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The paper is concerned with qualitative analysis of a non-linear model
describing vibration of a vibration-isolated hand grinder. A discontinu-
ous description of grinding forces is introduced, which accounts for the
possible separation of the grinding wheel from the object during the pro-
cess. Eight non-linear ordinary differential equations are obtained which
describe dynamics of the system. Numerical analysis is done using me-
thods of numerical integration and the Fast Fourier Transform. The in-
fluence of selected parameters on the character of vibration is studied
and some measures are calculated which characterize the quality of the
vibration isolation system.
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1. Introduction

Harmful vibrations during mechanical processing (such as grinding or milling)
have to be avoided since they deteriorate the quality of the product as well
as have a negative effect on the human-operator. The main sources of the-
se vibrations are kinematic and inertial excitations (Alfares and Elsharkawy,
2002; Gradǐsek et al., 2001; Karube et al., 2002; Łuczko and Markiewicz, 1986;
Suh et al., 2002). In order to reduce vibration levels transmitted to the ope-
rator, vibration isolation systems are mounted between the tool body and the
handle. In the case of passive vibration isolation systems their parameters are
usually selected using linear models.

However, for large vibration amplitudes it is necessary to account for non-
linear phenomena, such as brought about e.g. by the loss of contact of the
grinding wheel with the object being worked (Łuczko et al., 2003). Moreover,
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it is desirable to determine the influence of parameters that undergo changes
during the grinding process, such as rotational speed or pressure on the tool
handle, on dynamic characteristics of the system.

2. Model of the system

Figure 1 shows a schematic view of a hand grinder equipped with a vibration
isolation system. The following elements have been taken into account in the
model: tool body (1) (with the subassembly motor-spindle-grinding wheel),
handle (2) and object being processed (base) (3). The resilient connections
between the tool body and the handle represent the passive vibration isolation
system, whereas the flexible elements which link the body to its surroundings
are a simplified model of the operator interaction. The flexible connections
consist of extension-compression springs of stiffnesses cj (j = 1, 2) and torsion
springs of stiffnesses kj , which can be considered as a result of the reduction
of any resilient connections to the point at a distance lnj from the respective
centre of mass Sn (n = 1, 2). In a similar way, one can define parameters which
describe energy dissipation. Assuming that the damping matrix is proportional
to the stiffness matrix, the damping of a given connector is given by a single
coefficient εj . In order to limit the displacements of the handle relative to the
body, a motion limiter (4) is introduced into the model. The properties and
geometry of the motion limiter are determined by the parameters c4, ε4, δ,
l14, l24.

Fig. 1. Model of the system: 1 – body, 2 – handle, 3 – workpiece, 4 – limiter

It has been assumed that the tool body and the handle can undergo a ge-
neral motion in space, with the exclusion of longitudinal and torsional degrees
of freedom. Therefore, longitudinal and torsional vibrations are excluded from
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the analysis. The kinematic excitation is accounted for by defining parame-
ters m0 (the unbalanced mass) and e0 (eccentricity), and assuming that the
rotational speed remains constant. Introducing moving co-ordinate systems
with origins at the centres of mass Sn of subassemblies: the body with the
rotating elements (n = 1) and the handle (n = 2), motion of the system can
be described by specifying the co-ordinates xn and yn of points Sn and the
angles αn and βn, which for small vibrations describe rotations of the local
axes with respect to the fixed ones.

Fig. 2. Kinematic relations: (a) grinding forces, (b) reaction of the limiter

The case of processing of a flat surface is being considered. It has been
assumed that when the grinding wheel remains in contact with the base (for
xA = x1 + lα1 > 0), a linear relationship T = fN holds between the tan-
gential and normal components of the grinding force (Fig. 2a). Additionally,
it has been assumed that the normal reaction force N is described by the
Voigt-Kelvin model, but it cannot take on negative values. By introducing the
notation s = d/dt, this reaction force is given by the following formula

N(xA, sxA) = c3(1 + ε3s)xAH(xA)H[(1 + ε3s)xA] (2.1)

where H is the Heaviside step function. In a similar way, the normal reaction
force of the limiter (Fig. 2b) is written as

