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The purpose of this paper is to present study of thermal creep stress and strain rates in a
non-homogeneous spherical shell by using Seth’s transition theory. Seth’s transition theory is
applied to the problem of creep stresses and strain rates in the non-homogeneous spherical
shell under steady-state temperature. Neither the yield criterion nor the associated flow
rule is assumed here. With the introduction of thermal effect, values of circumferential
stress decrease at the external surface as well as internal surface of the spherical shell. It
means that the temperature dependent materials minimize the possibility of fracture at the
internal surface of the spherical shell. The model proposed in this paper is used commonly
as a design of chemical and oil plants, industrial gases and stream turbines, high speed
structures involving aerodynamic heating.
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1. Introduction

Spherical shell structures have found widespread use in modern technology such as design of
chemical and oil plants, accumulator shells, pressure vessel for industrial gases or media trans-
portation of high-pressurized fluids and piping of nuclear containment, high speed structures
involving aerodynamic heating, submerged undersea structures, earth sheltered domes, and the
like. These spherical systems are effective from the perspectives of both structural and architec-
tural design. In many of these cases, the spherical shells have to operate under severe mechanical
and thermal loads causing significant creep and thus reducing its service life. The collapse or da-
mage is initiated by creep, shrinkage and thermal effects, or from their interaction with structures
that both experience or do not experience environmental degradation. Consequently, demand
for strengthening and upgrading the existing concrete structures, because of damage caused by
long-term effects and excessive structural deformations, has been recognized. However, before the
application of costly strengthening techniques, understanding of nonlinear long-term behaviour
of the existing and new spherical shells is essential, and the development of suitable and reliable
theoretical approaches for their analysis and safety assessment is required. Creep effects gene-
rally increase deformations of a shell structure even under room temperatures, and are usually
only considered to affect behaviour at the service ability limit states. Therefore, the analysis of
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long term steady state creep deformations of shells is very important in these applications (Ha-
med et al., 2010; Kashkoli and Nejad, 2014). Due to the occurrence of these creep deformations,
non-homogeneous materials are widely used in the engineering applications. Non-homogeneous
materials are a specific class of composite materials known as functionally graded materials
(FGM) in which constituents are graded in one or more direction with continuous variation
to achieve desired properties. The smooth grading of the constituents result in better thermal
properties, higher fracture toughness, improved residual stress distribution and reduced stress
intensity factors. These properties allow non-homogeneous structures to withstand high pressure
under elevated thermal environment. Therefore, the analysis of non-homogeneity in the spherical
shell through a mathematical model by taking one and all the complexities into consideration
is the major concern of researchers (Kar and Panda, 2016). Some degree of non-homogeneity is
present in a wide class of materials such as hot rolled metals, magnesium and aluminum alloys.
Non-homogenity can also be introduced by a certain external field which is a thermal gradient
material as the elastic moduli of the materials vary with temperature (Olszak, 1960). Penny
(1967) obtained the effects of creep in spherical shells by analysis similar to the corresponding
elastic ones described here. Miller (1995) evaluated solutions for stresses and displacements in
a thick spherical shell subjected to internal and external pressure loads. You et al. (2005) pre-
sented an accurate model to carry out elastic analysis of thick-walled spherical pressure vessels
subjected to internal pressure. Kellogg and King (1997) developed a finite element model of co-
nvection in a spherical axisymmetric shell that we use to simulate upwelling thermal plumes in
the mantle. Thakur (2011) analyzed creep transition stresses of a thick isotropic spherical shell
by finitesimal deformation under steady state of temperature and internal pressure by using
Seth’s transition theory. Seth’s transition theory does not acquire any assumptions like the yield
condition, incompressibility condition, and thus poses and solves a more general problem from
which cases pertaining to the above assumptions can be worked out. This theory utilizes the
concept of a generalized strain measure and asymptotic solution at critical points or turning
points of differential equations defining the deformed field and has been successfully applied to
a large number of problems (Seth, 1962, 1966; Thakur, 2011, 2014; Thakur et al., 2016, 2017).
Seth (1962) defined the concept of generalized strain measures as
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where n is the measure and
A
eii are the Almansi finite strain components. For n = −2,−1, 0, 1, 2 it

gives the Cauchy, Green Hencky, Swainger and Almansi measures respectively. Non-homogeneity
in a spherical shell has been taken as the compressibility of the material as

C = C0r
−k (1.2)

where a ¬ r ¬ b, C0 and k are real constants.

