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This paper presents an application of a design method of robust H∞
optimal control to a structural control system. A dynamic model for a
building structure under earthquake and wind excitations is considered.
Structured uncertainties are introduced to reflect errors between the mo-
del and the reality. To obtain the best possible performance in the face of
uncertainties, robust H∞ optimal control for the active control structu-
re is used. Relevant numerical techniques, which have been implemented
with the help of MATLAB routines, are applied to solve the formula-
ted structural control problem. By proper selection of the weight factor,
the seismic response of the building structure can be reduced conside-
rably. Numerical results show high robust performance of the proposed
method.
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1. Introduction

The control of structural vibrations is an important goal for the structural
engineer. Several control techniques have been developed for these purposes.
Classical engineering design based on appropriate choice of materials and of
dimensions of the structure provides only a partial solution to the problem
because of their limited control action. Active control is an interesting alter-
native (Hounser and Bergman, 1997). The ideas of integrating the automatic
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control concept or installing a mechanical control device into the seismic struc-
tural design were proposed more than forty years ago (Kobori, 1956; Kobori
and Minai, 1960). In an active control system, an external source powers ac-
tuators that apply forces to the structure in a prescribed manner. The design
objectives are to keep the outputs (displacements, accelerations, stresses and
strains) at a specified set of locations within the structure below specified bo-
unds in the presence of any disturbances less than a certain size. The most
commonly used active control method in structures is the feedback control.
The control strategy can be chosen in an optimal way. The linear quadratic
optimal control (LQR) has been the control strategy considered in most pu-
blished examinations (Marinova and Stavroulakis, 2002). Linearity of such a
controller and the phase margin theoretically provided by this technique are
the main reasons for this choice. However, the LQR technique does not address
practical issues such as model uncertainties. Modern control principles as H2
and H∞ theories can be used to feed back information to the control system
with controllability and sensing ability dealing with uncertainties.

The active control strategy for the enhancement of structural safety will
play a more important role along with more integration of the computer based
control technology. In this respect, not a few problems must be solved. One
of these important problems is the robustness of active control systems. The
H∞ control strategy is one of these computer based approaches that is able
to ensure the robustness of a system. The H∞ theory has been applied to a
number of civil engineering structures (Jabbari et al., 1995; Smith and Chase,
1994; Suhardjo et al., 1992; Zacharenakis, 1997; Arvanitis et al., 2003). The
earliest use in the civil engineering context appears to be due to Suhardjo and
Spencer, who also provided a comparison between the H2 and H∞ approaches
(Suhardjo et al., 1992). The H∞ design technique (Zhou, 1998) provides better
robustness than the LQG or H2 method. The implementation of the H∞
control theory is motivated by the inability of the LQG/H2 theory to directly
accommodate plant uncertainties.

A dynamical model of a smart building structure under external excitations
is considered in this paper. It is well known that the nominal model parame-
ters are determined by material properties and geometry configuration, but
physical parameters of a real structure system are not known exactly. The
external influences acting on the system lead to errors in tracking. Parameter
perturbations in the system can significantly amplify the effect of these distur-
bances. Thus, the appearance of model parameter uncertainties is a common
task in the building structure control. Two kinds of uncertainties can be consi-
dered: unstructured and structured. For several reasons, it is highly desirable
to introduce structured uncertainties for physical parameters of the system.

The aim of this research is to design a robust controller to suppress adverse
vibrations of building structures due to earthquake and wind excitations in
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presence of structured uncertainties of the physical parameters introduced
to compensate for the inaccuracies of the considered dynamical model. To
obtain the best possible performance in the face of the uncertainties, a robust
H∞ optimal control for active control structures is considered. The design
specifications of H∞ control are given in the frequency domain, and thus it
is easy for H∞ control to deal with the uncertainty at high frequencies and
to guarantee the robust stability and robust performance. Relevant numerical
techniques, which have been implemented with the help of MATLAB routines,
are applied to solve the formulated structural control problem. The numerical
computation carried out on a one-story building structure shows that by a
proper selection of the weight factor vibration of the system due to external
impacts can be considerably suppressed with the designed H∞ control.

