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In this paper, the Hamiltonian approach is extended for solving vibrations of nonlinear
conservative oscillators with general initial conditions. Based on the assumption that the
derivative of Hamiltonian is zero, the frequency as a function of the amplitude of vibration
and initial velocity is determined. A method for error estimation is developed and the accu-
racy of the approximate solution is treated. The procedure is based on the ratio between the
average residual function and the total energy of the system. Two computational algorithms
are described for determining the frequency and the average relative error. The extended
Hamiltonian approach presented in this paper is applied for two types of examples: Duffing
equation and a pure nonlinear conservative oscillator.
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1. Introduction

In 2010, the method denominated “Hamiltonian approach” was introduced by He (2010) for
solving strong nonlinear oscillatory systems. Since that time, a significant number of papers,
where the suggested method is extended and applied, have been published. In the papers of
Akbarzade and Kargar (2011a) and Akbarzade and Kargar (2011), the Hamiltonian method is
applied for obtaining accurate analytical solutions to nonlinear oscillators. Using this method, He
et al. (2010) and Bayat et al. (2014) obtained the solution for the Duffing-harmonic equation,
and Cveticanin et al. (2010a, 2012) derived solutions for the generalized nonlinear oscillator
with a fractional power. Belendez et al. (2011) pointed out that if a first-order trigonometric
approximation function was used then there was an equivalence between the Hamiltonian ap-
proach and the first-order harmonic balance method. Yildirim et al. (2011b) and Belendez et
al. (2011) specified the method for oscillators with rational and irrational elastic terms. Xu
and He (2010) used the Hamiltonian approach to determine the limit cycle motion for stron-
gly nonlinear oscillators. The method was applied for solving some practical problems, such as
nonlinear oscillations of a punctual charge in the electric field of a charged ring (Yildirim et
al., 2011a), nonlinear vibrations of micro electro mechanical systems (Sadeghzadeh and Kabiri,
2016), nonlinear oscillations in an engineering structure (Akbarzade and Khan, 2012), among
others. The Hamiltonian approach has also been applied to improve the accuracy of the solution
for nonlinear oscillators, such as higher order approximations (Durmaz et al., 2010; Yildirim et
al., 2011c), multiple coupled nonlinear oscillators (Durmaz et al., 2012) and multiple-parameter
ones (Khan et al., 2011), among others.

In this study, the accuracy of the Hamiltonian approach is presented by comparing an ana-
lytically obtained solution with the numerical solution. Navarro and Cveticanin (2016) used the
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method in oscillators with integer or non-integer terms. The authors proposed an error estima-
tion method based on the ratio between the square root of the averaged residual function and
the initial constant of energy.
The aim of this paper is to extend the Hamiltonian approach for solving a conservative

nonlinear oscillator

ẍ+ f(x) = 0 (1.1)

with the generalized initial conditions

x(0) = A ẋ(0) = v (1.2)

where f(x) is a conservative force. The authors also propose an error procedure to measure
the quantitative difference between approximate and numerical solutions. In the present work,
the error treatment described by Navarro and Cveticanin (2016) is extended for general initial
conditions.
This paper is divided in five Sections. After the Introduction, an extended Hamiltonian

approach is considered, in Section 2. In that Section, Algorithm 1, called FREQUENCY, is
developed. In Section 3, a method for error estimation is introduced. The error is estimated as
the integral of the square of the residual function over the period of vibration. Special attention is
given to the computation of relative errors. The error calculation is performed using Algorithm 2,
called DELTA. In Section 4, a comparison between approximate and numerical solutions is
shown. The suggested method of the Hamiltonian approach and error estimation are applied
for a Duffing equation and for a pure nonlinear conservative oscillator with various orders of
nonlinearity. Finally, conclusions of the numerical experiments are presented.

