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We investigate the time series of a torque applied to the ripping head in
the process of a cutting concrete rock with sharp and blunt tools. By ap-
plying nonlinear embedding methods and the recurrence plots technique
to the corresponding time series, we indicate the changes in nonlinear
dynamics lying behind the ripping process, and we propose a test of the
ripping machine efficiency and a way of monitoring the state of tools.
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1. Introduction

The dynamics of a cutting process, in the case of metals, was described by
Merchant several decades ago (Merchant, 1945). His proposals, involving such
phenomena as friction, impacts, and chips breaking, are still inspiring in the
current research of metal cutting with higher speeds (Litak, 2002; Sen et al.,
2007; Warmiński et al., 2003). They were also extended to the problem of cut-
ting of brittle materials including cutting of rocks. In this paper, we discuss
experimental results obtained using the technology of multi-tool ripping heads
(Eichbaum, 1980; Fowell, 1993; Gajewski and Jonak, 2006; Jonak and Gajew-
ski, 2008). We will show time histories of the ripping head torque applied to a
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standard rock and later examine them by means of embedding and recurrence
theories.

The aim of the present paper is to show how recurence plots (RP) and
recurence quantification analysis (RQA) can help in the assessment of states
of the ripping head tools.

2. Considered problem

Multi-tool ripping torque time histories T (i) versus the sampling index i
for sharp and blunt tools are presented in Figs. 1a and 1b, respectively. All
other working conditions besides the states of tools were the same. Note, that
the times series of sharp tools is characterized by slightly larger peak valu-
es. On the other hand, blunt time series shows a characteristic time interval
i ∈ [3700, 7100] of a fairly smaller amplitude, which can indicate on possible
intermittency in the examined system.

Fig. 1. Multi-tool ripping torque time histories T (i) versus the sampling index i for
sharp (a) and blunt (b) tools. The sampling time was 0.005 s while the rotational

velocity was 42 rev/min

To go further with the standard methods of nonlinear time series analysis
(Fig. 1), one should investigate the embedding properties. This approach is
based on properties of a phase space which can be reconstructed by supple-
menting missing coordinates with time delayed ones (Takens, 1981). Thus, the
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examined torque T i on the ripping head at the sampling time given by i can
be expressed as the following vector

T i = [Ti, Ti−∆i, Ti−2∆i, . . . , Ti−(M−1)∆i] (2.1)

where ∆i is the time delay in sampling time units, while M is the embedding
dimension. Now we explain how to obtain proper values of ∆i and M by
examining the average mutual information (AMI) (Fraser and Swinney, 1986;
Hegger et al., 1999; Kantz and Schreiber, 1997) and the false nearest neighbour
fraction (FNNF) (Abarbanel, 1996; Hegger et al., 1999; Kennel and Brown,
1992; Sen et al., 2007). AMI is defined via conditional probabilities of the
sequence events

AMI(δi) = −
∑

kl

pkl(δi) ln
pkl(δi)

pkpl
(2.2)

where, for some partition (16 equal parts) of the ripping head, torque values
are in an interval T ∈ [Tmin, Tmax], pk is the probability of finding a time
series value in the k-th interval, and pkl is the joint probability that an ob-
servation falls later into the l-th element, and the observation time is given
by δi. The optimal time delay ∆i = δi is to be determined by the first AMI
minimum for which the examined events are independent enough to define a
new coordinate. Note, that AMI is positively defined and its smallest value
(theoretically AMI = 0) can be reached when pkl can be factorized to indivi-
dual probabilities pk and pl (pkl ≈ pkpl) for any k and l far from each other
by δi.

On the other hand, to get FNNF one has to choose a point indicated
by T i and calculate the distance to its nearest neighbour point T j in the
m-dimensional space. For an Euclidean distance, which is typically used here,
it is |T i − T j|m.

By iterating both points along the time series, we compute the control
parameter Qi,m defined as

Qi,m =
|T i − T j |m+1
|T i − T j |m

(2.3)

By comparing the above value to a chosen threshold Qc, we calculate a fraction
of cases for which Qi,m exceeds the threshold value Qc. The FNNF can be
then estimated from the following expression

FNNF(m) =
1

N

∑

i

Θ(Qi,m −Qc) (2.4)
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where N is the number of vector elements in the vector time series, Θ(x) is
the Heaviside step function. This, so called, fraction analysis is repeated by
choosing different values of the dimension m. The optimal value M = m is
defined when the fraction of false nearest neighbours tends to zero (note, in
some cases, depending on Qc in respect to the standard square deviation of
examined time series T (i), some points are omitted and FNNF reaches the
minimum for the optimal dimension m =M)

lim
m→M

FNNF(m)→ 0 (2.5)

3. Results of numerical analysis

Using the above definitions for AMI and FNNF, we have estimated the em-
bedding for the time series of sharp tools. In Figs. 2a,b one can easily find that
the optimal values are ∆i = 3 and M = 7 representing the time delay and
the embedding dimension.