2. Governing relations

In the present work, a dynamic model of a building structure under exter-
nal dynamical excitations is studied. The structure is designed by a certain
number of members. Some members are supplied with actuators. The actively
controlled members help to reduce large displacements and stresses resulting
from dynamic loadings. Forces produced by the controllers reduce the struc-
ture response by producing an opposite effect to the structure response. After
finite element discretization, the following differential equations govern the
dynamics of the model

MẌ(t) + CẊ(t) + EX(t) = Hu(t) + F (t) (2.1)

where the vector X(t) describes the displacements and the vector u(t) con-
tains the control forces. M, C and E are the nominal mass, damping and
stiffness matrices, respectively, H is the distribution matrix defining the lo-
cations of control forces and F (t) is the external loading vector. All matrices
with appropriate dimensions are constant and real. Mathematical model (2.1)
provides a mapping from the inputs to the responses. Suppose that sensors
measuring the displacements of the structure are assembled to all members.
Let then introduce an output vector

y =X(t) (2.2)

consisting of measures formed from the state vector X(t). Equations
(2.1)-(2.2) constitute the nominal plant representation in a state space form.



76 D.G. Marinova, G.E. Stavroulakis

The inputs of dynamical system (2.1)-(2.2) are x = [X(t), Ẋ(t)]⊤, u(t) and
F (t), and the outputs are y = x. System (2.1)-(2.2) gets the form

[

ẋ

y

]

= Gn

[

x

u

]

(2.3)

where Gn is the nominal plant

Gn =

[

A B2

C2 D22

]

A =

[

0 I

−M
−1
E −M

−1
C

]

B2 =

[

0

−M
−1
H

]

C2 =
[

I 0
]

D22 = 0

where I = In×n is the identity matrix. The quality of model (2.3) depends on
how closely its responses match those of the true plant.

3. Model uncertainty

The term ”uncertainty” reflects the differences of errors between the model
and the reality. Because the building structure is built from components that
are themselves uncertain, then the uncertainty in the system level is structu-
red. The variations in the structure system are approximated by disk shaped
regions on the real axis leading to a multiplicative uncertainty description of
the bounds. Let suppose that the three actual physical parameters M, C, and
E are not exactly known, but are believed to lie in known intervals. In particu-
lar, the actual mass M is within pM percentages of the nominal mass M, the
actual damping value C is within pC percentages of the nominal value C, and
the spring stiffness E is within pE percentages of its nominal value of E. The
nominal matrices M, C, E are assumed to be diagonal. Now, by introducing
real perturbations in a diagonal form

∆M = δM I ∆C = δCI ∆E = δEI (3.1)

which are assumed to be unknown but restricted

−1 ¬ δM , δC , δE ¬ 1 (3.2)

we can write the actual physical parameters of the system in the following
form

M =M(I+ pM∆M ) C = C(I+ pC∆C)
(3.3)

E = E(I+ pE∆E)
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The uncertainty in the matrices M−1, C and E can be represented by
Linear Fractional Transformations (LFT) of the matrix functions as the upper
LTF in the perturbations ∆M , ∆C and ∆E (Zacharenakis, 1977)

M
−1 = FU

(

[

−pM I M
−1

−pM I M
−1

]

,∆M
)

C = FU
(

[

0 C

pCI C

]

,∆C
)

(3.4)

E = FU
(

[

0 E

pEI E

]

,∆E
)

Thus, the considered control design problem will be formulated in a LFT
frame-work. A useful interpretation of the LFT is the following. The LFT in
(3.4) have a nominal mapping (first terms in the first rows in the matrices)
that are perturbed by ∆M , ∆C , ∆E while the other terms of the matrices
reflect prior knowledge as how the perturbations affect the nominal mappings.
This is why the LFT is particularly useful in the study of perturbations, which
are in the focus of this paper. Then a block diagram of system (2.3) can be
arranged to look like the one in Fig. 1 with reflected perturbations of the
parameters.

Fig. 1. Block diagram for system with uncertain parameters

To represent the model as a LFT of the natural uncertainty parameters
δM , δC , δE , we first isolate the uncertainty parameters and denote the inputs
of ∆M , ∆C ,∆E as yM , yC , yE and their outputs as uM , uC , uE . The outputs
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u∆ = [uM , uC , uE ] from the perturbations are added to the system inputs. The
inputs y∆ = [yM , yC , yE] to the perturbations are added to the system out-
puts. The model for the uncertain system is obtained in the following matrix
form







ẋ

y∆
y






= G







x

u∆
u






u∆ =∆y∆ (3.5)

where G is the plant of the perturbed system

G =







A B1 B2

C1 D11 D12

C2 D21 D22






B1 =

[

0 0 0

−pM I −pCM
−1
−pEM

−1

]

