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The work is concerned with the optimal control and correction of a three-
axis gyroscopic platform fixed on board of a flying object. The deviations
from the predetermined motion are minimized by means of a method of
programmed control, an algorithm of the optimal correction control, and
selection of optimal parameters for the gyroscopic platform.
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Notation

A, B – state and control matrices, respectively; x, u – state and control
vectors, respectively; xp, up – set (programmed) state and control vectors,
respectively; uk – correction control vector; K – amplification matrix; Q, R –
weight matrices; OGP – one-axis gyroscopic platform; TGP – two-axis gyro-
scopic platform; FO – flying object; TTGP – three-axis gyroscopic platform;
M
p
g1,M

p
g2, M

p
g3, M

p
g4 – programmed control moments applied to the inner and

outer frames of the respective platform gyroscopes; Mpk1, M
p
k2, M

p
k3 – pro-

grammed correction moments applied to the respective stabilization axes of
the platform; µg, µp – damping coefficients relative to the stabilization and
precession axes of the OGP; µc – coefficient of dry friction in the gyroscope
bearings; dc – diameter of the gyroscope bearing journal; Nc – normal reaction
in the gyroscope bearings; ϑgz, ψpz – angles determining the set position of the
gyroscope and the OGP axes in space, respectively; kk, kg, hg – amplification
coefficients of the OGP closed-loop control; Jgo, Jgk – longitudinal and lateral
moments of inertia of the gyroscope rotor, respectively; ng – gyroscope spin
velocity; Φp, ϑp, ψp – angles determining spatial position of the platform; Φpz,
ϑpz, ψpz – angles determining the set position of the platform in space; p

∗, q∗,
r∗ – angular velocities of the FO motion (kinematic interaction with the gy-
roscopic platform); p∗o, q

∗
o , r
∗
o – amplitudes of the angular velocities p

∗, q∗, r∗,
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respectively; νz – frequency of the FO board vibrations; νp – set frequency of
the platform vibrations.

1. Introduction

Gyroscopic platforms mounted on board of flying objects, especially homing
rockets and unmanned aerial vehicles, are used as a reference for navigation
instruments. They also provide the input for sighting and tracing systems,
target coordinators, and television cameras (Kargu, 1988; Koruba, 1999, 2001).

Consequently, gyroscopic platforms need to be characterized by high opera-
tional reliability and high accuracy in maintaining the predetermined motion.
Since the operating conditions include vibrations and external disturbances,
it is essential that the platform parameters be properly selected both at the
design and operation stages.

This study examines applications of the three–axis gyroscopic platform to
navigation, control and guidance of weapons, such as unmanned aerial vehicles
and guided bombs, when pinpoint accuracy in locating a target is required.

The presented algorithm of selection of optimal control, correction and
damping moments for the three-axis gyroscopic platform ensures stable and
accurate platform operation even under conditions of external disturbances
and kinematic interactions with the FO board.

2. Control of the gyroscopic platform position

The equations of a controlled gyroscopic platform will be written in the vector-
matrix form

ẋ = Ax+ Bu (2.1)

To determine the programmed controls u, use a general definition, which says
that the inverse problems of dynamics (Dubiel, 1973) involve estimation of
the external forces acting on a mechanical system, system parameters and its
constraints at which the set motion is the only possible motion of the system.
In practice, the problems are frequently associated with special cases in which
it is necessary to formulate algorithms determining the control forces that
assure the desired motion of the dynamic system irrespective of the initial
conditions of the problem, though such a procedure is not always possible.

The next step is to formulate the desired signals (Koruba, 2001). Let up
stand for the desired (set, programmed) control vector. The control problem
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involves determination of the variations of components of the vector up in
function of time, which are actually the control moments about the gyroscope
axis and the motion being determined by the desired angles (ones defining the
set position in space of the platform).

Now, transform Eq. (2.1) into the form

Bup = ẋp − Axp (2.2)

The quantity xp in expression (2.2) is the desired state vector of the analyzed
gyroscopic platform. The estimated control moments up, are known functions
of time. Here, we are considering open-loop control of a gyroscopic platfrom,
the diagram of which is shown in Fig. 1.

Fig. 1. Layout of the gyroscopic platform open-loop control

Now, let us check what motion of the gyroscopic platform is excited by the
controls. By substituting them into the right-hand sides of Eqs. (2.2), we get

ẋ
∗ = Ax∗ (2.3)

where x∗ = x− xp is a deviation from the desired motion.
The inverse problem is explicit for the derivatives of the state variables in

relation to time ẋ, but for a fixed motion, i.e. within limits, when t → ∞.
The question is: will the solutions to the above equations describe also the set
motion of the gyroscopic platform? If the initial axis angle is set to be the same
as the required one: x(0) = xp(0), we will obtain desired angular displacements
of the gyroscopic platform. However, if the initial platform position is different
from the desired position, then, even though the velocities of the state variables
coincide with the desired ones, the platform will not realize the desired motion
in the desired location in space.
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Apart from the above mentioned inconsistency of the programmed control,
the platform performance is affected by external disturbances, mainly kinema-
tic interaction with the base (flying object board), non-linear platform motion
(large gyroscope axis angles), friction in the suspension bearings, manufactu-
ring inaccuracy, errors of the measuring instruments, etc.

