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The paper is concerned with qualitative analysis of a non-linear model
describing vibrations of a gear mesh system. The influence of selected
parameters on the character and level of vibrations is studied.
The possibility of excitation of quasi-periodic or chaotic oscillations for
some regions of the parameters has been shown. Different types of vi-
bration are illustrated by plots of time histories, phase portraits, stro-
boscopic portraits and bifurcation diagrams.
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1. Introduction

Dynamic models of gear mesh systems are most often described by non-linear
parametrical equations, i.e. differential equations with time-periodic coeffi-
cients (Müller, 1986; Dyk et al., 1994; Raghothama and Narayanan, 1999;
Theodossiades and Natsiavas, 2001; Litak and Friswell, 2003). The variability
of coefficients results in variation of the meshing stiffness induced mainly by a
change of the number of gear teeth pairs, which are simultaneously in contact
(meshing of one or two pairs of teeth). The nonlinearity of equations is the
result of backlashes in the transmission gear. Impacts of teeth are the effect of
backlashes, and characteristics of impacts forces are strongly non-linear. As a
result of these impact forces, it is possible, under some conditions, for periodic,
quasi-periodic or chaotic vibration to occur in the system.

Main sources of vibrations are kinematic excitations caused by manufactu-
ring errors and wear. Frequencies of such excitations depend on the product of
rotational speed and the number of teeth. Non-linear characteristics of the dri-
ving moment, dependent on rotation angles and angular speed are sometimes
taken into account.
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In the literature, a simplified one degree-of-freedom model is usually used
where the torsional stiffnesses of shafts as well as transverse vibrations are
neglected. In this classical model, the gear mesh is modelled as a pair of rigid
disks connected by a spring-damper set along the line of action. The bac-
klash function is usually used to represent gear clearances and an external
displacement excitation is also applied at the gear mesh interface to represent
manufacturing errors, intentional modifications of teeth or wear profile. The
most of existing models of gear transmission systems treat the gear errors as
a deterministic input.
Another one-stage gearbox model was presented by Müller (1986). This

model attracted a lot of attention in Poland. Müller’s model is a two-parameter
(stiffness and damping) one in which the inertia of two gear wheels is reduced
to one mass. It was discussed, for example, in the paper by Dyk et al. (1994).
Motion of the mass is equivalent to relative motion of two gear wheels. Vibra-
tion is caused by relative motion of springs (having different lengths) which
are in contact with the mass.
In the paper by Dyk et al. (1994), a comparison between the results of the

analysis by the classical and Müller’s model was presented. The comparison
showed that chaotic vibration can be observed in the case when the parameters
of the model differ from those existing in a real construction.
Raghothama and Narayanan (1999) investigated coupled transverse and

torsional vibrations of a geared rotor-bearing system using the classical model.
Periodic motions were obtained by the incremental harmonic balance method.
The path following procedure using the arc length continuation technique was
then used to trace bifurcation diagrams.
A similar approach to the analysis of periodic vibrations was presented by

Theodossiades and Natsiavas (2001) who studied the influence of gear meshing
frequency on the steady state response curve.
Some models additionally include effects of friction between gear teeth. For

example, in the paper by Vaishya and Singh (2001), the influence of sliding
friction and viscous damping on unstable regions was discussed.
The phenomenon of chaotic vibrations in gear transmission systems has

been relatively early detected. Usually, strange attractors are shown only for
suitably chosen values of gearbox parameters. In some papers, bifurcation
diagrams were calculated to determine ranges of chaotic vibrations (e.g., Li et
al., 2001).
Taking into account the torsional stiffness, one needs to study a three

degrees-of-freedom model. Litak and Friswell (2003) showed diagrams obtained
by numerical integration, which illustrate the influence of the shaft stiffness
as well as the magnitude of excitation on the character of motion.
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The coefficient of restitution has been also used to describe the impacts
of teeth. In the paper by De Souza et al. (2004) in order to illustrate the
influence of this coefficient on the type of vibration, the authors determined
the bifurcation diagram as well as they calculated the Lyapunov exponents.
Recently, the interest towards developing a better understanding of gear