C1 =







−M
−1
E −M

−1
C

0 C

E 0






D11 =







−pM I −pCM
−1
−pEM

−1

0 0 0

0 0 0







D12 =







M
−1
H

0

0






D21 =

[

0 0 0
]

(3.6)

The matrix G in (3.5) contains only physical nominal parameters of the system
and, therefore, it is known. The system model uncertainty matrix in (3.5),
denoted by ∆, is a structural matrix

∆ =







∆M 0 0

0 ∆C 0

0 0 ∆E







It has a block diagonal structure and affects the input/output relation between
the control u and the output y in a way that it can be represented as a
feedback by the upper LFT

y = FU (G,∆)u (3.7)

4. Feedback properties

Further we will discus how to achieve the desired performance using feedback
control in the face of uncertainties. Consider the feedback system with the
plant G and controller K.
Let r be the command input that the system must be able to track; d the

disturbance input that the system must be able to reject; n the sensor noise;
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y the total output of the closed loop system that has to be controlled; u the
control signal and K – the controller. We have the following equations for the
output and control in the frequency domain (Zacharenakis, 1997)

y(s) = T(s)r(s) + S(s)d(s)− T(s)n(s)
(4.1)

u(s) = K(s)S(s)[r(s)− n(s)− d(s)]

where S(s) = (I + GK)−1 is the sensitivity and T(s) = GK(I + GK)−1 is
the complementary sensitivity transfer matrix. From equations (4.1) and the
obvious equation S(s) + T(s) = I there follow the main design objectives
inherent in the feedback loop. In a norm sense, S(s) must be small at low
frequencies for good disturbance rejection and must increase to one at high
frequencies, whereas T(s) must be one at low frequencies and get smaller at
high frequencies for good noise suppression. Intermediate frequencies typically
control the gain and phase margins.

5. Robust stability and robust performance

Consider the perturbed system with a set of perturbed models described by the
system matrix G. The performance criterion is to keep the errors as small as
possible in some sense for all perturbed models. The performance specifications
will be specified in some requirements on the closed loop frequency response
of the transfer matrix between the disturbances and the errors which lead to
the H∞ design framework. In this section, we focus on the H∞ performance
objectives.

The robust stability and robust performance criteria vary with the assump-
tions about uncertainty descriptions and performance requirements. They will
be treated in a unified framework using the LFT and the Structured Singular
Value (SSV) µ. Such a unified approach relieves the mathematical burden of
dealing with specific problems, and enables us to treat the robust stability and
robust performance problems for systems with multiple sources of uncertainties
in the same fashion as a single unstructured uncertainty. For simplification, we
shall cover the real parametric uncertainty with a norm-bounded dynamical
uncertainty.

For the robust stability analysis, the controller K can be viewed as a known
system component and absorbed into an interconnection structure P together
with the plant G. The interconnection model P can always be chosen so that
∆(s) is block diagonal. According to the Nyquist criterion, if the matrices
P and ∆ are stable then the interconnection system is stable if and only if
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det(I − P∆) 6= 0. For the robust stability, we are interested in finding the
smallest perturbation ∆ real and norm bounded ‖∆‖∞ < 1 in the sense of
the maximal singular value σ(∆) (that is ensured with equations (3.1) and
(3.2)) such that the closed loop framework will be stabilized, i.e.

det(I− P∆) = 0 (5.1)

The exact stability and performance analysis for the system with structu-
red uncertainty requires the matrix function SSV to be defined as

µ∆(P) =
1

min{σ(∆) : ∆ ∈ D, det(I− P∆) = 0}
(5.2)

It can be shown that the SSV is bounded as follows

ρ(P) ¬ µ∆(P) ¬ σ(P) (5.3)

where ρ(P) is the spectral radius and σ(P) is the maximal singular value
of the matrix P. The loop is well-posed and internally stable for all ∆ with
‖∆‖∞ < 1 if and only if

sup
ω∈R

µ∆(P(jω)) < 1 (5.4)

Hence, the peak value on the mu∆ plot of the frequency response determi-
nes the size of the perturbations for which the loop is robustly stable against.
The quantity

1

maxω µ∆[P(jω)]
(5.5)

is a stock of stability with respect to P influenced by the structured uncerta-
inty.

The external influences acting on the system lead to errors in tracking.
Parameter perturbations in the system can significantly amplify the effect of
these disturbances. As a result, the performance of the closed loop system can
be deteriorated before the stability is lost. That is why we must ensure robust
performance regarding the given level of perturbations.