R(rB , srB) = c4(1 + ε4s)rBH(rB − δ)H[(1 + ε4s)rB ] (2.2)

Here, it has been assumed that the impact takes place when rB =
√

x2B + y
2
B >

> δ, where

xB = (x1+ l14α1)− (x2+ l24α2) yB = (y1− l14β1)− (y2− l24β2) (2.3)

The Cartesian components of the limiter reactions are calculated as

Rx = R
xB
rB

Ry = R
yB
rB

(2.4)
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Using the laws of change of momentum and angular momentum about the
centres of mass Sn, motion of the system can be described by the following
set of eight second-order ordinary differential equations

m1s
2x1 + c1(1 + ε1s)(x1 − x2 − l11α1 + l21α2) +Rx +N = m0e0Ω

2 cosΩt

m1s
2y1 + c1(1 + ε1s)(y1 − y2 + l11β1 − l21β2) +Ry + T = m0e0Ω

2 sinΩt

I1s
2α1 − I0Ωsβ1 + (1 + ε1s)[k11α1 − k21α2 − c1l11(x1 − x2)] +

+Rxl14 +Nl = m0e0lΩ
2 cosΩt

I1s
2β1 + I0Ωsα1 + (1 + ε1s)[k11β1 − k21β2 + c1l11(y1 − y2)] +

−Ryl14 − T l = −m0e0lΩ
2 sinΩt

m2s
2x2 − c1(1 + ε1s)(x1 − x2 − l11α1 + l21α2) + c2(1 + ε2s)(x2 − l22α2) +

−Rx = Qx (2.5)

m2s
2y2 − c1(1 + ε1s)(y1 − y2 + l11β1 − l21β2) + c2(1 + ε2s)(y2 + l22β2) +

−Ry = Qy

I2s
2α2 − (1 + ε1s)[k21α1 − (k1 + c1l

2
21)α2 − c1l21(x1 − x2)] +

+(1 + ε2s)(k22α2 − c2l22x2)−Rxl24 =Mα

I2s
2β2 − (1 + ε1s)[k21β1 − (k1 + c1l

2
21)β2 + c1l21(y1 − y2)] +

+(1 + ε2s)(k22β2 + c2l22y2) +Ryl24 = −Mβ

Here

k11 = k1 + c1l
2
11 k21 = k1 + c1l11l21 k22 = k2 + c2l

2
22 (2.6)

In equations (2.5), m1 and m2 are respectively the masses of subassemblies 1
and 2, I1 and I2 are moments of inertia of the subassemblies with respect to
the x-axis (or the y-axis, thanks to axial symmetry) passing through points
S1 and S2, and I0 is the moment of inertia of the rotating elements about the
axis of symmetry. The generalised forces Qx, Qy, Mα and Mβ represent the
operator action on the system. When the grinding wheel remains in contact
with the object, one can assume that these forces remain constant. The case
when the grinding wheel loses contact with the object is more complex, espe-
cially as far as the generalized forces Qy and Mβ are concerned. The human
operator is an active system since he reacts to changes in the working condi-
tions. During grinding, the operator tries to adjust the magnitudes of forces so
as to equilibrate the corresponding components of the grinding forces. When
the loss of contact occurs, the operator tries on one hand to bring the tool back
into contact with the object (without changing the values of Qx, Mα), and,
on the other hand, counteracts sudden movements of the tool in the direction
tangent to the surface being processed by a sudden change (in the model an
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instant change) of the force Qy and the moment Mβ. To account for this
behaviour, the following simplified relations are used in the model

Qy = fQxH(N) Mα = Qxd Mβ = Qyd (2.7)

where d is the distance of the resultant operator’s action from the centre of
mass S2.

The analysis is done in a dimensionless form, and non-dimensional quan-
tities are used where the amplitudes are calculated relative to the effective
amplitude of inertial excitation e = m0e0/(m1 +m2), angles are taken rela-
tive to e/l (l = l13) and the non-dimensional time τ = ω0t is referred to the
circular frequency ω0 =

√

c2/(m1 +m2) of the simplified linear model.