vibration has been renewed. This interest has been clearly reflected in some
new studies which have dealt with a relatively simple model with rigid sup-
ports. Analysing this model by the harmonic balance method (e.g., Shen et al.,
2006) as well as the method of numerical integration (e.g., Gill-Jeong, 2007),
the authors investigated the influence of selected parameters on frequency-
response curves. A similar model, in which manufacturing errors were treated
stochastically, was investigated by Bonori and Pellicano (2007).
In the present paper, a four-degree-of-freedom model with the backlash

and time varying stiffness is used to describe vibration of a one-stage gear-
box. The influence of significant parameters on the character of vibration and
the quality criteria are presented. Two-parameter diagrams are obtained to
provide a better description of dynamic behaviour of the system. The stu-
dy is done numerically using methods of numerical integration and spectrum
analysis (Łuczko, 2006).

2. The model of the system

A pair of gears is modelled (Fig. 1) using two disks coupled by a non-linear
mesh stiffness (parameters c, ∆) and a linear mesh damping (coefficient k).
It is assumed that the resilient elements of the supports are described by
the Voigt-Kelvin model with damping coefficients k1 and k2 and stiffness
coefficients c1 and c2. Motion of the system is described by rotational angles
ϕ1 and ϕ2 and displacements u1 and u2 of the centers of the disks. The model
takes into account the influence of torques M1 and M2 on the driving and
driven shaft, respectively.
Using the laws of momentum and angular momentum, transverse-torsional

motion of the system can be described by the following system of four second-
order differential equations

I1ϕ̈1 +R1S =M1(ϕ̇1, ϕ1, t) I2ϕ̈2 −R2S = −M2(ϕ̇2, ϕ2, t)

m1ü1 + k1u̇1 + c1u1 + S = 0 m2ü2 + k2u̇2 + c2u2 − S = 0
(2.1)

In equations (2.1), the parameters: m1, m2 and I1, I2 are, respectively,
the gear masses and the mass moments of inertia of the gears about their
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Fig. 1. A gear pair: (a) model of the system, (b) characteristics c(t) and F (u)

axis of symmetry. The base radii of the gears are denoted by R1 and R2.
The meshing force S is normal to the involute profile of the gear tooth. The
following relationships for the torques M1 and M2 are used in the model

M1(ϕ̇1, ϕ1, t) =M10 − b1ϕ̇1 M2(ϕ̇2, ϕ2, t) =M20 − b2ϕ̇2 (2.2)

where b1 and b2 are the damping coefficients in the journal bearings.
The meshing force S depends on the relative displacement of gear teeth,

which describes the so-called dynamic transmission error

u = R1ϕ1 −R2ϕ2 + u1 − u2 − e(t) (2.3)

In equation (2.3), the so-called static transmission error e(t) takes into
account the effects of gear faults such as wear of the tooth face, mount er-
ror, tooth spall, etc. This error depends on the rotational angles ϕ1 and ϕ2.
However, in this case, the influence of torsional vibrations on the rotational
speed is usually neglected and the static error e(t) depends directly on time.
Introducing the notation ωz = n1ω1 = n2ω2 for the fundamental frequency
(gear meshing frequency), the static transmission error can be expressed in
the form of a Fourier series

e(t) =
∑

j

ej cos(jωzt− θj) (2.4)

where the integers n1 and n2 stand for the number of teeth of each gear.
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The meshing force S is given by the following formula

S = ku̇+ c(t)F (u) (2.5)

The gear backlash nonlinearity F (u) is modelled as a piecewise linear function

F (u) =















u−∆ for u > ∆

0 for |u| ¬ ∆

u+∆ for u < −∆

(2.6)

where 2∆ is the backlash. The stiffness c(t) depends on the number and
position of the gear teeth pairs which are in contact. It is a periodic function
of the relative angular position of the gears. The function c(t) has a similar
form as equation (2.5) discussed earlier

c(t) =
∑

j

cj cos(jωzt− αj) (2.7)

or it takes a characteristic shown in Fig. 1b. This somewhat idealized charac-
teristic takes into account the change of stiffness only due to the change of
the number of teeth which are in contact. The periods T1 and T2, in which
one or two pairs of teeth are in contact, can be expressed by the profile con-
tact ratio α in the following way: T1 = (α − 1)T and T2 = (2 − α)T , where
T = 2π/ωz.