The system performance criterion is the H∞ norm of some transfer matrix
of the system that is to be less than one. In the case of a system with an uncer-
tainty, a convenient characteristic for the robust performance is the sensitivity
or complementary sensitivity transfer matrix (or their combination) from the
external disturbances d to the errors e. It is a function of ∆ through the
elements of the matrix P and the LFT. The LFT FU (P,∆) achieves a good
performance if it is stable for all admissible ∆ satisfying max

ω
σ[∆(jω)] < 1,

and if ‖FU (P,∆)‖∞ ¬ 1 for all such perturbations. Using the Nyquist crite-
rion and the theorem for the small amplifying coefficient, it can be shown that
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‖FU (P,∆)‖∞ ¬ 1 if and only if the loop is stable for any ∆F and for any ∆
such that max

ω
σ[∆(jω)] < 1 and max

ω
σ[∆F (jω)] < 1. But this is the robust

stability problem for P with the perturbation

∆P =

[

∆ 0

0 ∆F

]

(5.6)

Hence, we determine the robust stability for an augmented system using an
additional uncertainty element and calculating µ∆P [P(jω)] to make conclu-
sions for the robust performance of the initial system with the uncertainty
FU (P,∆).

For our purposes, we take the sensitivity transfer matrix of the closed loop
system as a performance criterion and we will require for its norm the following
inequality

‖Wp(I+ GK)
−1‖∞ < 1 (5.7)

to achieve the desirable performance. This requirement must be satisfied for a
given weight matrix Wp such that to reject the disturbances for low frequencies
at the output. The performance weight matrix Wp can be chosen in a diagonal
form

Wp(s) = wp(s)I (5.8)

The inequality (5.7) with assumption (5.8) implies that the maximal singular
value of the sensitivity transfer matrix must satisfy the inequality

σ[(I+ GK)−1(jω)] <
∣

∣

∣

1

wp(jω)

∣

∣

∣ (5.9)

6. Formulation of the H∞ control problem

Let us present the considered uncertain system defined by equation (3.5) by a
two block diagram shown in Fig. 2, where the input w = [u∆,d]

⊤ includes all
signals coming to the system and the error z = [y∆,e]

⊤ includes all signals
characterising the system response. Therefore, system (3.5) can be represented
in terms of frequency by the equation

[

z

y

]

= G

[

w

u

]

(6.1)

The aim of this Section is to design an admissible controller K

u = Ky (6.2)
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Fig. 2. General framework for H∞ control problem

which internally stabilizes system (6.1) and minimizes the H∞ norm of the
closed loop transfer matrix from w to z. The closed loop transfer matrix of
system (6.1) from w to z is given as the lower LFT in K

z = FL(G,K)w

Then the optimal H∞ control design problem can be formulated by the
equation

‖FL(G,K)‖∞ = max
ω
σ(FL(G,K)(jω))→ min (6.3)

The transfer matrix FL(G,K) contains measures of the nominal perfor-
mance and stability robustness. Its H∞ norm gives a measure of the worst
response of the system over the entire class of input disturbances. The optimal
H∞ controller, as just defined, is not unique for our MIMO system (in contrast
with the standard H2 theory, in which the optimal controller is unique). The
knowledge of the optimal H∞ norm is useful theoretically, since it sets a limit
on what we can achieve. In practice, it is often not necessary to design an
optimal controller, and it is much cheaper to obtain a controller that is close,
in the norm sense, to the optimal one.
We consider below the suboptimal H∞ control problem. For given γ > 0,

find an admissible controller Ksub(s) such that the H∞ norm closed loop trans-
fer matrix of system (6.1) from w to z is less than γ

‖FL(G,Ksub)‖∞ < γ (6.4)

On some assumptions for the plant G (Zacharenakis, 1997), such acontroller
is

Ksub =

[

A∞ −Z∞L∞
F∞ 0

]

(6.5)

where X∞  0 and Y∞  0 are solutions to the corresponding algebraic
Riccati equations, and

A∞ = A+ γ
−2
B1B

⊤
1 X∞ + B2F∞ + Z∞L∞C2

F∞ = −B
⊤
2 X∞ L∞ = −Y∞C

⊤
2

Z∞ = (I− γ
−2
Y∞X∞)

−1
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7. Simulations and numerical results

For numerical simulations of the structure, a two-dimensional frame modeled
by three finite elements (two vertical and one horizontal) is considered. The
vertical elements are supposed to be cantilevered. The horizontal element is
supplied with a controller and a sensor, which are placed at the same location
and measure/control horizontal motion. Every element has two nodes and
every node has three degrees of freedom: horizontal displacement, vertical
displacement and rotation. The nominal physical parameters of the system
are chosen as follows: m = 3, c = 0.5, olk = 2. The values that specify the
intervals in which the real physical parameters lie are: pM = 0.1, pC = 0.2,
pK = 0.2. The frequency responses of the perturbed open loop system are
presented in Fig. 3.

