the mixing
of reactants for initiation is necessary. Lorentz forces produced by a magnetic field are able
to move nano-liquids in a mixing process. Hence, one of the active methods of micro-mixing
of biological samples is using a magnetic field in the presence of chemical reaction (Yazdi et
al., 2011). Therefore, the second examination belongs to the effects of the chemical reaction
strength R on the nanofluids BLF characteristics. Figure 5 demonstrates the influence of the
chemical reaction strength on the velocity, temperature and concentration graph. From Fig. 5a,
it is evident that the values of R has not any significant effect on the dimensionless veloci-
ty profile. But, by increasing the values of the chemical reaction parameter, the temperatu-
re gradient (Fig. 5b) and concentration gradient (Fig. 5c) on the wall intensify. In fact, for
the case of the higher nanoparticle concentration gradient near the wall, the nanoparticle con-
centration decreases rapidly as η increases. Therefore, the conductive heat transfer process is
weakened.

Fig. 5. Effect of R on the dimensionless profiles for n = 5 and r = 5

As the MSPM depends on the value of the nanoparticle volume fraction near the surface ϕw,
it is of great worth to investigate the effects of ϕw on dynamic and thermal characteristics of the
nanofluids flow. As it is predicted, when the value of the magnetic parameterM does not change,
variation of ϕw has no significant influence on the velocity graph (see Fig. 6a). However, as it
is noticed from Fig. 6b, increasing the nanoparticle volume fraction near the surface increases
the thermal boundary layer thickness. And finally for Fig. 6c, since ψ = ϕ/ϕw, comparing the
concentration graphs for various ϕw has no any important consequence.

Fig. 6. Effect of ϕw on the dimensionless profiles for n = 5 and r = 5
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The last results are about the effect of M , R, and ϕw on the dimensionless heat Nunf/
√
Rex

and mass transfer rates Shnf/
√
Rex on the wall. This information is presented in Fig. 7. Figure 7a

illustrates that the heat and mass transfer rates on the stretching wall decrease with an increase
in the transverse magnetic field M . In fact, the magnetic field generates more heat in the
boundary layer region and, hence, this reduces the wall heat transfer rate. Figure 7b depicts
that the wall mass transfer rate and the wall heat transfer rate increase with an increase in the
chemical reaction parameter R. In addition, a decrease in the dimensionless heat transfer and
an increase in the dimensionless mass transfer on the wall are observed with an increase in ϕw.
These are shown in Fig. 7c.

Fig. 7. Effect of M , R, and ϕw on the dimensionless heat and mass transfer rates for n = 5 and r = 5

6. Conclusion

The problem of boundary layer flow and heat transfer of nanofluids over a nonlinear stretching
sheet in the presence of a magnetic field and chemical reaction is examined numerically. In
this study, a modified single-phase model for analyzing nanofluids flow and heat transfer is
initiated. In this modified model, the effective density and viscosity of nanofluids and the effective
thermal conductivity of the solid-liquid mixture which are prevalently used in the effective single-
phase model (as constant values) are incorporated locally with the governing equations (as no-
constant values). A similarity solution is proposed which depends on the local Prandtl number,
local Brownian motion number, local Lewis number and the local thermophoresis number. The
results for Cu and Al2O3 nanoparticles are compared to the prevalent single-phase model. This
comparison shows that the prevalent single-phase model has a noticeable deviation for predicting
the behavior of the nanofluids flow, especially in dimensionless temperature and nanoparticle
volume fraction. In addition, the results exhibit that the heat and mass transfer rates on the
stretching surface decrease with increase in the transverse magnetic field. Also, the wall mass
transfer rate and the wall heat transfer rate increase with an increase in the chemical reaction
parameter.
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