The analysis will be done in a dimensionless form, and non-dimensional
quantities are used where the displacements are referred to the parameter ∆
and the non-dimensional time τ = ω0t is connected with the circular frequency

ω0 =

√

c0
m

(2.8)

where

m =
I1I2

I1R22 + I2R
2
1

(2.9)

is the equivalent mass representing the total inertia of a gear pair. Introducing
new variables (n = 1, 2)

xn = rnϕn =
Rn
∆
ϕn yn =

1

∆
un (2.10)

and following notations
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Jn =
In
mR2n

µn =
mn
m

qn =
Mn0
c0Rn∆

εj =
ej
∆

ζn =
kn
2mnω0

ζ =
k

2mω0

βn =
bn

2mω0R2n
κn =

cn
c0

(2.11)

the differential equations assume the following dimensionless form

J1
d2x1
dτ2
+ 2β1

dx1
dτ
+ 2ζ
dz

dτ
+ χ(τ)f(z) = q1

J2
d2x2
dτ2
+ 2β2

dx2
dτ
− 2ζ
dz

dτ
− χ(τ)f(z) = q2

(2.12)

µ1
d2y1
dτ2
+ 2µ1ζ1

dy1
dτ
+ κ1y1 + 2ζ

dz

dτ
+ χ(τ)f(z) = 0

µ2
d2y2
dτ2
+ 2µ2ζ2

dy2
dτ
+ κ2y2 − 2ζ

dz

dτ
− χ(τ)f(z) = 0

Here

f(z) =















z − 1 for z > 1

z + 1 for |z| ¬ 1

z + 1 for z < −1

(2.13)

where
z = x1 − x2 + y1 − y2 − ε(t) (2.14)

and
ε(t) =

∑

j

εj cos(jωτ − θj) (2.15)

For the characteristic shown in Fig. 1b, the function χ(τ) in the interval
(0, 2π/ω), where ω = ωz/ω0, has the following form

χ(τ) =

{

1 + χ1 for 0 ¬ τ < τ1

1− χ2 for τ1 ¬ τ < τ1 + τ2
(2.16)

In the case of a fixed support (κ1 →∞, κ2 →∞, y1 = y2 = 0), and using
an additional assumption that β1 = β2 = 0, vibrations of the gear mechanism
can be described by the following differential equation

d2z

dτ2
+ 2ζ0

dz

dτ
+ χ0(τ)f(z) = q0 −

d2ε

dτ2
(2.17)
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where

χ0(τ) =
J1 + J2
J1J2

χ(τ) ζ0 =
J1 + J2
J1J2

ζ

(2.18)

q0 =
q1
J1
+
q2
J2

3. Analysis of torsional vibrations

Some results of qualitative analysis will be described below. The results have
been obtained using methods of numerical integration and the Fast Fourier
Transform. More details about the use of spectrum analysis for determination
of the character of vibration were discussed in Łuczko (2006).
In the discussion of the results, the criterion index VRMS is used, defined as

the velocity rms value. Moreover, it has also been assumed that J1 = J2 = 2
and q1 = q2, so that the following relationships take place: χ0(τ) = χ(τ),
ζ0 = ζ and q0 = q1 = q2. The following set values of parameters have been used
in the numerical calculations: ζ = 0.025, β1 = β2 = 0.01, χ1 = χ2 = χ0 = 0.25,
θ1 = 0 and α = 1.5 (then T1 = T2 = T/2).
We begin the study of equations (2.12) by analysing torsional vibra-

tions, neglecting the transverse displacements u1 and u2. In this case, mo-
tion is described by the first two equations of (2.12) or equation (2.17) for
β1 = β2 = 0.