Fig. 3. Frequency response of perturbed open loop systems

The factor wp of the performance weight matrix in equation (5.8) is chosen
as

wp(s) =
s2 + 2s+ 10

s2 + 70s+ 0.01
(7.1)

which gives a good disturbance rejection and good transient response. At low
frequencies, the closed loop system must reject the disturbance at the output
with ratio 10 to 0.01. This performance requirement gets weaker in higher
frequencies.

We design a control law that minimizes the H∞ norm of FL(G,K) in the
transfer matrix of the controller. FL(G,K) is the nominal transfer matrix of
the closed loop system from the outputs u∆ of the parametric perturbations
and external disturbances to the inputs y∆ of the parametric perturbations
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and errors. For numerical calculations, the interval for the parameter γ in
equation (6.2) is chosen as [1;20] with tolerance 0.002. After a number of
iterations of consequent decreasing γ and checking if the suboptimal problem
has a solution for the consecutive γ, we find that the minimal value for γ is
2.00. The suboptimal controller is obtained in the form

Ksub(s) =
898s3 + 62269s2 − 8262s + 37705

s4 + 2340s3 + 10823s2 + 21838s + 4

The frequency response of the sensitivity and complementary sensitivity
transfer matrices of the closed loop system is shown in Fig. 4. Their shapes
corroborate good feedback properties.

Fig. 4. Sensitivity (solid) and complementary sensitivity (dashed) transfer matrices

With MATLAB tools, in accordance with inequality (5.3), the upper and
lower bounds of the SSV µ∆ are calculated. The quantity ρ(P) can have
multiple maxima that are not global. Thus, a local search cannot guarantee
successful determination of µ∆, but can only yield the lower bound. The upper
bound σ(P) can be reformulated as a convex optimization problem, so the
global minimum can be found. The upper bound is not always equal to µ∆.
It depends on the structure of the uncertainty matrix ∆ (Zhou, 1998). For
the considered system SSV, there exist matrices for which µ∆ is less than
the infimum of σ(P). Therefore, conclusions concerning the robust stability
are drawn in terms of these bounds. Satisfying inequality (5.4) to achieve
robust stability, the µ∆ upper bound must be less than 1. The SSV µ∆ is
defined in equation (5.2) for cases with complex perturbations. The parametric
perturbations in model (3.5) are considered to be real. The algorithm used
here deals with robust analysis of systems with real and complex blocks in the
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uncertainty matrix. For better convergence of the algorithm computing the µ∆
lower bound, 1% complex perturbations are added. The frequency responses
of the µ∆ upper and lower bounds displayed in Fig. 11 show that the closed
loop system with the H∞ suboptimal controller achieves robust stability. The
maximal value of µ∆ is 0.965 and, therefore, the robust stability is possible
for perturbations with the norm ‖∆‖∞ < 1/0.965. In Fig. 5 the frequency
response of the maximal singular value of the transfer matrix characterizing
the robust stability with respect to unstructured uncertainties is shown. This
bound also achieves robust stability but gives pessimistic results with respect
to the structured uncertainties.

Fig. 5. µ∆ upper bound (dashed), µ∆ lower bound (dotted), H∞ bound (solid)

Comparing the maximal singular value of the closed loop sensitivity trans-
fer matrix with the inverse of the weight matrix, we observe that the magnitude
of its maximal singular value satisfies inequality (5.9) and lies under the inver-
se of the performance weight matrix for any frequency, which indicates good
robust performance with good disturbance rejection and transient response.
The result is displayed in Fig. 6.

The nominal performance of the closed loop system with regard to the
weight matrix of the performance is achieved if and only if the frequency
response of the respective transfer matrices of the closed loop system with Ksub
is less than one. The upper inputs/outputs of the closed loop transfer matrix
are linked by the perturbation ∆, and the lower inputs/outputs correspond to
the weight output sensitivity matrix. Therefore, the matrix ∆ in the matrix
∆P in equation (5.6) consists in the uncertainty block ∆ and the matrix
∆F in the performance block. The robust performance in the uncertainty
and the weight performance matrix is achieved if and only if the SSV µ∆P
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Fig. 6. Sensitivity transfer matrix for Ksub (solid) and inverse weight matrix
(dashed)

for the closed loop frequency response is less than one for all frequencies.
The frequency responses of the nominal and robust performance are shown
in Fig. 7. The maxima of the frequency responses on the nominal and robust
performance are 0.204 and 1.082, respectively. Therefore, the system with the
Ksub controller achieves the nominal and robust performance. Concerning the
robust performance means that there exists a matrix of perturbations ∆G
such that ‖∆G‖∞ = 1/1.082 for which the norm of the perturbed weighted
sensitivity matrix equals 1.082.