Fig. 2. Layout of the gyroscopic platform closed-loop control

Additional closed-loop correction control uk (Fig. 2), must be applied to
make the gyroscopic platform move along a set path. Then, the equations
describing motion of the controlled platform will have the following form

ẋ
∗ = Ax∗ + Buk (2.4)

The correction control law uk, will be determined by means of a linear-
quadratic optimisation method with a functional in the form

J =

∞∫

0

[(x∗)⊤Qx∗ + u⊤k Ruk] dt (2.5)

The law will be presented as

uk = −Kx∗ (2.6)

The coupling matrix K in Eq. (6) is estimated from the following relation-
ship

A
⊤
P+ PA− 2PBR−1B⊤P+Q = 0 (2.7)
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The matrix P is a solution to Riccati’s algebra equation

K = R−1B⊤P (2.8)

The weight matrices, R and Q, in Eqs. (2.7) and (2.8), rearranged into
the diagonal form are selected at random (Koruba, 2001), yet the search starts
from the values equal to

qii =
1

2ximax
rii =

1

2uimax
i = 1, 2, . . . , n (2.9)

where: ximax – maximum variation range of the ith state variable value; uimax –
maximum variation range of the ith control variable value.
By substituting (2.6) into (2.4), we obtain the equations of state in a new

form again
ẋ
∗ = (A − BK)x∗ = A∗x∗ (2.10)

where
A∗ = A− BK (2.11)

Recall that it is important to make the platform as stable as possible. This
means the transition processes resulting from the switching on the control
system or a sudden disturbance must be reduced to a minimum. Thus, selection
of the optimal parameters of the system described by Eq. (2.10), and then
application of the Golubiencew modified optimization method (Dubiel, 1973)
are carried out.

3. Control and correction of the two- and three-axis gyroscopic

platform

For a two-axis platform, the state and control vectors x and u as well as the
state and control matrices A and B, are as follows

x =
[
ϑp,

dϑp

dτ
, ψp,

dψp

dτ
, ϑg,

dϑg

dτ
, ψg,

dψg

dτ

]⊤

u = [Mk1,Mk2,Mgw,Mgz]
⊤

A =





0 1 0 0 0 0 0 0

0 −hpy 0 0 0 ηgw 0 0

0 0 0 1 0 0 0 0
0 0 0 −hpz 0 0 0 ηgz
0 0 0 0 0 1 0 0

0 hpy 0 −√n 0 −(ηpw + ηgw) 0 −√n
0 0 0 0 0 0 0 1

0
√
n
n
0 hpz 0

√
n
n

0 −(ηpz + ηgz)
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B =





0 cp1 0 0 0 −cp1 0 0
0 0 0 cp1 0 0 0 −cp2
0 0 0 0 0 cgw 0 0
0 0 0 0 0 0 0 cgz





while

τ = Ωgt Ωg =
Jgong√
JgwJgz

ηgw =
ηgw

JgwΩ2g
ηgz =

ηgz
JgzΩ2g

hpy =
hpy

JpΩg
hpz =

hpz

JpΩg
ηpw =

ηpw

JpwΩ2g
ηpz =

ηpz

JpzΩ2g

cp1 =
1

JpyΩg
cp2 =

1

JpzΩg
cgw =

1

JgwΩg
cgz =

1

JgzΩg

A block diagram of the control and the correction for a two-axis platform
is shown in Fig. 3.

Fig. 3. Diagram of the TGP closed-loop control

However, in the case of a three-axis platform, we have

x =
[
ψp,

dψp

dτ
, ϑp,

dϑp

dτ
, Φp,

dΦp

dτ
, ψg1,

dψg1

dτ
, ϑg1,

dϑg1

dτ
, ψg2,

dψg2

dτ
, ϑg2,

dϑg2

dτ

]⊤

u = [Mk1,Mk2,Mk3,Mg1,Mg2,Mg3,Mg3]
⊤
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A =





0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 −hpz 0 0 0 0 0 ηp1 0 0 0 0 0 ηp1
0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 −hpy 0 0 0 0 0 ηp2 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 −hpx 0 0 0 0 0 ηp3 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 hpz 0 A1 0 0 0 −η̂p1 0 A1 0 0 0 −ηp1
0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 A2 0 0 0 A2 0 −η̂p2 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 A1 0 0 0 hpx 0 0 0 0 0 −η̂p3 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 hpz 0 0 0 A2 0 −ηp1 0 0 0 A2 0 −η̂p4