Fig. 2. Influence of the excitation frequency and amplitude (χ0 = 0.25, q0 = 0.1,
θ1 = 0, ζ = 0.025) on: (a) vibration zones, (b) efficiency index

Figure 2 illustrates the influence of the frequency ω and amplitude ε1
of the first harmonic of the excitation on the character of vibration as well
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as on the rms value of the velocity (efficiency index). In the lower frequency
range (for ω < 2), apart from periodic vibrations, interesting sub-harmonic
(most often 2T -periodic) and chaotic vibrations can be observed. The regions
of chaotic vibrations have irregular shapes (Fig. 2a) and the changes of the
efficiency index (Fig. 2b) in these regions are also irregular. Additionally, the
level of vibration (measured by the introduced index) is usually somewhat
higher, but it is not a general rule.

The raised level of vibration is also observed in the regions of parametrical
resonance. These regions begin in the neighbourhoods of points ω = 2, ω = 1,
ω = 1/2 and ω = 1/4, which is typical for parametric vibration. The widest
are the first two regions. In these regions too, for a large enough amplitude ε1,
chaotic vibrations are induced very often.

For the determination of solutions to equations (2.12), the following initial
conditions were used: x2(0) = x

′

1(0) = x
′

2(0) = 0, x1(0) = 1. The condition
x1(0) = 1 means that at the time t = 0, the contact takes place between the
meshing teeth and the force acting on the gear tooth causes revolution in the
direction consistent with the assumed direction of the angular velocity of the
driven shaft.

For other initial conditions, the results are similar, however sometimes,
especially for a smaller excitation amplitude (in the vicinity of the boundary of
the regions) more solutions are observed. A more exact analysis of the influence
of the initial conditions on the character of vibration requires determination
of the basins of attraction.

In the case of a system with four degrees-of-freedom, one needs to ana-
lyse the influence of four initial conditions. This is arduous calculation and,
additionally, the results are difficult to illustrate graphically in that case.

Because the influence of the parameters β1 and β2 (damping in the be-
arings) on the shape of the determined regions is insignificant, it is possible
to find the basins of attraction by analysing the simpler system described by
equation (2.17).

The results of analysis of the influence of initial conditions on the solution
to equation (2.17) are shown in Fig. 3. For smaller values of the frequency,
two different types of vibrations get mostly excited (Figs. 3a,b). For larger va-
lues of ω, the number of solutions grows drastically (Fig. 3c). For instance,
in the case of ω = 2.3 and ε1 = 0.05, one can show the existence, apart
from 1T -periodic vibration (Fig. 4a) and 3T -periodic (Fig. 4b), two types of
4T -periodic vibration (Figs. 4c,d). Additionally, for a small change in the pa-
rameters ω and ε1, 5T -periodic vibrations appear in the system.
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Fig. 3. Basins of attraction (χ = 0.25, q0 = 0.1, ζ = 0.025): (a) ω = 0.8, ε1 = 0.1,
(b) ω = 1.1, ε1 = 0.05, (c) ω = 2.3, ε1 = 0.05

Fig. 4. Phase trajectories and time histories of the velocity (ω = 2.3, ε1 = 0.05):
(a) 1T -periodic, (b) 2T -periodic, (c), (e) 4T -periodic, (d), (f) 4T -periodic

The frequency ω and amplitude ε1 of the kinematic excitation as well as
undimensional torque q0 have the biggest influence on the character of vi-
bration. The influence of parametric excitation (χ1, χ2, τ1, τ2) is considerably
smaller. Very similar results are obtained, by replacing the function χ(τ), defi-
ned by formula (2.16), with a sine function having a suitably chosen amplitude.
The parameters χ1 and χ2 mainly influence the velocity rms value.

Figure 5 illustrates, in the same format as in Fig. 2, the effect of ω and q0
(static load torque). Chaotic vibrations are excited for small values of q0 (for
q0 < 0.15).