The equations, when written in the dimensionless form, depend on the
following parameters

ω =
Ω

ω0
∆ =

δ

e
q =
Qx
c2e

µn =
mn

m1 +m2

ρn =
In
mnl2

χ =
I0
I1

γj =
cj
c2

κj =
kj
c2l2

ζj =
εjω0
2

λnj =
lnj
l

λ0 =
l0
l

η =
d

l

(2.8)

and on the coefficient of dry friction f . In equations (2.8), the index n is
the number of the subsystem (n = 1, 2), and the index j corresponds to
the number of the flexible element (j = 1, 2, 3, 4). Moreover, the following
conditions hold: γ2 = 1, λ21 = λ0 − λ11, λ24 = λ0 + λ14 and µ1 + µ2 = 1. By
introducing the state vector

u =
[x1
e
,
y1
e
,
lα1
e
,
lβ1
e
,
x2
e
,
y2
e
,
lα2
e
,
lβ2
e

]⊤

(2.9)

the system of equations (2.5) can be written in a compact matrix form

Mu” + (G+ 2ζ1C1 + 2ζ2C2)u
′ + (C1 + C2)u = p(τ) + q + r + s (2.10)

Here, the matrices M, G, C1 and C2 are respectively the mass-, gyroscopic-
and stiffness matrices, and p(τ) is the vector of inertial excitation

p(t) = ω2[cos ωτ, sinωτ, cosωτ,− sinωτ, 0, 0, 0, 0]⊤ (2.11)

The vectors q, r and s describe non-linear terms, respectively related to the
model of the operator

q = [0, 0, 0, 0, q, fqH(n), ηq,−ηfqH(n)]⊤ (2.12)
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the model of the limiter

r = [−rx,−ry,−λ14rx, λ14ry, rx, ry, λ24rx,−λ24ry]
⊤ (2.13)

and the model of the grinding forces

s = [−n,−fn,−n, fn, 0, 0, 0, 0]⊤ (2.14)

In order to calculate n, rx and ry one makes use of formulae (2.1)-(2.4),
where dimensionless components of the state vector (2.9) and the respective
non-dimensional parameters (e.g. parameters γ3, γ4, 2ζ3, 2ζ4 and ∆ in lieu of
c3, c4, ε3, ε4 and δ) are introduced. The matrix M is diagonal and has the
following form

M = diag [µ1, µ1, µ1ρ1, µ1ρ1, µ2, µ2, µ2ρ2, µ2ρ2] (2.15)

The only non-zero terms of the gyroscopic matrix G are given by G43 =
= −G34 = χµ1ρ1ω.
In order to define the stiffness matrix, we introduce an auxiliary matrix

Γ j(λnj , λmj) =











γj 0 −γjλmj 0
0 γj 0 γjλmj

−γjλnj 0 κj + γjλnjλmj 0
0 γjλnj 0 κj + γjλnjλmj











(2.16)

The matrices C1 and C2, which represent respective flexible links can be
written as the following block matrices

C1 =

[

Γ 1(λ11, λ11) −Γ 1(λ11, λ21)
−Γ 1(λ21, λ11) Γ 1(λ21, λ21)

]

C2 =

[

0 0

0 Γ 2(λ22, λ22)

]

(2.17)