Fig. 2. AMI versus time delay δi (a), FNNF versus embedding dimension m (b) for
sharp tools

These results would be a frame for the RP and RQA techniques. Here
we assumed that these quantities were slowly evaluating during cutting of
rock. To simplify the procedure of monitoring of the tools state, we fixed
the embedding in the initial stage (for sharp tools). This can be additionally
justified by the existence of important embedding invariants including the
Shannon information entropy (Thiel et al., 2004).

The recurrence plot is usually defined by the following matrix form Rm,ǫ

with the corresponding elements Rm,ǫij (Casdagli, 1997; Eckmann et al., 1987;
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Litak et al., 2007; Marwan, 2003, 2006; Marwan et al., 2007; Thiel etal, 2004;
Webber and Zbilut, 1994; Wendeker et al., 2004)

R
m,ǫ
ij = Θ(ǫ− |T i − T j|) (3.1)

having 0 and 1 elements to be translated into the recurrence plot as an empty
place and a black dot, respectively. In this method (RP), patterns showing
the diagonal and vertical or horizontal structure of lines are examined. Having
obtained such a structure, one can easily classify the dynamics of a studied
system (Marwan et al., 2007).

In Fig. 3a and 3b, we mapped the corresponding matrix elements Rij into
recurrence plot graphs. One can see that the lines in Fig. 3a are more dense
than those in Fig. 3b. As the space between lines corresponds directly to the
characteristic period of torque variations, we can conclude that sharp tools
variations possess a higher frequency component in their spectrum.

Fig. 3. Recurrence plots for sharp (a) and blunt (b) tools

The other possibility is stronger appearance of random oscillations which
usually fill the space between lines uniformly (see the most dense region in the
middle of Fig. 3a). On the other hand, a finite length in some of the vertical
lines visible in Figs. 3a and 3b invoke the intermittent character of torque
changes in both cases (Litak et al., 2007; Marwan et al., 2007; Wendeker et
al., 2004).

For quantitative analysis, we define the recurrence rate RR

RR =
1

N2

N∑

i,j=1

R
m,ǫ
ij for |i− j|  w (3.2)
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which determines the black dots fraction in the RP graph. w denotes the
Theiler window used to exclude identical and neighbour points (in our case
w = 1) from the above summation, Eq. (3.2).
Furthermore, the RQA can be used to identify vertical or diagonal lines

through their lengths up to Lmax, Vmax for diagonal and vertical lines, respec-
tively. In its frame, the RQA enables one to perform probability p(l) or p(v)
distribution analysis of lines according to their lengths l or v (for diagonal
and vertical lines). In practice, they are calculated as

p(y) =
P ǫ(y)
N∑

y=ymin
P ǫ(y)

(3.3)

where y = l or v, depending on the diagonal or vertical structures in a specific
recurrence plot.
For various collections of diagonal and vertical lines with respect to their

lengths distributions, Shannon information entropies (Lentr and Ventr ) can be
defined via (Marwan, 2003)

Lentr = −
N∑

l=lmin

p(l) ln p(l) Ventr = −
N∑

v=vmin

p(v) ln p(v) (3.4)

Other properties of RP as the determinism DET and laminarity LAM as well
as the trapping time TT are also based on the probabilities P ǫ(x)

DET =

N∑
l=lmin

lP ǫ(l)

N∑
i,j=1
R
m,ǫ
i,j

LAM =

N∑
v=vmin

vP ǫ(v)

N∑
v=1
vP ǫ(v)

(3.5)

TT =

N∑
v=vmin

vP ǫ(v)

N∑
v=vmin

P ǫ(v)