With an increase in q0, the range of chaotic vibrations strongly decreases
(Fig. 5a), however the range of 2T -periodic vibration simultaneously increases.
Other types of sub-harmonic vibration are mainly observed on the boundary
of zones of different vibration types.
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Fig. 5. Effect of ω and q0 (χ0 = 0.25, ε1 = 0.1, ζ = 0.025): (a) vibration zones,
(b) quality index

In the regions of periodic vibration, the changes of quality index are re-
gular (Fig. 5b). With an increase in q0, in some frequency ranges, the level
of vibrations slightly increased. The quality index achieves small values for
higher values of ω (for ω > 2), independently of q0.

Fig. 6. Bifurcation diagram – influence of the parameter q0 (ε1 = 0.1, ω = 1)

The influence of the parameter q0 is also illustrated in the bifurcation
diagram shown in Fig. 6. A cursory observation of the diagram shows that
for q0 < 0.0508 only chaotic vibrations are excited. However, analysing the
diagram in more detail, it is possible to detect at least two very narrow ran-
ges of periodic vibration (somewhat brighter trails in the neighbourhoods
q0 = 0.0165 and q0 = 0.025). For q0 = 0.0164, 4T -periodic vibration ta-
kes place, whereas for q0 = 0.01645 and q0 = 0.0165 the period of oscillations
is respectively equal to 8T and 12T . In the range 0.02485 < q0 < 0.025,
3T -periodic vibration is excited, which next for q0 = 0.0255 gives place to
6T -periodic vibration. For q0 = 0.047, one can also observe 6T -periodic vi-
brations.

Interesting is the fact that in the next ranges of chaotic vibrations lying
between the ranges of sub-harmonic vibrations, the shape of the fractal under-
goes a qualitative change (Fig. 7). For larger values of q0 (0.067 < q0 < 0.08),
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Fig. 7. Stroboscopic portraits of chaotic oscillations (ε1 = 0.1, ω = 1):
(a) q0 = 0.014, (b) q0 = 0.02, (c) q0 = 0.04, (d) q0 = 0.05

the change of the shape of fractals is insignificant – they have a similar shape
to the strange attractor shown in Fig. 7d.

Variation of the parameters χ1 and χ2 does not cause qualitative changes
of the analysed diagram (Fig. 6) and stroboscopic portraits (Fig. 7). Even by
assuming that the meshing stiffness is constant (χ1 = χ2 = 0), one can obtain
similar results (Li et al., 2001).

Fig. 8. Effect of the parameter ε1 (q0 = 0.1, ω = 1): (a) bifurcation diagram,
(b) diagram of maximal Lyapunov exponent

Figure 8 shows a bifurcation diagram and a corresponding diagram of the
maximum Lyapunov exponent. The bifurcation diagram has been obtained
using the stroboscopic method by taking the displacement x1 at selected time
instants (every excitation period). Both diagrams correspond to the section of
the (ω, ε1) plane shown in Fig. 2a taken for ω = 1.

For larger amplitudes of the kinematic excitation, the probability of chaotic
excitation is considerable. For this reason, other types of vibrations (except
2T -periodic ones) are hardly observed in the regions of chaotic vibrations
shown in Fig. 2a. Analysing the bifurcation diagram or the maximum Ly-
apunov exponent, one can more easily detect ranges of periodic vibration.
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The bifurcation diagram contains more information than the Lyapunov expo-
nent about the character of motion, enabling determination of the order of
sub-harmonic vibration. The order of sub-harmonic oscillation is equal to the
number of curves in the respective ranges of the parameter ε1 (Fig. 8a). For
example, in the case of ε1 = 0.206 and ε1 = 0.208, we have sub-harmonic
vibration of 1:8 and 1:16 types, respectively. By preparing the diagram mo-
re precisely or analysing stroboscopic portraits, it is possible to show that for
ε1 = 0.209 vibration of the 1:32 type takes place. For sligth larger values of ε1,
chaotic vibrations are excited.
The differences between chaotic and sub-harmonic vibrations are not too

big. This fact is confirmed by the similarity of some characteristics obtained
for chaotic (Fig. 9a for ε1 = 0.23) and sub-harmonic oscillations (Fig. 9b for
ε1 = 0.231). Analysing the frequency spectra (calculated by the FFT method)
as well as the time histories, it is difficult to unambiguously determine the type
of the analysed signal. Only by observing stroboscopic portraits it is possible
to notice clear differences as well as to determine the order of sub-harmonic
vibrations.