2. Governing equations

We consider a spherical shell whose internal and external radii are a and b, respectively, and is
subjected to uniform internal pressure pi of gradually increasing magnitude and temperature Θ0
applied to the internal surface r = a as shown in Fig. 1. The components of displacement in
spherical co-ordinates are given by (Seth, 1962, 1966)

u = r(1− β) v = 0 w = 0 (2.1)
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Fig. 1. Geometry of the spherical shell

where u, v, w are displacement components, β is a position function depending on r.
The generalized components of strain are given by Seth (1966)

err =
1

n
[1− (rβ′ + β)n] eθθ =

1

n
(1− βn) = eϕϕ erθ = eθϕ = eϕr = 0 (2.2)

where n is the measure and β′ = dβ/dr.
Stress-strain relation. The stress-strain relations for a thermo-elastic isotropic material are given
by (Parkus, 1976)

Tij = λδijI1 + 2µeij − ξΘδijTij i, j = 1, 2, 3 (2.3)

where Tij are stress components and eij is strain component, λ and µ are Lame’s constants,
I1 = ekk is the first strain invariant, δij is Kronecker’s delta, ξ = α(3λ + 2µ), α being the
coefficient of thermal expansion, and Θ is temperature. Further, Θ has to satisfy

∇2Θ = 0 (2.4)

Substituting the strain components from Eq. (2.2) in Eq. (2.3), the stresses are obtained as

Trr =
2µ

n
[1− (rβ′ + β)n] +

λ

n
[3− (rβ′ + β)n − 2βn]− ξΘ

Tθθ = Tϕϕ =
2µ

n
(1− βn) +

λ

n
[3− (rβ′ + β)n − 2βn]− ξΘ

Trθ = Tθϕ = Tϕr = 0

(2.5)

Equation of equilibrium. The radial equilibrium of an element of the spherical shell requires

dTrr
dr
+
2

r
(Trr − Tθθ) = 0 (2.6)

where Trr and Tθθ are the radial and hoop stresses, respectively.
Boundary conditions. The temperature satisfying Laplace equation (2.4) with boundary condi-
tions

Θ = Θ0 ∧ Trr = −pi at r = a

Θ = 0 ∧ Trr = 0 at r = b
(2.7)

where Θ0 is constant, is given by (Parkus, 1976)

Θ =
Θ0 log(r/b)

log(a/b)
(2.8)
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Critical points or turning points. Using Eq. (2.5) in Eq. (2.6), we get a non-linear differential
equation in β as

nP (P + 1)n−1βn+1
dP

dβ
=
(µ′

µ
−
C ′

C

)

{3− 2C − βn[2(1 − C) + (1 + P )n]} − 2C ′r(1− βn)

− nβnP [2(1 − C) + (1 + P )n] + 2Cβn[1− (1 + P )n]−
nCΘ0
2µβn

(

ξ + rξ′ log
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b

)

(2.9)

where Θ0 = Θ0/ log(a/b), C = 2µ/λ+2µ and rβ
′ = βP (P is a function of β and β is a function

of r only). The transition or turning points of β in Eq. (2.9)) are P → −1 and P → ±∞.

3. Analytical solution

For finding thermal creep stresses and strain rates, the transition function is taken through the
principal stress difference (see Seth, 1962, 1966; Thakur, 2011, 2014; Thakur et al., 2016, 2017)
at the transition point P → −1. We define the transition function ψ as

ψ = Trr − Tθθ =
2µβn

n
[1− (P + 1)n] (3.1)

where ψ is a function of r only, and ψ is the dimension.
Taking logarithmic differentiation of Eq. (3.1) with respect to r and substituting the value

of dP/dβ from Eq. (2.9), we get
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Taking asymptotic value of Eq. (3.2) at P → −1, we get

d

dr
(logψ) =

3µ′

µ
−
2C ′

C
−
3n

r
+X (3.3)

where

X =
2(n − 1)C

r
−
2Cµ′

µ
+
2C ′

βn
−
(µ′

µ
−
C ′

C

)3− 2C

βn
+
nCΘ0
2µrβn

(

ξ + rξ′ log
r

b

)

Integrating equation (3.3), we get

ψ = A
µ3

C2r3n
exp(h) (3.4)

where h =
∫

X dr and A is a constant of integration, which can be determined from the boundary
condition. From Eq. (3.1) and Eq. (3.4), we have

Trr − Tθθ = A
2rµ3

2C2r3n+1
exp(h) =

ArH

2
(3.5)

where

H =
2µ3

C2r3n+1
exp(h)
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Substituting Eq. (3.5) in Eq. (2.6) and integrating, we get

Trr = B −A

∫

H dr (3.6)

where B is a constant of integration, which can be determined from the boundary condition and
asymptotic value of β as P → −1 is D/r, with D being a constant.
Using boundary condition Eq. (2.7) in Eq. (3.6), we get