2. The approximate solution

Equation (1.1) describes a conservative oscillator with kinetic energy

K =
ẋ2

2
(2.1)

and potential energy, F (x), is given by

dF (x)

dx
= f(x) (2.2)

The total mechanical energy of the oscillator corresponds to its Hamiltonian

H =
1

2
ẋ2 + F (x) (2.3)

For the conservative oscillator, the total mechanical energy keeps unchanged during motion and,
consequently, the Hamiltonian of the system is constant, i.e., H = H0 = const , and due to initial
conditions (1.2)

H0 =
1

2
v2 + F (A) (2.4)

For nonlinear oscillators, it is generally impossible to obtain a closed form analytical solution
to (2.3). Consequently, to obtain an approximate solution, we assumed a trigonometric trial
solution in the form

x(t) = C cos(ωt − φ) (2.5)
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where ω is the unknown frequency of vibration, C is the amplitude of the oscillator, and φ is
the phase of the oscillator. Using Eq. (2.5) and initial conditions (1.2), we find the maximum
value of x(t) and the phase given, respectively, by

C =

√

A2 +
( v
ω

)2
(2.6)

and

φ = tan−1
( v

ωA

)
(2.7)

Substituting (2.5) into (2.3), we have

H̃ =
1

2
C2ω2 sin2(ωt − φ) + F (C cos(ωt− φ)) (2.8)

Usually, the frequency ω is determined from the derivative of Eq. (2.8)

∂H̃

∂C
= 0 (2.9)

Unfortunately, the obtained result is far from being accurate. To overcome this problem, He
(2010) developed the so called Hamiltonian approach. He introduced a new function, H that
has a similar form of

H =

t1+T∫

t1

H̃ dt (2.10)

where T is the period of vibration and t1 is an arbitrary initial integration time. After integration,
it is H = H̃T , i.e.

H̃ =
∂H

∂T
(2.11)

According to (2.9) and T = 2π/ω, it is

∂

∂C

(∂H
∂T

)
=

∂

∂C

( ∂H

∂ω−1

)
=

∂

∂C

(∂H
∂ω

)
= 0 (2.12)

Solving algebraic equation (2.12), the approximate frequency of the conservative nonlinear oscil-
lator is obtained in function of the amplitude C (see He, 2010). In most cases, by using relations
(2.6) and (2.7), we can expressed an explicit relationship for approximate frequency in function
of A, v, and other parameters of the system. Thus, for

H(x, ẋ) =

t1+T∫

t1

(1
2
ẋ2 + F (x)

)
dt (2.13)

and trial function (2.5), we can express H as

H(C,ω) =

t1+T∫

t1

[1
2
C2ω2 sin2(ωt− φ) + F (C cos(ωt − φ))

]
dt (2.14)
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Substituting in Eq. (2.14) the variable ψ = ωt and the period of vibration T = 2π/ω, and
defining ψ∗ = t1/T , we have

H(C,ω) =

2π(1+ψ∗)∫

2πψ∗

[1
2
C2ω sin2(ψ − φ) + ω−1F (C cos(ψ − φ))

]
dψ (2.15)

where ψ∗ is an arbitrary value that can be defined as ψ∗ = n/m, with n ∈ N and m ∈ N
∗, to

avoid numerical errors. The trivial choice for ψ∗ is ψ∗ = 0 (t1 = 0) so that Eq. (2.15) becomes

H(C,ω) =

2π∫

0

[1
2
C2ω sin2(ψ − φ) + ω−1F (C cos(ψ − φ))

]
dψ (2.16)

Equations (2.12) and (2.16) can be used to determine a relationship for approximate frequency
in function of C.
We can see that Eq. (2.5) reaches its maximum value when ωt − φ = 2πn, where

n = 0,±1,±2, . . .. The maximum value for n = 0 occurs when t = φ/ω. Adopting the ini-
tial time t1 = φ/ω and substituting the variable τ = t− t1 into Eq. (2.14), we obtain

H(C,ω) =

T∫

0

[1
2
C2ω2 sin2(ωτ) + F (C cos(ωτ))

]
dτ (2.17)

As before, substituting into Eq. (2.17) the variables ψ = ωτ and T = 2π/ω, we have