Fig. 9. Time histories, frequency spectra, phase trajectories and stroboscopic
portraits: (q0 = 0.1, ω = 1): (a) ε1 = 0.23, (b) ε1 = 0.231

The results shown in Fig. 9a are typical for chaotic vibrations in a relati-
vely wide frequency range and a broad range of the amplitude of kinematic
excitations. Similar phase trajectories were obtained in the paper by Bonori
and Pellicano (2007), who numerically analysed equation (2.17) for the case:
q0 = 0.12, ω = 1.7, ε1 = 0.09.
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4. Influence of lateral vibrations on torsional ones

The numerical results discussed above do not undergo large qualitative changes
after taking into account the stiffnesses of the supports. With this regard,
below we demonstrate selected results, which illustrate perceptible tendencies
of qualitative changes.
The full system of equations (2.12) describes now transverse and torsional

vibrations. Additionally, the parameters µ1, µ2, κ1, κ2, ζ1 and ζ2 have the
influence on the solutions to the set (2.12). To simplify the considerations, we
further assume that the investigated system is symmetric, i.e. µ1 = µ2 = 4,
κ1 = κ2 = κ and ζ1 = ζ2 = 0.01.
Because in the case of sufficiently large stiffnesses of the supports of the

gear wheels (for κ greater than about 20) it is difficult to observe essential
differences in the results, we restrict the range of changes of the parameter κ
to the interval (0.2, 10).

Fig. 10. Effect of the parameters ω and κ (ε1 = 0.05, q0 = 0.1, χ0 = 0.25,
ζ = 0.025): (a) vibration zones, (b) quality index

Figure 10 illustrates the effect of the parameters ω and κ on the type
of vibrations (Fig. 10a) as well as on the rms value of velocity x′1 (Fig. 10b).
The regions of chaotic and periodic vibrations appear alternately, whereas the
chaotic regions partly overlap the regions of the raised level of vibrations. With
increasing the non-dimensional stiffness κ, the ranges of chaotic oscillations
displace toward higher frequency ranges. Moreover, one can observe a new
type of vibrations – quasi-periodic, discussed below in more detail.
In order to compare the present results with earlier presented in Fig. 2

we investigate the effect of parameters ω and ε1 (Fig. 11) for a prescribed,
comparatively small, value of the parameter κ = 0.5.
The analysis of the results shows some insignificant differences. We ha-

ve similar regions, but shifted to the right with respect to the previous re-
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Fig. 11. Effect of the parameters ω and ε1 (κ = 0.5, q0 = 0.1, χ0 = 0.25, ζ = 0.025):
(a) vibration zones, (b) quality index

gions. Moreover, in Fig. 11a in the neighbourhood of ω = 1, there appears an
additional region of chaotic vibration, rimmed through the narrow zones of
quasi-periodic and sub-harmonic oscillations of a higher order.

Fig. 12. Bifurcation diagram – influence of the parameter ε1 (κ = 0.5, q0 = 0.1,
ω = 1.05)

In Fig. 12, a bifurcation diagram that corresponds to the sections of Fig. 11a
for ω = 1.05 is shown. Quasi-periodic vibrations are excited for the amplitu-
de ε1, contained in the interval (0.033, 0.048) as well as for ε1 > 0.2.
In the first range of the parameter ε1, quasi-periodic solutions are created

from periodic solutions – the stroboscopic portrait is a single closed curve
(Fig. 13a). In the second range, for ε1 > 0.2, 2T -periodic solutions chan-
ge into quasi-periodic, and two closed curves make the stroboscopic portrait
(Fig. 13b).
In general, quasi-periodic vibrations have somewhat smaller amplitudes in

relation to chaotic vibration, which is partly visible on the bifurcation diagram.
It should be pointed out that in the discussed ranges of the parameter ?1 other
types of vibrations are also possible, though probability of them to be excited
is considerably smaller than in the remaining ranges.
Earlier, Raghothama and Narayanan (1999) detected quasi-periodic vibra-

tion by analysing a model of a gearbox with flexible supports.
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Fig. 13. Phase trajectories and stroboscopic portraits (κ = 0.5, q0 = 0.1, ω = 1.05):
(a) ε1 = 0.04, (b) ε1 = 0.205