A1 =

√√√√JΣgw

JΣgz
A2 = −

√√√√ JΣgz

JΣgw

B =





0 c1 0 0 0 0 0 −c1 0 0 0 0 0 −c1
0 0 0 c2 0 0 0 0 0 −c2 0 0 0 0
0 0 0 0 0 c3 0 0 0 0 0 −c3 0 0
0 0 0 0 0 0 0 c4 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 c5 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 c6 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 c7





while

τ = Ωgt Ωg =
Jgong√
JΣgwJ

Σ
gz

η̂p1 = ηp1 + ηgz

η̂p2 = ηp2 + ηgw η̂p3 = ηp3 + ηgz η̂p4 = ηp1 + ηgw

ηp1 =
ηp

JpzΩg
ηp2 =

ηp

JpyΩg
ηp3 =

ηp
JpxΩg

ηgw =
ηg

JΣgwΩg
ηgz =

ηg

JΣgzΩg
hpx =

hpx

JpxΩg

hpy =
hpy

JpyΩg
hpz =

hpz

JpzΩg
c1 =

1

JpzΩ2g

c2 =
1

JpyΩ2g
c3 =

1

JpxΩ2g
c4 = c6 =

1

JΣgzΩ
2
g

c5 = c7 =
1

JΣgwΩ
2
g

Figure 4 shows a layout of the control and the correction of a three-axis
gyroscopic platform.
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Fig. 4. Outline of the TTGP closed-loop control

4. Obtained results and conclusions

Assume that the set motion of the TGP is described by the following functions
of time (the programmed motion is set around the circumference)

ψpz = ψ
o
pz sin νpt ϑpz = ϑ

o
pz cos νpt

and that there is an external disturbance (kinematic interaction with the base
along the Oxp, Oyp, Ozp axes in the form of the FO board harmonic vibra-
tions) in the time interval ∆ = 〈t1, t2〉 occurring with angular velocity equal
to

ψopz = 0.25 rad ϑopz = 0.25 rad νp = 1.5
rad

s

r∗o = 5
rad

s
νz = 50

rad

s

and the disturbing moments act only in relation to the precession axis and
have the form

Mz =M
v
z +M

t
z = µgrs +m

t
c sgn (rs)
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where: mtc = 0.5dcµcNc, with the TGP parameters equal to

Jgo = 5 · 10−3kgm2 Jgk = 2.5 · 10−4kgm2 Jp = 2.5 · 10−2kgm2

ng = 600
rad

s
µg = 0.01Nms mtc = 2 · 10−4 Nms2

Figures 5 through 8 concern the investigations of the two-axis gyroscopic
platform case. We confirm the operational efficiency of the closed-loop optimal
control which minimizes the deviations from the set motions to admissible
values and kinematic interaction with the base (the flying object board). As
there is great similarity between the TGP and TTGP cases, no data concerning
the latter have been included.

Fig. 5. Variations of the TGP angular position in function of time caused by initial
conditions: (a) without correction control, (b) with correction control

The work discusses the results of some preliminary investigations of dyna-
mics and control of a two- and three-axis gyroscopic platform fixed on board
of a flying object. To realize the programmed motion of the platform, we need
to apply controls determined from the inverse problem of dynamics. Then to
correct and stabilize this motion, we have to introduce control with feedback.
Furthermore, it is required that the Golubiencew modified method be used to
determine the optimal parameters of that system.
The optimized parameters of the controlled one-, two-, and three-axis gy-

roscopic platform allows us:

a) to reduce the transition process to minimum;

b) to minimize the overload acting on the platform;

c) to minimize values of the gyroscope control moments, which may affect
technical realizability of the control.

It should be noted that the data were obtained for two- and three-axis
platforms with three-rate gyroscopes. Such gyroscopes are used as control
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Fig. 6. Time-dependent variations of the TGP correction moments

Fig. 7. The set and desired trajectories of undisturbed TGP motion: (a) in the open
system, (b) with feedback

Fig. 8. The set and real undisturbed TGP motion: (a) in the open system, (b) with
feedback
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sensors. Thus, the operational accuracy of the platforms depends mainly on
the operational accuracy of the applied gyroscopes. Since three-rate gyroscopes
are easier to control, relatively little energy needs to be supplied to alter the
spatial position of the platform (Koruba, 2001).
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Sterowanie i korekcja platformy giroskopowej umieszczonej na pokładzie

obiektu latającego

Streszczenie

W pracy przedstawione jest sterowanie optymalne i korekcja trzyosiowej platfor-
my giroskopowej, umieszczonej na pokładzie obiektu latającego. Odchylenia od ruchu
zadanego są minimalizowane za pomocą sterowania programowego, algorytmu opty-
malnego sterowania korekcyjnego oraz wyboru optymalnych parametrów platformy
giroskopowej.
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