In the above equations, lmin and vmin (lmin = vmin = 2 in our case) denote
minimal lengths of the diagonal and vertical lines which should be chosen for a
specific dynamical system. The determinism quantity DET is a measure of the
predictability of the examined time series and gives the ratio of recurrent points
formed in diagonals to all recurrent points. Note that in a periodic system
all points would be included in the lines. On the other hand, the laminarity
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LAM is a similar measure which corresponds to points formed in vertical
lines. For small point-to-point changes (laminar), consecutive points form a
vertical line. These measures tell about the dynamics behind sampling point
changes, and are strictly connected to the point fraction spanning the diagonal
(DET ) and vertical (LAM ) patterns, respectively. These diagonal and vertical
line patterns are skeletons of deterministic features, while any singular point
corresponds to randomness in the examined system. Note that for random
numbers, the recurence plot is filled uniformly without any pattern. Finally,
the trapping time TT refers to the average length of vertical lines measuring
the time scale (in terms of sampling intervals) of these small changes in the
examined time history.

We performed calculations (using the numerical code provided in Marwan
(2006)) of all the specified quantities for our time series (Fig. 1) and included
them into Table 1.

Table 1. Summary of recurrence quantification analysis (RQA) for ’sharp’
and ’blunt’ tools, respectively; w = 1 (Theiler,s window), M = 7, ∆i = 3 and
lmin = 2, vmin = 2 recurrence threshold ǫ = 4

Type RR DET LAM Lmax Vmax Lentr Ventr TT

’sharp’ 0.016 0.341 0.323 72 26 0.811 0.710 2.36
’blunt’ 0.025 0.819 0.849 318 43 1.918 1.564 3.30

One can see that for the same threshold value ǫ = 4 (Eq. (3.1)), we have a
larger RR for the ’blunt’ data. This could be connected with higher correla-
tions of these experimental data. The same effect of correlations is also visible
in DET and LAM parameters which tell about the deterministic structure
of the data. Note that this structure is much more transparent in the ’blunt’
data. On the other hand, the entropies Lentr and Ventr show that the distribu-
tion of length of particular diagonal and vertical lines is complex and broader
in the case of the ’blunt’ data. Note also the differences in Lmax and Vmax
(Table 1). These quantities are fairly larger for the ’blunt’ data (Lmax = 318
for ’blunt’ data while Lmax = 72 for ’sharp’ data and Vmax = 43 for ’blunt’
data while Vmax = 26 for ’sharp’ data) because of the lack of correlations in
the ’sharp’ data.

4. Concluding remarks

In summary, we carried out recurrence analysis of the dynamical time series
of the multi-tool ripping head. By examining the RP results, we found that
oscillations in the case of sharp tools have two additional dynamical compo-
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nents in the spectrum in the case of blunt tools (Fig. 3a and 3b). The first one
is higher frequency, while the second important factor corresponds to random
noise.

Comparing the RQA results for both examined cases, one can also notice
fundamental differences in the deterministic structure. This structure, expres-
sed by both DET and LAM being close to 1 (see in Table 1 DET = 0.819,
LAM = 0.849), is fairly well defined in the case of blunt tools, while in
the case of sharp tools, DET and LAM are much smaller (see in Table 1
DET = 0.341, LAM = 0.323). This could be an indicator of the effect of wear
in tools and used in an automated monitoring procedure of condition of tools.

In a rock cutting process, more attention is paid to the expected size of
loosening rock elements, which is strictly connected with energy consumption.
For larger pieces, smaller energy is needed. It is obvious that wear in tools
directly changing characteristics of friction and impacts could be responsible
for different system responses. For instance, the wear effect on the sintered
carbides considerably changes their rake angle of the cutting edges. In a con-
sequence for blunt tools, the supplied power increases by about 50% in respect
to sharp tools (Jonak and Gajewski, 2008). However, to tell if the recurence
plots provide a useful criterion, we need to perform more systematic experi-
ments, especially with different rotational velocities of the ripping head and
feed rates. These results will be reported in next publications.
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Szacowanie ilościowe wpływu stępienia narzędzia na pracę głowicy

urabiającej za pomocą wykresów rekurencyjnych

Streszczenie

W artykule przedstawiono wyniki badań nad zastosowaniem nieliniowych metod
zanurzenia oraz wykresów rekurencyjnych do oceny zmian dynamicznych zachodzą-
cych w procesie urabiania. Przebadano przebiegi czasowe momentu urabiania głowicą
uzbrojoną w ostre oraz stępione narzędzia górnicze. Proponowane metody mogą oka-
zać się przydatne w kontekście oceny wydajności oraz monitorowania stanu narzędzi
głowicy urabiającej.
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