Analogous conclusions relating to the character of vibration can be drawn
from the analysis of diagrams shown in Fig. 14, which illustrate the influence
of the nondimensional moment q0. In the ranges of quasi-periodic vibrations,
the stroboscopic points are usually distributed more regularly – this remark
concerns the interval (0.13, 0.17) in Fig. 14a as well as the interval (0.16, 0.18)
in Fig. 14b.

Fig. 14. Bifurcation diagram – influence of the parameter q0 (ε1 = 0.1, ω = 1.05):
(a) κ = 0.5, ω = 0.9, (b) κ = 1, ω = 1

Both diagrams can be compared with that earlier shown in Fig. 6. One can
easily observe that the zone of chaotic vibration with regard to transverse mo-
tion becomes wider. It should be noted that the range of changes of q0 is twice
as large as now than that in Fig. 6. The character of chaotic and quasi-periodic
motion is similar. This is confirmed by the similarity of stroboscopic portraits
obtained for chaotic (Fig. 15a) and quasi-periodic oscillations (Fig. 15b).



894 J. Łuczko

Fig. 15. Stroboscopic portraits (κ = 0.5, ω = 0.9, ε1 = 0.1): (a) q0 = 0.128,
(b) q0 = 0.135

5. Conclusions

Detailed conclusions have been successively drawn in the discussion of the re-
sults of numerical calculations. The most important conclusions can be sum-
marized as follows:

• The analysis of the effect of parameters on the character of vibration
and the introduced quality index enable one to determine ranges of the
parameters, for which vibration amplitudes are sufficiently small. Hi-
gher levels of vibration are observed in the low frequency range (for
ω < 2), mainly in regions of parametric resonance (in the neighbourho-
od of points ω = 1/4, ω = 1/2, ω = 1 and ω = 2). In these regions, apart
from the rotational speed, the parameters of parametric excitations play
an important role.

• The investigation of the character of motion is interesting mainly from
the cognitive point of view. The parameters of the kinematic excitation
as well as the static load torque have the decisive influence on the type of
oscillations. However, since a raised level of oscillation is usually observed
in chaotic regions, it is possible to use the results of qualitative analysis
for selection of parameters of the gear transmission system.

• For small values of the nondimensional static load, the solutions to dif-
ferential equations strongly depend on the initial conditions. We can
have different types of subharmonic and chaotic vibrations, considerably
differing in the amplitude of oscillation.

• The taking into account the stiffnesses of the gearbox supports results
in growth of the ranges of chaotic oscillations. Moreover, a new type of
oscillation – quasi-periodic vibration – gets excited in the system.



Chaotic vibrations in gear mesh systems 895

• By analysing the model of the system, it is possible to observe diffe-
rent scenarios of generation of chaotic oscillations. They can come into
existence both from sub-harmonic oscillations as well as quasi-periodic
vibrations.
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Streszczenie

W pracy przeprowadzono analizę jakościową modelu jednostopniowej przekładni
zębatej. Uwzględniono wpływ zmiany sztywności zazębienia, luzu międzyzębnego oraz
wymuszeń kinematycznych. Do analizy wykorzystano procedury numerycznego cał-
kowania skojarzone z algorytmami szybkiej transformaty Fouriera. Zbadano wpływ
parametrów układu na charakter drgań oraz wprowadzone wskaźniki jakości. Wy-
kazano możliwość generowania się w badanym układzie drgań chaotycznych, prawie
okresowych i podharmonicznych.
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