Fig. 7. Nominal (solid) and robust (dashed) performance for Ksub

To demonstrate the good closed loop transient response in tracking we
supply the structure system with a periodic impulsive command input without
an external loading. The time response to the reference is shown in Fig. 8. The
good closed loop transient response in disturbance rejection due to periodic
isolated influences is shown in Fig. 9.
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Fig. 8. Closed-loop time response in tracking

Fig. 9. Closed-loop time response to disturbance

For numerical simulations two kinds of dynamic loadings acting on one
side of a building structure in horizontal direction are applied, namely, random
white noise modeling an earthquake loading and periodic sinusoidal pressure
modeling a wind loading (Baniotopoulos and Plalis, 2002).

Building structures have considerable resistance to dynamic loadings in the
vertical direction. In the horizontal direction, buildings are quite vulnerable
to external excitations. Thus, it is reasonable to investigate the minimization
of the response of a building in the horizontal direction. The responses of the
open-loop and closed-loop systems are compared. The comparison is based on
the reduction of the magnitude of the maximum horizontal displacement. The
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horizontal displacements of the building structure due to earthquake and wind
loadings are presented in Fig. 10 and Fig. 11. The maximum magnitude of the
horizontal displacement due to earthquake and wind loadings are reduced by
80% and 74%.

Fig. 10. Time response of controlled (solid) and free (dot) systems due to earthquake

Fig. 11. Time response of the controlled (solid) and free (dot) systems due to wind

8. Conclusions

In this paper, structured uncertainties of the main physical parameters (mass,
damping and stiffness matrices) have been introduced into the dynamical mo-
del of a simple structure. They reflect errors between the model and the reality.
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The model of the uncertain system has been presented in a linear fractional
transformation frame. Feedback properties for the actively controlled structure
have been discussed. Robust stability and robust performance conditions have
been considered. Then, a robust control design problem has been formulated
within a linear fractional transformation framework using the H∞ technique.
The H∞ norm of the closed loop transfer matrix from all disturbances (exter-
nal and structured uncertainties) to the errors to be minimized has been chosen
as the cost functional. A suboptimal controller has been used for numerical
modeling. The closed-loop controlled system has been simulated using a pe-
riodic impulsive command input, periodic isolated influences, random white
noise forces and a periodic sinusoidal pressure. It has been shown that the
derived active robust control strategy ensures good feedback properties of the
system, good robust stability and robust performance, and can considerably
reduce the effect of structural deformations against external excitations.

It must be emphasized that the framework of the structured uncertainty
employed in this paper is quite general and covers interesting cases of practical
importance. One could imagine a detailed study of the effect of uncertainty
on the damping or the effect of isolated elements of the stiffness matrix which
may indicate localized damage in elements or structural joints.
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Projektowanie sterowania odpornego w ”inteligentnych” konstrukcjach

budowlanych

Streszczenie

Praca przedstawia aplikację metody projektowania optymalnego sterowania od-
pornego H∞ dla celów konstrukcyjnych. Rozważono dynamiczny model konstrukcji
budowlanej poddanej obciążeniu trzęsieniem ziemi oraz wiatrem. Wprowadzono nie-
pewność strukturalną do modelu, aby odzwierciedlić błędy wynikające z różnic między
modelem i budynkiem rzeczywistym. Do uzyskania najlepszego działania układu ste-
rowania w obecności założonego poziomu niepewności parametrów użyto w analizowa-
nej aktywnej konstrukcji tzw. sterowania odpornego H∞. W rozwiązywaniu problemu
sterowania zastosowano symulacje numeryczne wspomagane gotowymi procedurami
zaczerpniętymi ze środowiska MATLAB. Poprzez odpowiedni dobór współczynnika
wagi uzyskano znaczący efekt redukcji wrażliwości sejsmicznej budynku. Wyniki ba-
dań pokazały wysoką odporność zaproponowanego układu sterowania.
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