A = −
pi

b
∫

a
H dr

B = −
pi

b
∫

a
H dr

∫

H dr (3.7)

where pi is pressure at the inner surface of the spherical shell. Using the integration constants
A and B in Eq. (3.6), we get
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b
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H dr
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Substituting Eq. (3.8) into Eq. (3.5), we get
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∫
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(3.9)

We introduce non-homogeneity in the spherical shell due to variable compressibility as given in
Eq. (1.2), then Eq. (3.8) and Eq. (3.9) become
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where Trr, Tθθ are radial and circumferential stresses, and

H1 =
2µ3
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Equations (3.10)1,2 give thermal creep stresses for a spherical shell made of a non-homogeneous
material under steady-state temperature. We introduce the following non-dimensional compo-
nents as: R = r/b, R0 = a/b, σrr = τrr/pi, σθθ = τθθ/pi and αΘ0 = Θ1. Equations (3.10)1,2 in
non-dimensional form become
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where
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Particular case: In the absence of temperature gradient (i.e. Θ1 = 0), Eqs. (3.11), become
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4. Estimation of creep parameters

When the creep sets in, the strains should be replaced by strain rates, then stress-strain relations
are given (Sokolnikoff, 1946; Parkus, 1976)

eij =
1 + ν

E
Tij −

ν

E
δijT + αΘ (4.1)

where eij is the strain component and T = Tii is the first stress invariant and ν = (1−C)/(2−C)
is Poisson’s ratio. Differentiating Eq. (2.2) with respect to time t, we get

ėθθ = −β
n−1β̇ (4.2)

For Swainger measure (i.e. n = 1), Eq. (4.2) become

ε̇θθ = β̇ (4.3)

where ε̇θθ is the Swainger strain measure. From Eq. (3.1), the transition value β is given at the
transition point P → −1 by

β =
( n

2µ

)

1

n

(Trr − Tθθ)
1

n (4.4)

Using Eqs. (4.2)-(4.4) in Eq. (4.1), we get

ε̇rr = m(σrr − νσθθ + αΘ) ε̇θθ = m(σθθ − νσrr + αΘ)

ε̇ϕϕ = −m[ν(σrr + σθθ) + αΘ]
(4.5)

where ε̇rr, ε̇θθ and ε̇ϕϕ are strain rates, σrr, σθθ are stress components and

m = [n(σr − σθ)(1 + ν)]
1

n
−1. These are the constitutive equations used by Odquist (1974)

for finding the creep stresses, provided we put n = 1/N and N is the measure.
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5. Numerical results and discussion

For calculating creep stresses and strain rates on the basis of the above analysis, the following
values have been taken, ν = 0.5 (incompressible material C0 = 0), ν = 0.42857 (compressible
material C0 = 0.25) and 0.333 (compressible material C0 = 0.50), n = 1/3, 1/5, 1/7 (i.e. N = 3,
5, 7), thermal expansion coefficient α = 5.0 · 10−5 degF−1 for Methyl Methacrylate (Levitsky
and Shaffer, 1975) and Θ1 = αΘ0 = 0 and 0.5, D = 1. In classical theory, the measure N is equal
to 1/n. The definite integrals in Eqs. (3.11) have been evaluated by using Simpson’s rule. From
Figs. 2-4, curves are presented between stresses along the radii ratio R = r/b in the spherical
shell made of compressible as well as incompressible materials for k = −1, 0, 1. It can be seen
form Figs. 2 and 3 that the circumferential stresses are maximum at the external surface for
n = 1/7 and k = −1, 0 for a compressible material as compared to the incompressible material.
From Fig. 4, the circumferential stress is maximum at the internal surface for non-homogeneity
k = 1. The non-homogeneity increases the values of circumferential stress (i.e. k = −1, 0), but
reverse the result for k = 1.

Fig. 2. Creep stresses in a non-homogeneous (k = −1) spherical shell along the radii ratio R = r/b;
(a) without temperature, (b) for temperature Θ1 = 0.5
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Fig. 3. Creep stresses in a non-homogeneous (k = 0) spherical shell along the radii ratio R = r/b;
(a) without temperature, (b) for temperature Θ1 = 0.5

With the introduction of a temperature gradient, the values of circumferential stress are de-
creased at the external surface as well as internal surface of the spherical shell for different values
of non-homogeneity. It means that temperature dependent materials minimize the possibility of
fracture at the internal surface of the spherical shell. From (Fig. 5), curves are produced between
strain rates along the radii ratio R = r/b for the spherical shell made of compressible material
C = 0.25, i.e. saturated clay for k = −1, 0, 1. It can be seen that the strain rates are maximum
at the external surface for k = −1, 0 and reverse in the case k = 1. With the introduction of
a temperature gradient, the strain rates decrease at the internal surface as well as the external
surface. It means that the temperature dependent materials minimize the possibility of fracture
at the internal surface of the spherical shell.
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