H(C,ω) =

2π∫

0

[1
2
C2ω sin2(ψ) + ω−1F (C cos(ψ))

]
dψ (2.18)

We can note that Eq. (2.18) is the common expression used for determining the frequency-
-amplitude relationship with particular initial conditions x(0) = A, ẋ(0) = 0 in works developed
by several authors (e.g., Akbarzade and Kargar, 2011a,b; He, 2010; Akbarzade and Khan, 2012;
Askari, 2013; Belendez et al., 2011; Bayat et al., 2014; Cveticanin et al., 2010a, 2012; Durmaz et
al., 2010, 2012; He et al., 2010; Khan et al., 2011; Navarro and Cveticanin, 2016; Sadeghzadeh
and Kabiri, 2016; Xu and He, 2010; Yildirim et al., 2011a,b,c, 2012), i.e, when C = A and φ = 0.
Comparing Eq. (2.16) with Eq. (2.18), it is observed that both can be used with Eq. (2.12) to
determine a relationship for the approximate frequency in function of C and of other parameters
of the system. Therefore, it is recommended to use Eq. (2.18) because of the following reasons:
(a) it is simpler; (b) it is easy to determine the variation of the signal of the function potential F
with the angle ψ, i.e., depending on the signal of F , the limits of integration can vary, for
example, from 0 to π or 0 to π/2.
In some cases, an explicit relationship for the approximate frequency (that is a function of

the initial amplitude A, the initial velocity v and parameters of the system) can be derived by
Eq. (2.18) (frequency in function of C and parameters of the system) and Eq. (2.6). When it
is not possible to derive an explicit relation, the values of the frequency, for specific values of
A and v, can be obtained numerically by Algorithm 1, where cs are generic parameters of the
system. After computation of the variables ω and C by Algorithm 1, the phase φ is determined
by Eq. (2.7).
The approximate solution, Eq. (2.5), can also be represented by

x(t) = C sin(ωt + φ1) (2.19)

where the phase is given by φ1 = π/2 − φ, i.e,

φ1 = tan
−1
(ωA
v

)
(2.20)
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Algorithm 1 Frequency

1: procedure Frequency(A, v, cs)
2: C2 ←

√
A2 + v2

3: repeat

4: ω1 ← ω(C2, cs) ⊲ Using Eqs. (2.12) and (2.18)

5: C1 ←
√
A2 + ( vω1 )

2 ⊲ Using Eq. (2.6)

6: ω2 ← ω(C1, cs) ⊲ Using Eqs. (2.12) and (2.18)

7: C2 ←
√
A2 + ( vω2 )

2 ⊲ Using Eq. (2.6)

8: until |ω2−ω1ω2
| < Tolerance

9: return ω2, C2

3. Error estimation

The Hamiltonian calculated for approximate solution (2.5) differs from the total mechanical
energy H0. The difference between H̃ and H0 gives us the instantaneous residual

R(t) = H̃ −H0 =
1

2
C2ω2 sin2(ωt− φ) + F (C cos(ωt − φ))−

(1
2
v̇2 + F (A)

)
(3.1)

As the residual varies in time, to determine the average value, the error is estimated as the inte-
gral of the square of the residual function over the period of vibration. The following functional
is introduced for error estimation

∆2 =
1

T

t1+T∫

t1

R(t)2 dt =
1

T

t1+T∫

t1

(H̃ −H0)2 dt (3.2)

Substituting (3.1) into (3.2), we have

∆2 =
1

T

t1+T∫

t1

[1
2
C2ω2 sin2(ωt − φ) + F (C cos(ωt− φ))−

(1
2
v̇2 + F (A)

)]2
dt (3.3)

using t1 = φ/ω and τ = t− t1

∆2 =
1

T

T∫

0

[1
2
C2ω2 sin2(ωτ) + F (C cos(ωτ))−

(1
2
v̇2 + F (A)

)]2
dτ (3.4)

and for ψ = ωτ , T = 2π/ω, and Eq.(2.6)

∆2 =
1

2π

2π∫

0

[1
2
(A2ω2 + v2) sin2(ψ) + F

( 1
ω

√
A2ω2 + v2 cos(ψ)

)
−
(1
2
v̇2 + F (A)

)]2
dψ (3.5)

The obtained solution is a function of the initial amplitude, initial velocity and coefficients
of the system: ∆2 = ∆2(A, v, ck). The relative error is calculated as the ratio between the square
root of the average residual function and the initial constant energy function H0

∆ =

√
∆2
H0

(3.6)

The relative error is suitable to be presented in the percent form: ∆% = (
√
∆2/H0)100%.