3. Results

Results of the qualitative analysis of the vibration-isolated hand grinder will
be described below, with emphasis put on the selection of some of the para-
meters of the vibration isolation system and on the explanation of physical
phenomena brought about by the percussive nature of the grinding forces.
The results have been obtained using methods of numerical integration and
the Fast Fourier Transform, which have been used in studying non-linear oscil-
lations, e.g. by Awrejcewicz and Lamarque (2003). More details about the use
of spectrum analysis to determine the character of vibrations have been di-
scussed in Ferdek and Łuczko (2003). In discussion of the results, the criterion
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index J1 (or J2) of the efficiency of the vibration isolation system will be
used. It is defined as the ratio of the rms values of accelerations (respectively
velocities) at the point B on the handle (front grip – see Fig. 1), calculated
for the tool with- and without the vibration isolation system. By analysing
the influence of the parameters γ1, κ1 and λ11 on the value of the criterion
indices Jk, estimates of the optimum parameter values from the point of view
of minimising vibration levels have been found. The character of vibration has
also been studied, depending on the values of these parameters and the values
of parameters (ω, q) which characterize the grinding process. The following set
of values of parameters have been used in the numerical calculations: µ1 = 0.8,
µ2 = 0.2, ρ1 = 1.5, ρ2 = 0.5, χ = 0.1, f = 0.5, γ1 = 1.5, γ2 = 1, γ3 = 400,
γ4 = 100, κ1 = 1.5, κ2 = 1, ζ1 = 0.1, ζ2 = 0.5, ζ3 = 0.05, ζ4 = 0.05,
λ0 = 0.5, λ11 = 0.25, λ21 = 0.25, λ22 = 0, λ13 = 0.5, λ23 = 1.5, λ14 = 0.5,
λ24 = 1, ∆ = 10, η = 0.75, q = 10, ω = 5.

Figure 3a shows the dependence of the criterion index J1 on the parameters
γ1, κ1 (for ω = 5 and q = 10), and Fig. 3b illustrates the zones of different
vibration types in the (γ1, κ1) plane. The minimum of J1 (and also of J2) is
achieved in the neighbourhood of the point γ1 = 1.5, κ1 = 1.5. As seen in
Fig. 3b, in the neighbourhood of this point, sub-harmonic vibrations of type
1:2 take place.

Fig. 3. Influence of parameters c1 and κ1 (ω = 5, q = 10, λ11 = 0.25) on:
(a) criterion index J1, (b) zones of different vibration types

In a similar way, Figs. 4a and 4b illustrate the influence of the parameters
ω and λ11. In a relatively wide neighbourhood of λ11 = 0.25, the index J2
(Fig. 4a) assumes a value close to the minimum, regardless of the rotational
speed ω. This holds true, even though for high values of ω the vibrations are
chaotic, as is seen in Fig. 4b.

The type of vibrations and the value of the criterion index depend also on
the remaining parameters, characterizing both the model of the tool and the
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Fig. 4. Influence of ω and λ11 (c1 = 1.5, λ11 = 1.5, q = 10) on: (a) criterion
index J2, (b) zones of vibration types

grinding process. A proper choice of the vibration isolation system requires
evaluation of the sensitivity of the solution to changes in these parameters.
Below, the discussion is limited to the influence of the rotational speed and
the operator pressure on the tool handle, since these two parameters have
been found to have the biggest effect on the dynamic behaviour of the sys-
tem operator-tool-base. The operator controls the grinding process mainly by
changing the force q. The rotational speed ω also undergoes changes as a
result of the limited power of the motor.

Fig. 5. Influence of ω and q (c1 = 1.5, κ11 = 1.5, λ11 = 0.25) on: (a) efficiency
index J2, (b) vibration zones

Figures 5a and 5b illustrate, in the same format as in the previous figures,
the influence of the parameters ω and q on the criterion index J2 and on the
character of vibrations. By studying the zones in the (ω, q) plane in Fig. 5b,
one can note that only for small values of the non-dimensional rotational spe-
ed ω the grinding process takes place without separation of the grinding wheel
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from the motion limiter. This zone becomes a little wider as the dimensionless
pressure q increases. For higher values of ω, which is the case of most prac-
tical applications, there appear zones of sub-harmonic vibrations of an order
increasing with ω separated by narrow zones of sub-harmonic (mostly of ty-
pe 1:4) or chaotic oscillations. The criterion index (Fig. 5a) decreases with the
rotational speed, which signifies that the selected vibration isolation system is
efficient also in the case of irregular vibrations.

Fig. 6. Bifurcation diagram (c1 = 1.5, κ11 = 1.5, λ11 = 0.25, q = 5)

Figure 6 shows a bifurcation diagram obtained using the stroboscopic me-
thod by taking the displacement u1 at selected time instants (every excitation
period). This diagram corresponds to the section of the (ω, q) plane shown
in Fig. 5b taken for q = 5. In the bifurcation diagram, one can distinguish
alternate regions of sub-harmonic and chaotic oscillations, where the order of
the sub-harmonic vibrations increases with the rotational speed.

Fig. 7. Time history, spectrum, phase portrait and trajectory of the point B on the
handle (c1 = 1.5, κ11 = 1.5, λ11 = 0.25, q = 5): (a) 4T -periodic vibrations, ω = 4.6,

(b) chaotic vibrations, ω = 5.0

Figure 7 shows time histories of the displacement xB(t), phase portraits
(xB , x

′

B) and frequency spectra S(ν) of the signal xB for two values of the
excitation frequency ω. For the first value of ω, the period of oscillations is
four times of that of the excitation (sub-harmonic oscillations of type 1:4),
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the spectrum has pronounced maxima at points ν/ω = k/4, where k is a
natural number, and the corresponding curve in the phase plane is closed.
For the second value of ω, the oscillations are chaotic, which is manifested
in the irregular time history by the continuous spectrum and irregular phase
portraits.
For chaotic vibrations, the phase portraits are difficult to interpret. Much

more information is gained by making stroboscopic portraits or Poincaré maps.
For the subsequent regions of chaotic vibrations shown in the bifurcation dia-
gram in Fig. 6, one obtains different shapes of fractals shown in Fig. 8.

Fig. 8. Stroboscopic portraits of chaotic oscillations (c1 = 1.5, κ11 = 1.5, λ11 = 0.25,
q = 5): (a) ω = 5.0, (b) ω = 6.5, (c) ω = 7.5, (d) ω = 9.0

4. Conclusions

In the paper an approach to the modelling and to the qualitative analysis
of vibrations of a non-linear system in the presence of unilateral constraints
resulting both from the grinding process and the presence of the motion li-
miter is discussed. The adopted model of the grinding process can predict
sub-harmonic and chaotic vibrations brought about by the percussive charac-
ter of grinding forces. The numerical analysis has shown that the parameters
ω and q have a pronounced qualitative effect on motion of the system. A little
less important, but not negligible, is the effect of the parameters f , γ3, ζ3.
The regions of different vibration types shown in Fig. 3-Fig. 5 as well as the
bifurcation diagram (Fig. 6) do not undergo qualitative changes for different
values of the parameters γ3, ζ3, f that describe the model of the grinding
forces. By increasing the values of the parameters f and γ3 or by reducing
the value of ζ3, the zones of chaotic vibrations tend to get bigger.
The inclusion of the motion limiter in the model prevents excessive static

displacements and allows an efficient choice of the parameters of the passive
vibration isolation system without a need of imposing additional constraints.
With a badly designed vibration isolation system, the parameters of the motion
limiter can have an important effect on the type of vibration in the system.
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The proposed approach has proved to be very efficient for qualitative ana-
lysis of vibrations of non-linear systems. A similar approach can be used in
the study of models of other mechanical machining processes.
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Drgania regularne i chaotyczne w procesach obróbki wibroizolowaną

ręczną szlifierką

Streszczenie

Praca dotyczy analizy jakościowej nieliniowego modelu, opisujący drgania wibro-
izolowanej ręcznej szlifierki. Model opisano układem ośmiu równań różniczkowych
zwyczajnych drugiego rzędu. Wprowadzono nieciągły opis sił skrawania, uwzględ-
niający możliwość chwilowego oderwania się ściernicy od obrabianego przedmiotu.
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Do analizy wykorzystano procedury matematycznego całkowania skojarzone z algo-
rytmami szybkiej transformaty Fouriera. Zbadano wpływ parametrów na charakter
drgań oraz wyznaczono pewne wskaźniki jakości działania zastosowanego układu wi-
broizolacji.

Manuscript received August 3, 2006; accepted for print August 18, 2006