When the explicit relation for the frequency is not available, the average relative error ∆ can
be determined numerically by Algorithm 2, where cs are generic parameters of the system.
Algorithm 2, DELTA, calls Algorithm 1 and uses the integral given by Eq. (3.4).
Next, we apply the procedure proposed in Sections 2 and 3 in two examples: Duffing equation

and a pure nonlinear conservative oscillator.
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Algorithm 2 Delta

1: procedure Delta(A, v, cs)
2: ω = f(A, v, cs) ⊲ Analytically or using Algorithm 1
3: Compute C ⊲ Eq. (2.6)
4: Create vector: τi ← 0 : ∆τ : T
5: yi ← C cos(ωτi)
6: ẏi ← Cω sin(ωτi)
7: Compute H0 ⊲ Eq. (2.4)
8: H̃i ← 1

2 ẏ
2
i + F (yi) ⊲ F is obtained using Eq. (2.2)

9: Ri ← H̃i −H0
10: ∆2 ← 1

n

∑n
i=1Ri

2 ⊲ Eq. (3.4)

11: ∆←
√
∆2
H0

12: return ∆

4. Comparison between approximate and numerical solutions

Consider an oscillator represent by the Duffing equation

ẍ+ c21x+ c
2
2x
3 = 0 (4.1)

with initial conditions (1.2). The origin of the name of this equation is shown by Cveticanin
(2013). Translation of sections from Duffing’s original book Duffing (1918) is found in the work
of Kovacic and Brennan (2011). Considering Eq. (4.1), the potential energy is written as

F (x) =
1

2
c21x
2 +
1

4
c22x
4 (4.2)

and the Hamiltonian of the oscillator is expressed by

H =
1

2
ẋ2 +

1

2
c21x
2 +
1

4
c22x
4 (4.3)

For an approximate solution (2.5), function (2.18) becomes

H(C,ω) = 4

π/2∫

0

[1
2
C2ω sin2(ψ) + ω−1

(1
2
c21C

2 cos2(ψ) +
1

4
c22C

4 cos4(ψ)
)]
dψ

=
C2π(8c21 + 3C

2c22 + 8ω
2)

16ω

(4.4)

setting Eq. (2.12)

∂

∂C

(∂H
∂ω

)
= 2πC − 3πc

2
2C
3

8ω2
− πC(8c21 + 3c

2
2C
2 + 8ω2)

8ω2
= 0 (4.5)

we obtain an approximate frequency relationship with the maximum amplitude

ω =

√
c21 +
3

4
c22C
2 (4.6)

In this case, we can write an explicit relationship for the approximate frequency in function of
the initial amplitude A, initial velocity v, and parameters c1 and c2. Thus, using Eqs. (2.6) and
(4.6), the approximate frequency is given by

ω =

√√√√c21
2
+
3

8
c22A
2 +

√
(c21
2
+
3

8
c22A
2
)2
+
3

4
c22v
2 (4.7)
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and according Eq. (2.7), the phase is

φ = tan−1
(

v

A

√
c2
1

2 +
3
8c
2
2A
2 +

√(
c2
1

2 +
3
8c
2
2A
2
)2
+ 34c

2
2v
2

)
(4.8)

If v = 0, the approximate frequency and phase become, respectively,

ω =

√
c21 +
3

4
c22A
2 φ = 0 (4.9)

and for A = 0

ω =

√
2

2

√
c21 +

√
c41 + 3c

2
2v
2 φ =

π

2
(4.10)

The approximate period is computed by

T =
2π

ω
=

2π√
c2
1

2 +
3
8c
2
2A
2 +

√(
c2
1

2 +
3
8c
2
2A
2
)2
+ 34c

2
2v
2

(4.11)

Now, we compare approximate period (4.11) with the numerically obtained one. The ‘exact’
numerical period of vibration Tn is calculated using the numerical solution of Eq. (4.1) with
initial conditions (1.2) by the Runge-Kutta method. The vibration period Tn is computed for
the time in the interval 0 ¬ t ¬ T with a time-step of ∆t, where T is the approximate period,
see Eq. (4.11). The relative error in percentage is given by

∆T =
∣∣∣
Tn − T
Tn

∣∣∣ · 100% (4.12)

Figure 1 illustrates the variation of the relative error in percentage versus the initial am-
plitude A for three values of the initial velocity, i.e., v = 0 (solid line), v = 10 (dashed line)
and v = 100 (dotted line). In Fig. 1, the parameters of the system are c21 = c22 = 1 and the
amplitude A varies in the interval 0 ¬ A ¬ 50 with an increment ∆A = 0.5. The time-step is
∆t = 10−5T . We can note that for v = 0 the relative error has a monotonic growth, while for
v = 10 and v = 100 the relative error starts with a higher value and then oscillates converging
to A = 50.

Table 1 shows the relative errors in percentage, Eq. (4.12), for the parameters c21 = c22 = 1
and for several values of initial conditions, amplitude A and velocity v. In Table 1 the time-
step used is ∆t = 10−7T . The numbers in Table 1 are rounded to three decimal places. The
same behavior obtained in Figure 1 is shown in Table 1. We can also see a monotonic growth
for v = 0. For values of v > 0, the relative error starts in higher values for A = 0 and then,
increasing A, the relative error decreases up to a minimum value. After that, the relative error
starts to increase converging to 2.172% when A→∞. We can also observe that for high values
of v and A = 0, the error is larger and this error converges to 8.264% (A = 0, v →∞).
Now, an estimative for the average error between the approximate and exact solutions is

computed. For the initial conditions x(0) = A and ẋ(0) = v, the Hamiltonian of the system is

H0 =
1

2
v2 +

1

2
c21A
2 +
1

4
c22A
4 (4.13)
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Fig. 1. Relative errors ∆T , Eq. (4.12), versus the amplitude A for v = 0 (solid line),
v = 10 (dashed line) and v = 100 (dotted line)

Table 1. Relative errors ∆T , Eq. (4.12), for c
2
1 = c

2
2 = 1 and various initial conditions A, v

❍
❍
❍
❍
❍❍

v
A

0 1 5 10 50 100 500 1000

0 — 0.385 1.949 2.113 2.170 2.172 2.172 2.172

1 1.354 1.010 1.972 2.115 2.170 2.172 2.172 2.172

5 5.861 2.807 2.431 2.152 2.170 2.172 2.172 2.172

10 6.977 5.070 3.179 2.263 2.170 2.172 2.172 2.172

50 7.993 7.542 0.106 3.615 2.176 2.172 2.172 2.172

100 8.127 7.898 3.294 2.873 2.196 2.173 2.172 2.172

500 8.237 8.190 7.108 4.180 2.707 2.212 2.172 2.172

1000 8.250 8.227 7.675 6.067 3.494 2.327 2.172 2.172

Substituting approximate solution (2.5) into (4.3) and using relations (3.2), (4.13), the error
function, according to (3.5), is

∆2 =
2

π

π/2∫

0

[1
2
C2ω2 sin2(ψ) +

1

2
c21C

2 cos2(ψ) +
1

4
c22C

4 cos4(ψ)

−
(1
2
v2 +

1

2
c21A
2 +
1

4
c22A
4
)]2

dψ

(4.14)

Using Eqs. (2.6) and (4.7) and after some calculation, ∆2 is written as

∆2 =
A4c41
6
+
23c81
1296c42

+
A2c61
12c22

+
1

8
A6c21c

2
2 +
135A8c42
4096

+
85

576
A2c21v

2 +
23c41v

2

432c22

+
107

768
A4c22v

2 +
23v4

1152
− 263A

4c21R

9216
− 23c

6
1R

5184c42
− 121A

2c41R

6912c22
− 121A

6c22R

12288

− 49A
2v2R

4608
− 23c

2
1v
2R

3456c22

(4.15)

where

R =
√
16c41 + 24A

2c21c
2
2 + 9A

4c42 + 48c
2
2v
2 (4.16)
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and according to Eqs. (3.6) and (4.13), the error ∆ is given by

∆ =

√
∆2

1
2v
2 + 12c

2
1A
2 + 14c

2
2A
4

(4.17)

As before, Fig. 2 illustrates the relative errors ∆, Eq. (4.17) versus the initial amplitude
0 ¬ A ¬ 50 (∆A = 0.1) for three values of the initial velocity, i.e., v = 0 (solid line), v = 10
(dashed line) and v = 100 (dotted line), with c21 = c

2
2 = 1. The same pattern shown in Fig. 1 is

also obtained for the average relative error ∆.

Fig. 2. Relative errors ∆, Eq. (4.17), versus the amplitude A, for v = 0 (solid line), v = 10 (dashed line)
and v = 100 (dotted line)

4.1. Pure nonlinear conservative oscillator

Considering the following equation for a pure nonlinear conservative oscillator

ẍ+ c21x|x|α−1 = 0 (4.18)

where α is the order of nonlinearity, integer or non-integer. There are several studies of oscillators
where the nonlinearity has an order which is any rational number (integer or non-integer) (see,
for example, Cveticanin et al., 2010a,b, 2012; Herişanu and Marinca, 2010; Kovacic et al., 2010;
Cveticanin, 2014; Cveticanin and Pogany, 2012). According to (2.5), the approximate solution
is

x(t) = C cos(ωt − φ) (4.19)

and using Eqs. (2.12) and (2.18), the frequency is

ω2 = c21|C|α−1Kα (4.20)

with

Kα =
2

π
B
(1
2
,
α+ 2

2

)
(4.21)

where B is the Euler beta function. If v = 0, the approximate frequency and phase become,
respectively,

ω =
√
c21|A|α−1Kα φ = 0 (4.22)
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for A = 0

ω =
(
c21|v|α−1Kα

) 1

α+1 φ =
π

2
(4.23)

and for general values of A and v, the frequency is calculated using Eq. (4.20) and Algorithm 1.
Then, the amplitude C and phase φ are determined by Eqs. (2.6) and (2.7), respectively. The
approximate period is given by T = 2π/ω, where the frequency is determined by Algorithm 1.
The approximate period T is compared with Tn obtained numerically solving Eq. (4.18) with
initial conditions (1.2) by the Runge-Kutta method in the time interval 0 ¬ t ¬ T with a
time-step ∆t = 10−7T . The relative error ∆T is computed by Eq.(4.12). The average relative
error ∆ is calculated by Algorithm 2. In Table 2, the value of relative errors ∆T and ∆ for
various values of α and for c21 = 1 are shown. When the initial velocity is zero, the errors ∆T

and ∆ are independent of the initial amplitude A and of the constant c21. Table 2 shows that
for α < 1 the error decreases with an increase in α, and for α > 1 occurs the reverse, i.e., the
error increases with α. For the linear case, α = 1, the approximate solution corresponds to the
exact solution, x(t) = C cos(|c1|t− φ) and, apart from this value (α = 0 or α = 3), the relative
errors increase due to nonlinear effects. Navarro and Cveticanin (2016) studied the solutions
when v = 0 and showed that for high values of α the relative errors diverge. We can also note
that ∆T (A, 0) = ∆T (A → ∞, v) and ∆(A, 0) = ∆(A → ∞, v) for a specific value of α. These
equalities can be observed in Table 2 for v = 10.

Table 2. Values of relative errors ∆T (A, v) and ∆(A, v) for various values of the power α

α 0 1/2 1 3/2 2 5/2 3

∆T (A, 0) 1.5649 0.3103 0 0.2117 0.7203 1.3987 2.1723

∆(A, 0) 0.11096 0.05957 0 0.06079 0.12047 0.17823 0.23385

∆T (0, 10) 23.370 2.7389 0 1.1411 3.3583 5.8275 8.2642

∆(0, 10) 0.52475 0.17855 0 0.11022 0.18556 0.24056 0.28260

∆T (1, 10) 22.164 2.5547 0 0.9867 2.7627 4.5399 6.0783

∆(1, 10) 0.49605 0.16669 0 0.09817 0.16116 0.20409 0.2379

∆T (5, 10) 17.866 1.3809 0 0.1548 1.1174 2.4310 3.4975

∆(5, 10) 0.39674 0.09721 0 0.05788 0.13734 0.21773 0.28097

∆T (10, 10) 13.516 0.3133 0 0.3714 1.0361 1.6631 2.3273

∆(10, 10) 0.30175 0.05655 0 0.07108 0.13361 0.18736 0.23881

∆T (20, 10) 7.4054 0.4490 0 0.2667 0.7731 1.4251 2.1824

∆(20, 10) 0.18253 0.06318 0 0.06402 0.12251 0.17910 0.23417

∆T (50, 10) 0.1732 0.5300 0 0.2181 0.7238 1.3998 2.1725

∆(50, 10) 0.10583 0.06565 0 0.06115 0.12060 0.17826 0.23386

∆T (A→∞, 10) 1.5649 0.3103 0 0.2117 0.7203 1.3987 2.1723

∆(A→∞, 10) 0.11096 0.05957 0 0.06079 0.12047 0.17823 0.23385

Figures 3 and 4 show, respectively, the period relative errors ∆T and the average relative
errors ∆ (Algorithm 2) versus the initial amplitude 0 ¬ A ¬ 50 (∆A = 0.1) for the initial
velocity v = 10, parameter c21 = 1, and three values of the power, i.e., α = 1/2 (solid line),
α = 3/2 (dashed line) and α = 3 (dotted line). We can see that in both figures the errors start
in a higher value and then oscillate converging when A = 50. The minimum values of the relative
errors occur for lower values of A with the increase of the power α.
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Fig. 3. Relative errors ∆T , Eq. (4.12) versus the amplitude A for v = 10, and α = 1/2 (solid line),
α = 3/2 (dashed line) and α = 3 (dotted line)

Fig. 4. Relative errors ∆ (Algorithm 2) versus the amplitude A for v = 10, and α = 1/2 (solid line),
α = 3/2 (dashed line) and α = 3 (dotted line)

5. Conclusions

The Hamiltonian approach is extended for nonlinear conservative oscillators with general initial
conditions. A method is proposed for obtaining a relationship for the frequency as a function
of the initial amplitude, initial velocity and parameters of the system. An error estimation
procedure is investigated. Computational algorithms are proposed as an alternative procedure
to determine the frequency, amplitude, phase and relative errors in the adopted approximate
solution. Considering the obtained results, we have concluded the following:

• In the case of oscillators governed by the Duffing equation, the relative error for the
vibration period ∆T converges to 2.172% for (A → ∞, v) and to 8.264% for (A = 0, v →
∞). The average relative error ∆ converges to 0.233854 for (A → ∞, v) and to 0.282597
for (A = 0, v →∞).

• In pure nonlinear conservative oscillators, the relative errors for the vibration period ∆T ,
and for the average solution ∆ decrease with the increasing α up to α = 1, where the
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errors are zero. Beyond this point α > 1, the relative errors start to increase. According
to Table 2, when the velocity v = 0, there is a limit or maximum values for the errors,
i.e., ∆T (A, 0) = ∆T (A→∞, v) and ∆(A, 0) = ∆(A→∞, v). The minimum values of the
relative errors occur for lower values of A with an increase in the power α.
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